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Spectral functions in an exactly solvable self-bound A-body system
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We consider an exactly solvable Hamiltonian for bosons in one-dimension interacting through zero-range
attractive forces, and construct a complete basis of its A-particle eigenstates. The structure of the single-particle
spectral function in the removal domain is investigated, by taking the overlap of the A-particle ground state with
the various excited states of the (A − 1) system. In particular we study the contribution to the spectral function of
the different break-up channels in the A − 1 continuum, and compare the results to general statements available
in the literature. It is shown that the asymptotic behavior in coordinate space does not agree with conventional
assumptions. The relation to recent (e, e′p) experiments at large values of missing energy and momentum is
pointed out.
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I. INTRODUCTION

The single-particle spectral function S(k,E) can be defined
as the probability for ending up in an eigenstate of the
(A ± 1)-particle system at energy E, when a particle with
momentum k is added to, or removed from, the correlated
A-particle ground state. It is a central concept in the Green’s
function description of interacting many-body systems [1,2].
Apart from this theoretical status, it is also a quantity that
is experimentally accessible, and in particular one-particle
knock-out reactions are mostly analyzed in terms of the
removal spectral function.

During the 90s, electron-induced (e, e′p) (proton knock-
out) reactions have provided a detailed mapping of the spectral
function for complex nuclei in the proton removal region
[3–5]. However, in most cases only the region of small
nucleon momenta and removal energies was probed. In this
energy-momentum region one expects the spectral function of
a normal quantum system to be dominated by quasiparticle
excitations.

Only recently has it become feasible to probe the spectral
function away from the quasiparticle peak, at much larger
values of missing momentum and missing energy [6–8]. In this
kinematical region one may hope that the (one-body part of the)
cross section is sensitive to the nonquasiparticle “background”
of the spectral function. This would be important, as the
background is closely related to the nature and strength of the
NN interaction at short distances [9]. More generally, it would
be highly interesting to have direct experimental corroboration
of the intuitive nonrelativistic picture, where the nuclear
spectral function is separated into quenched quasiparticle
excitations (with nucleons moving in mean-field-like orbitals),
and into a background or correlation part containing nucleons
moving with much larger velocities [9–13].

The (e, e′p) experiments at large missing energy are per-
formed well beyond the threshold for two-nucleon emission.
Although the shape of the overlap function is well-known
for the case of overlaps with bound (A − 1) states, it is not
immediately clear what is the nature of the overlap function
between an unbound A − 1 nucleon state, with one or more
nucleons in the continuum, and the ground state of the

target nucleus. In this paper we try to address this issue by
considering an exactly solvable model.

The model we discuss involves a general number of spinless
bosons moving in one dimension and interacting through
attractive delta-function potentials. It has been used before
to investigate general features of finite, self-bound many-body
systems. Earlier studies focused on properties of the ground
state, such as the comparison between the exact density, elastic
form factor, and momentum distribution with their mean-field
(Hartree-Bose) approximations [14–16]. More recently the
full one-body density matrix (OBDM) was obtained for this
model [17,18], and a study was made of the natural orbitals
and the overlap function between the A and A − 1 ground
states. It was shown that such bound-state overlap functions
can be obtained from the OBDM also in a more general
setting [19,20].

It is not immediately obvious that the simple attractive
delta-potential can be relevant for the properties of real systems
like nuclei. The nucleon-nucleon interaction is complicated
and has, in addition to the attractive components, a strong
short-range repulsion. In fact it is the latter component that
is mainly responsible for the high-momentum components in
the nuclear wave function. Nevertheless, the present model
is perfectly adequate to study the most general features
related to self-bound systems, such as the ultimate asymptotic
behavior of the momentum distribution. It can be shown
(see, e.g., Ref. [15]) that for a nonsingular local interaction
v(r) the momentum distribution n(k) behaves asymptotically
as [v(k)/k2]2, where v(k) is the Fourier transformed (FT)
interaction. The large-momentum behavior is insensitive to
the sign of v, and is governed by the fastest variations in
v(r). Physically, of course, this is usually the repulsive core
at short distances. The present delta-interaction is extremely
short-range and presents some kind of limit situation: the FT
is a constant, whereas any other nonsingular interaction would
eventually die out in momentum space.

In the present paper we extend the study of Ref. [17], by
constructing a complete set of A-particle eigenstates for this
system and investigating the single-particle removal spectral
function. In particular we pay attention to the contribution
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of unbound A − 1 states with one or more particles in the
continuum, and examine the properties of the corresponding
overlap functions. Such a study in an exactly solvable model
is useful in the sense that one can check general assumptions
made in more realistic cases; it will be shown, e.g., that the
asymptotic behavior of continuum A − 1 overlap functions
assumed in many articles is incorrect.

Another interesting point that can be addressed more fully
in an exactly solvable model, is the decomposition of the
OBDM (which receives contributions from all A − 1 eigen-
states) into quasiparticle and correlation parts, and the latter’s
signature in the momentum distribution and (coordinate space)
density. While the high-momentum components induced by
the correlation part are quite similar for the finite and infinite
system, the signature in coordinate space is typical for a
finite system. For the present model this was studied in
Ref. [17]; it was found that the correlation contribution to
the density is localized in the center and is of shorter range
than the contributions from the quasiparticle excitations. The
same features are present in detailed calculations for finite
nuclei [19,21,22]. It was shown quite recently [23], by a
comparison of (e, e′p) results with the total charge density
obtained from elastic electron scattering, that the experimental
data can be consistently analyzed in terms of such quasiparticle
and correlation densities. Interestingly, the authors of Ref. [23]
were also able to provide a natural explanation for the
discrepancy in the (e, e′p) spectroscopic factors obtained in
low-q and high-q experiments [24].

We learned recently that excited-state wave functions for
the present model have already been considered in Ref. [25].
However, the interest there was in assessing the validity
of symmetry-breaking mean-field descriptions of unconfined
Bose-Einstein condensates, and properties of the spectral
function for finite systems were not investigated.

II. EXACT MANY-BODY EIGENSTATES

A. Hamiltonian

The model Hamiltonian H involves A spinless bosons in one
dimension, interacting with attractive δ-function potentials,

HA = − 1

2m

A∑
i=1

∂2

∂x2
i

− g

A∑
i<j=1

δ(xi − xj ), (1)

where g > 0 and in units h̄ = 1.
For A � 2 there is one bound state with energy

E0(A) = − λ2

6m
A(A2 − 1), (2)

where λ = mg/2. The intrinsic wave function of the ground
state reads

�0(A)(x1, . . . , xA) = CA exp

(
−λ

A∑
i<j=1

|xi − xj |
)

, (3)

with the normalization constant CA given by CA =
[(2λ)A−1(A − 1)!/A]1/2. We refer to Ref. [26] for our normal-
ization conventions concerning the intrinsic (translationally
invariant) eigenstates of self-bound systems.

B. A-particle eigenstates

The construction of the exact eigenstates proceeds using
techniques related to the Bethe ansatz. It is quite analogous
to the construction in Ref. [27] for the case of the repulsive
δ-potential, except that for the analysis of the thermodynamic
properties of the one-dimensional Bose gas in Ref. [27]
periodic boundary conditions on a finite x-interval were
imposed, whereas in the present treatment the position x is
unrestricted and the particle number A is kept fixed. Moreover,
additional complications arise because of the presence of a
bound state for the attractive δ-potential.

For A particles there are A! possible orderings of the
positions, xπ(1) � xπ(2) . . . � xπ(A), where π is a permutation
of the particle labels. Since an A-boson wave function is
symmetrical,

�(A)(xπ(1), xπ(2), . . . , xπ(A)) = �(A)(x1, x2, . . . , xA), (4)

it is fully determined by its values �SO
(A)(x1, . . . , xA) in e.g., the

“standard” ordering x1 > x2 > · · · > xA.
Within any fixed ordering, the interaction terms in Eq. (1)

are inconsequential, and the wave function must be of
exponential type (or a sum of exponentials). The δ(xi − xj )
interaction terms come into play when crossing between dif-
ferent orderings occurs and must be canceled by corresponding
δ-terms in the kinetic term, originating from discontinuities in
the normal derivatives when crossing an xi = xj boundary.
The precise cusp condition which ensures such a cancellation
is

lim
xi

>→xj

[
2λ +

(
∂

∂xi

− ∂

∂xj

)]
�(A)(x1, x2, . . . , xA) = 0. (5)

It is shown in the Appendix that for an arbitrary set of
complex (e1, e2, . . . , eA) the exponential-type function

�SO
(A)(x1, x2, . . . , xA) =

∑
π

Wπ exp

(
A∑

i=1

eπ(i)xi

)
, (6)

where the summation runs over all permutations π , obeys the
cusp conditions in Eq. (5) and hence is an eigenfunction of
the Hamiltonian in Eq. (1), provided the coefficients Wπ are
chosen as

Wπ = sign(π )
A∏

i<j=1

(2λ − eπ(i) + eπ(j )). (7)

Here sign(π ) refers to the odd or even character of the
permutation π .

Not all choices of the ei , however, lead to an acceptable
physical eigenstate. Firstly, translational invariance of the wave
function implies that

∑A
i=1 ei = 0. Secondly, the condition

that �(A) should not be exponentially increasing at infinity
severely restricts the possibilities for the real parts of the ei .
This reflects whether one or more bound clusters are present
in the asymptotic behavior of the wave function.

We use the asymptotic cluster structure to classify the dif-
ferent continuum channels for the eigenstates. If [n1n2 . . . nN ]
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is a partition of A, i.e., 1 � nα � A and
∑N

α=1 nα = A, then this
specifies N bound clusters, containing, respectively, particles
(1, . . . n1), (n1 + 1, . . . , n1 + n2), etc. In a more compact
notation, cluster α contains particles (Nα + 1, . . . , Nα + nα),
where Nα = ∑α−1

β=1 nβ .
In the standard ordering we may consider the regime where

the distance between the c.m. (center of mass) coordinates
of the different clusters is taken to infinity, while the relative
coordinates within each cluster remain finite. In this regime,
the distance |xi − xj | between any two particles not belonging
to the same cluster becomes very large. A valid asymptotic
behavior for an intrinsic A-particle eigenstate �SO

(A) of Eq. (1)
is then given by the product of N bound eigenstates of the
form (3), describing the internal motion within each cluster,
and N − 1 plane-wave states for the motion of the clusters
reative to each other. The latter motion can be fully specified
by N − 1 (real) numbers kα (α = 2, . . . , N ), denoting, e.g., the
momentum of the c.m. Xα of cluster α with respect to the to-
tal c.m. X̃α of the preceding clusters 1, . . . , α − 1. The asymp-
totic behavior as specified above by the partition [n1n2 . . . nN ]
and momenta kα , then reads

�SO
(A) →

[
N∏

α=1

exp

(
−λ

nα∑
i<j=1

|xNα+i − xNα+j |
)]

×
[

N∏
α=2

exp (ikα(Xα − X̃α))

]
, (8)

where Xα = (
∑nα

i=1 xNα+i)/nα , and X̃α = (
∑α−1

β=1

∑nβ

i=1xNβ+i)/
Nα . Since we assume standard ordering of the positions xi , this
can be rewritten simply as (for notational convenience we also
introduce k1 = 0),

�SO
(A) → exp

{
N∑

α=1

nα∑
j=1

[
−λ(nα − 2j + 1)

+ i

(
kα

nα

−
N∑

β=α+1

kβ

Nβ

)]
xNα+j

}
(9)

= exp

(
A∑

i=1

eixi

)
. (10)

We now show that inserting the set of exponents ei

defined in Eqs. (9) and (10) into Eqs. (6) and (7) leads to
a physical eigenstate, with asymptotic behavior determined by
Eq. (8). Obviously,

∑A
i=1 ei = 0 since Eq. (8) is expressed

in terms of relative coordinates. For the second condition
we note that Eq. (7) implies Wπ = 0 unless the inverse
permutation π−1 keeps the order of the labels Nα + 1 <

Nα + 2 < · · · < Nα + nα belonging to the same cluster α, i.e.,
unless π−1(Nα + 1) < π−1(Nα + 2) < · · · < π−1(Nα + nα).
Suppose otherwise, then π−1(Nα + i) > π−1(Nα + i + 1) for
two consecutive labels in the cluster α, and the product in
Eq. (7) would contain the factor 2λ − (eNα+i − eNα+i+1) = 0.
Stated differently, a term in Eq. (6) with nonzero coefficient

Wπ has within each cluster the positions xπ−1(Nα+i) in standard
order,

xπ−1(Nα+1) > xπ−1(Nα+2) > · · · > xπ−1(Nα+nα ). (11)

As a consequence, all terms appearing in the wave function (6)
have an exponent with negative real part,

�
(

A∑
i=1

eπ(i)xi

)
= �

(
A∑

i=1

eixπ−1(i)

)

= −λ

N∑
α=1

nα∑
i<j=1

∣∣xπ−1(Nα+i) − xπ−1(Nα+j )

∣∣ � 0,

(12)

and qualify as physical eigenstates. Note that the number of
permutations keeping the order in each cluster [i.e., obeying
the inequalities (11)] is given by A!/(n1! . . . nN !), as expected
from the symmetry properties of Eq. (8).

It still has to be shown that the asymptotic behavior is
really given by Eq. (8), or equivalently, that the term in
Eq. (6) corresponding to the unit permutation (the identity)
is asymptotically dominating. From Eq. (12) it follows that
the dominating terms in Eq. (6) are the ones where the image
under π−1 of each cluster is itself a cluster. Otherwise, the sum
in Eq. (12) would contain the distance |xπ−1(Nα+i) − xπ−1(Nα+j )|
between particles not belonging to the same cluster, and such
a term in Eq. (6) would be exponentially damped in the
asymptotic regime. Moreover, the mapping under π−1 of a
cluster into a cluster must conserve the order, otherwise the
permutation would have a zero coefficient Wπ . In consequence,
for a partition with no equivalent clusters (containing the
same number of particles) the unit permutation is the only
one that leads to a dominating term in the sum (6), and the
asymptotic behavior of Eq. (8) follows. Equivalent clusters can
of course still be interchanged in the asymptotic regime, and
the corresponding dominating terms in Eq. (6) are generated
by the permutations which map clusters into equivalent ones
and are order conserving.

We have thus succeeded in constructing all intrinsic phys-
ical eigenstates of the model Hamiltonian (1). The A-particle
eigenstates are labeled by their asymptotic behavior, in terms
of a partition [P ] = [n1 . . . nN ] of A into N clusters, and a set of
relative momenta k2, . . . , kN between the clusters. Including
correct normalization factors we have, for x1 > · · · > xA,

�[P ]K(x) ≡ �[P ];k2...kN
(x1, . . . , xA) = C[P ]

|W1|

×
∑
π

Wπ exp

(
A∑

i=1

eπ(i)xi

)
, (13)

where the ei follow from Eqs. (9) and (10), the permutation
coefficients Wπ from Eq. (7), and W1 refers to the unit
permutation. The factor C[P ] reads

C[P ] = Cn1 . . . CnN

(
n1! . . . nN !

A!(2π )N−1

)1/2

, (14)
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TABLE I. Distribution of the strength of a normalized test function (see text) over the exact eigenstates. The results for particle number
A = 2, 3, 4, 5 are classified according to the different partitions, corresponding to different break-up channels.

A = 2 [2] 0.8889 [12] 0.1111
A = 3 [3] 0.7901 [21] 0.1804 [13] 0.0295
A = 4 [4] 0.7023 [31] 0.2039 [212] 0.0555 [22] 0.0307 [14] 0.0076
A = 5 [5] 0.6243 [41] 0.2291 [312] 0.0617 [32] 0.0458 [221] 0.0203 [213] 0.0170 [14] 0.0019

in terms of the bound-state normalization Cn in Eq. (3). The
wave functions are now normalized as

∫
dx1 . . . dxAδ(RA)�∗

[P ];k2...kN
(x1, . . . , xA)

×�[P ′];k′
2...k

′
N ′ (x1, . . . , xA) = δP,P ′

N∏
α=2

δ(kα − k′
α), (15)

where RA = ∑A
i=1 xi/A is the total c.m. coordinate.

The complete set of eigenstates is then generated by
summing over all possible partitions and integrating all relative
momenta over the entire range [−∞,+∞]. If equivalent
clusters are present we must correct for double-counting of the
relative momenta, e.g., for a partition [P ] = [nnnmm . . .] =
[n3m2 . . .] we must divide by D[P ] = 3!2! . . . . For a numerical
check of the completeness we calculated the overlap of the
eigenstates (13) with normalized test functions of the form
� ∼ exp(−λ′ ∑A

i<j=1 |xi − xj |), with λ �= λ′ (i.e., the ground
state of the system with a different coupling strength). The
sum rule

1 =
∑
P

1

D[P ]

∫
dk2 . . . dkN |

∫
dx1 . . . dxAδ(RA)

×�∗(x1, . . . , xA)�[P ]K(x1, . . . , xA)|2 (16)

was seen to be fulfilled. As an example we list in Table I, for
A = 2–5 and λ′ = 2λ, the contributions to the sum rule (16)
from the ground state and from the different break-up channels
in the continuum (after integration over relative momenta).
Note that, here and in the following, the multidimensional
coordinate-space integrations are all of exponential type, and
are done algebraically.

It should be noted that the eigenstates of Eq. (13) do not
necessarily have good parity, but obey

�[P ]K(−x) = s[P ](�[P ]K(x))∗ = s[P ](�[P ]−K(x)), (17)

where s[P ] = (−1)(A2−∑
α n2

α )/2 contains the signature of the
permutations needed to reverse the order in each cluster of the
partition [P ]. Using Eq. (17) it is possible to introduce states
of good parity and a restricted set of relative momenta K.
However, the parity quantum number is never relevant for the
following, and we continue to work with states labeled solely
by [P ] and K.

Finally, the energy of the eigenstates of Eq. (13) can be
evaluated as

E[P ];k2...kN
= − 1

2m

A∑
i=1

e2
i

=
N∑

α=2

(
1

nα

+ 1

Nα

)
k2
α

2m
−

N∑
α=1

λ2

6m
nα

(
n2

α − 1
)

= T[P ];k2...kN
+ Etr

[P ], (18)

where the first term T[P ];kα
represents the kinetic energy of the

relative motion of the clusters and includes the correct reduced
mass, and the second term Etr

[P ] is the threshold energy of
this break-up channel, containing the binding energies of the
clusters.

III. SPECTRAL FUNCTION FOR REMOVAL
OF A PARTICLE

A. Overlap functions in coordinate space

The (single-particle) overlap function ψν(A−1)(x) between
the A-particle ground state �0(A) and an (A − 1)-particle
eigenstate �ν(A−1) is defined as [26]

ψν(A−1)(xA) =
√

A

∫
dx1 . . . dxA−1δ(RA−1)�∗

ν(A−1)

× (x1, . . . , xA−1)�0(A)(x1, . . . , xA−1, xA).

(19)

Even for (A − 1) eigenstates in the continuum, the overlap
function is normalizable, and the spectroscopic factors Sν(A−1),

Sν(A−1) =
∫

dx|ψν(A−1)|2, (20)

obey the sumrule
∑

ν Sν(A−1) = A.
In the present model all many-particle eigenstates are

known exactly [see Eq. (13)]. The overlap integrals are all of
exponential type, and with suitable bookkeeping the overlap
functions are also known algebraically. The simplest case is
for A = 3, where there are only two types of removal overlap
functions with the two-particle system,

ψ[2](x) = 2
√

2λ
(
e−2λ|x| − 1

3 e−6λ|x|), (21)

ψ[11]k(x) = 4λ2

√
2

π

e−4λ|x| cos (2k|x| − δk)√
(k2 + λ2)(k2 + 4λ2)

(
tan δk = 2λ

k

)
.

(22)
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Of particular importance is the large-distance (|x| → +∞)
behavior of the overlap functions. In the literature one conven-
tionally finds (see, e.g., Ref. [28,29]) the normal behavior

ψν(A−1)(x) ∼ e−κν |x|, κν =
√

2m

(
A − 1

A

)
[Eν(A−1) − E0(A)],

(23)

where the inverse decay length κν is governed by the separation
energy [Eν(A−1) − E0(A)]. This result, while not rigorously
proven, is generally accepted for single-particle overlaps to
discrete (bound) A − 1 states. The overlap function (21)
with the bound two-particle state obeys this rule; also for
general A, the overlap function between the A and A − 1
ground-state has an asymptotic behavior with inverse decay
length κ[A−1] = (A − 1)λ, in agreement with Eqs. (2) and (23).

It is commonly assumed (see, e.g., Ref. [28]) that the
standard behavior of the overlap in Eq. (23) can be extended
to the case of unbound (A − 1) states, where Eν(A−1) is
a continuous variable. The overlap functions (22) with the
unbound two-particle states, however, do not follow the
standard rule (23), according to which the overlap functions
should be of increasingly shorter range as E[11] grows. In
contrast, the exact overlap function in Eq. (22) has a damped
oscillatory character, with the exponential damping having a
fixed decay length, and an increasing energy giving rise to
faster oscillations. For larger A, where more decay channels
are possible, we always find the same behavior, i.e., for an
N-cluster partition [P ] of A − 1:

ψ[P ]k2,..kN
(x) ∼ e−κ[P ]|x| × (oscillatory terms), (24)

with the inverse decay length κ[P ] determined by the partition
and independent of the momenta between the asymptotic
clusters. In fact, numerically we find

κ[P ] = (A − n)(A − 1)λ, (25)

with n the largest (most deeply bound) cluster appearing in
the partition [P ] of the (A − 1) system, though we are unable
to relate this in a simple way to the separation energies of
the clusters. Such deviations from the standard rule (23) were
not taken into account in previous work by one of the present
authors [30]. However, the general results in Ref. [30] only
need the weak assumption that the overlap to continuum A − 1
states is of shorter range than the overlap to the bound A − 1
states [35], as is indeed the case for the present model.

This also means that the DWIA (distorted wave impulse
approximation) analysis of (e, e′p) reactions, strictly speak-
ing, has a problem beyond the A − 1 continuum threshold.
Conventionally [31], one divides the missing energy range in
bins and fits the (distorted) momentum distribution in each
bin with an incoherent sum of DWIA momentum distributions
corresponding to the relevant shell-model quantum numbers.
The overlap functions entering the DWIA analysis are usually
of the Woods-Saxon type, with the depth of the potential tuned
so as to generate a bound state with single-particle energy
equal to the separation energy of the bin. Such a procedure,
inspired by the standard behavior (23), is for the continuum
states clearly at variance with the results of the present exactly
solvable model.

Nevertheless, the multipole decomposition of the (e, e′p)
continuum has always given quite plausible and consistent
results. This may be due to the fact that, for fixed quantum
numbers, one has kept the rms radius of the overlap function
constant for different energy bins. The rms radius of the
phenomenological bound-state wave function determines to a
large extent its content in momentum space. Keeping the radius
fixed would therefore help to ensure that similar momentum
distributions are used for single-particle transitions in different
energy bins in the continuum but belonging to the same
channel, in agreement with the present model which leads
to the same exponential decay for these overlap functions. An
improved analysis of (e, e′p) reactions in the A − 1 continuum
would in addition take into account the oscillatory behavior
of the overlap functions related to the excess energy beyond
the channel threshold. This seems to require the introduction
of an imaginary part in the phenomenological single-particle
potential, which is plausible since the physical self-energy in
the A − 1 continuum does have an imaginary part. Note that an
imaginary part of the potential leads to damping for scattering
solutions (E > 0), but would likewise introduce an oscillatory
behavior for bound solutions (E < 0).

B. Distribution of single-particle strength

The removal spectral function is generally defined, in terms
of the overlap functions of Eq. (19), as

S(x, x ′; E) =
∑

ν(A−1)

δ(E − Eν(A−1))ψν(A−1)(x)ψ∗
ν(A−1)(x

′).

(26)

For the present model, the summation in Eq. (26) can be split
up as S = SQ + SC , and includes the contribution from the
bound A − 1 ground state (corresponding to the single cluster
[A − 1] and henceforth called the quasihole contribution),

SQ(x, x ′; E) = δ(E − E0(A−1))ψ[A−1](x)ψ∗
[A−1](x

′), (27)

as well as the contributions from the (A − 1) continuum
channels, labeled by the other partitions [P ] of A − 1,

SC(x, x ′; E)

=
∑
[P ]

1

D[P ]

∫
dKδ(E − E[P ]K)ψ[P ]K(x)ψ∗

[P ]K(x ′)

=
∑
[P ]

1

D[P ]

∫ +∞

0
dKδ

(
E − Etr

[P ] − K2/(2m)
)
F[P ](x, x ′; K).

(28)

Note that at a fixed energy E only the open channels with
threshold below E contribute. It was also convenient in Eq. (28)
to introduce the variable K as K2/(2m) = E[P ]K − Etr

[P ], and

F[P ](x, x ′; K) = KN−2 1

D[P ]

∫
d�ψ[P ]K(x)ψ∗

[P ]K(x ′), (29)

where the integration is over the remaining N − 2 angles
specifying the relative momenta K. An alternative expression
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TABLE II. Total removal strength from the A-particle ground state, classified according to the different partitions of A − 1, for A = 3, 4, 5.

A = 3 [2] 2.8148 [12] 0.1851
A = 4 [3] 3.7620 [21] 0.2260 [13] 0.0120
A = 5 [4] 4.7369 [31] 0.2301 [212] 0.0156 [22] 0.0167 [14] 0.0007

for the correlation spectral function therefore reads

SC(x, x ′; E) =
∑
[P ]

θ
(
E − Etr

[P ]

) 1

K
F[P ](x, x ′; K), (30)

where K =
√

2m(E − Etr
[P ]).

The well-known particle-number sum rule,

A =
∫

dE

∫
dxS(x, x; E) =

∫
dES(E) (31)

likewise picks up contributions from both the quasihole and
the various continuum channels. In Table II we have listed, for
A = 3, 4, 5, the contribution of each partition [P ] to the sum
rule (31). The quasihole state clearly carries the bulk of the
strength. In a noninteracting boson system it would exhaust
the sum rule completely; the nonzero strength residing in the
other channels is a measure of the amount of correlations in
the interacting system. The present system is only weakly
correlated, as only about 5% of the strength is outside the
quasihole state. The dominant correlation channel is the [A −
2, 1] partition (roughly corresponding to the two-hole one-
particle states in a fermionic system). Nevertheless, even the
total breakup channel [1A−1] has nonvanishing single-particle
strength.

In order to investigate in more detail the single-particle
continuum strength we have shown in Fig. 1, for A = 5, the

FIG. 1. Removal strength F[P ](K) as a function of excitation
energy in the (A − 1)-particle system, Ex = K2/(2m) + Etr

[P ] −
E[A−1], for A = 5 and the various continuum channels with partition
labels [31] (solid line), [22] (dashed line), [212] (dotted line), [14]
(dash-dotted line).

contributions to the energy distribution

F[P ](K) =
∫

dxF[P ](x, x; K), (32)

of the different channels. Note that F[P ](K) is plotted, rather
than S(E) which has an integrable singularity for the [31]
channel at threshold. It is seen from Fig. 1 that the [31]
channel dominates the continuum strength at all energies.
Asymptotically, the energy distributions have a power-law tail
where the power seems to be governed by the smallest cluster
in the partition: it is identical for the [31], [212], and [14]
partition, whereas the [22] decays faster.

C. Density and momentum distribution

The make up of the total density

ρ(x) =
∫

dE S(x, x; E) (33)

is presented in Fig. 2. As shown already in Ref. [17], the density
of the system is asymptotically dominated by the quasihole
contribution, whereas the correlation contribution is more
localized in the center and has a faster decay. The present work
allows to separate the correlation contribution into its different
continuum channel components. The exponential decay length
for a certain partition [P ] is (in accordance with the results of
Sec. III A) governed by the largest cluster present in [P ]. The
total break-up channel [14] therefore has the fastest decay.

FIG. 2. Contributions to the density ρ(x) for A = 5, from the
quasihole state (bullets) and from the various continuum channels
(see caption of Fig. 1).
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FIG. 3. Contributions to the momentum distribution n(k) for
A = 5, from the quasihole state (bullets) and from the various
continuum channels (see caption of Fig. 1).

In Fig. 3 the momentum distribution of the system

n(k) =
∫

dE S(k; E)

=
∫

dE
1

2π

∫
dx

∫
dx ′eik(x−x ′)S(x, x ′; E) (34)

is displayed in the same manner. As expected, the quasi-
hole component dominates at small values of the momen-
tum k, whereas the continuum channels determine the large-
momentum region of the momentum distribution. Note that
the [31] channel dominates the continuum contribution for
all momenta, and that the asymptotic behavior of the various
components of n(k) is the same as those of the energy
distribution S(E) (i.e., power-law tails determined by the
lightest cluster in [P ]).

FIG. 4. For A = 5, the spectral strength F[31](k; K) as a function
of K, for momentum k = 0 (dashed line) and for k = 10, 100, 1000 λ

(solid lines, with a larger k corresponding to a maximum at larger K).

FIG. 5. Same as Fig. 4, for the spectral strength F[22](k; K).

D. Correlation ridges

The identical behavior of S(E) and n(k) at large values of E
and k can be understood from the structure of the momentum-
space spectral function

S(k; E) =
∑
[P ]

θ
(
E − Etr

[P ]

) 1

K
F[P ](k; K). (35)

The functions F[P ](k; K) for the various partitions are pre-
sented in Figs. 4–7, and are plotted as a function of K for fixed
k = 0, 10, 100, 1000 λ. In each partition, the spectral strength
is for larger k increasingly dominated by a single peak at a value
Kmax = αk with α = √

3/4 for [31], [212], [14] and α = √
1/2

for [22]. This reflects the most favorable configuration, where
the large external momentum k is counterbalanced by the
momentum of the lightest cluster available. In general, for
a partition [P ] of A − 1 with a lightest cluster of n particles

FIG. 6. Same as Fig. 4, for the spectral strength F[212](k; K).
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FIG. 7. Same as Fig. 4, for the spectral strength F[14](k; K).

one finds by straightforward reasoning that

Kmax =
√

A − n − 1

n(A − 1)
λ. (36)

In Fig. 8 the location Kmax of the maximum of F[P ](k,K)
has been plotted, as a function of k. Figure 9 contains
the corresponding strength F[P ](k,Kmax). For large k and E
virtually all the strength is concentrated along these correlation
ridges. The integrated quantities S(E) or n(k) pick up almost
exclusively the peak strength, and therefore contain essentially
the same information. It is clear from Fig. 5 that the most
important correlation ridge is the one associated with the
[A − 2, 1] partition. This amounts to the well-known process
in which a high-momentum particle is removed from the
small component in the A-particle ground-state consisting of
a correlated pair on top of the A − 2 ground state.

FIG. 8. For A = 5, the position Kmax of the maximum of the
spectral strength F[P ](k; K), as a function of k and for the various
continuum channels (see caption of Fig. 1).

FIG. 9. For A = 5, the value F[P ](k; Kmax) at the maximum, as a
function of k and for the various continuum channels (see caption of
Fig. 1).

Another interesting observation, clearly visible from
Figs. 4–7, is that for each continuum channel the removal
spectral function at large energy eventually reaches a universal
power-law tail, irrespective of the value of k. Such a behavior
indicates a regime purely driven by the available phase space.
The background distribution coincides with the large-energy
part of the k = 0 spectral function and is shown in Fig. 10
for the various partitions. Note that the tail is proportional
for the [31] and [22], and for the [212] and [14] partition.
The presence of a common tail at large removal energies,
for the exact spectral function in the present model, is a
feature that is also found in recent nuclear-matter calculations
using the framework of self-consistent Green function theory
[32,33]. Since the removal spectral function contributes to the
binding energy, this is an important property reproduced in a

FIG. 10. For A = 5, the large-energy behavior of F[P ](k = 0; K)
for the various continuum channels (see caption of Fig. 1).

054318-8



SPECTRAL FUNCTIONS IN AN EXACTLY SOLVABLE . . . PHYSICAL REVIEW C 72, 054318 (2005)

self-consistent approach, but lacking in calculations where the
self-energy is evaluated using mean-field propagators.

IV. SUMMARY AND CONCLUSIONS

We have investigated a model of one-dimensional bosons
interacting with attractive delta potentials. As the model is
exacly solvable, it can be used to elucidate the structure of
single-particle overlap functions with unbound A − 1 states,
and to look at some of their exact properties without the
usual uncertainties introduced by approximate many-body
methods. It seems, e.g., that a commonly assumed large-
distance behavior does not hold for the overlap with unbound
A − 1 states, a fact that may be relevant for the analysis of
(e, e′p) reactions with the final state of the residual nucleus in
the continuum.

While the most important continuum contribution is the one
associated with a bound A − 2 state and a single particle in the
continuum, other break-up channels of the A − 1 system also
contribute to the removal strength, and hence to the density
and the momentum distribution.

At large values of energy and momentum the continuum
strength is concentrated along correlation ridges which com-
pletely dominate the spectral function. The position of these
ridges is determined by the lightest cluster in the asymptotic
partition of the A − 1 system, and is easily understood by
kinematical arguments.

Finally, for any fixed value of the single-particle momen-
tum k, the large-energy behavior of the spectral function is
universal and does not depend on k.
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APPENDIX

The cusp conditions (5) imply that if an exponen-
tial term exp(

∑A
i=1 eixi) is present in �SO

(A) then, unless
special constraints are imposed on the ei , all permuted
terms exp(

∑A
i=1 eπ(i)xi) must also be present. The general

exponential-type wave function that satisfies this requirement,
for an arbitrary set of complex ei, i = 1, . . . A, is given in
Eq. (6). The coefficients Wπ are to be determined from the cusp
conditions (5), which for the standard ordering can be restricted
to the boundaries xk = xk+1 (with k = 1, . . . , A − 1), and read∑

π

[2λ + eπ(k) − eπ(k+1)]

× exp

(
(eπ(k) + eπ(k+1))xk +

∑
i �=k,k+1

eπ(i)xi

)
= 0. (A1)

Denoted by tk the transposition k ↔ k + 1, each permuta-
tion π has a unique partner π ′ = πtk for which

∑A
i=1 eπ(i)xi =∑A

i=1 eπ ′(i)xi at the boundary xk = xk+1. The cusp conditions
for the wave function (6) therefore become

Wπ [2λ + eπ(k) − eπ(k+1)] + Wπtk [2λ − eπ(k) + eπ(k+1)] = 0,

(A2)

for all permutations π and all k = 1, . . . , A − 1.
A solution to the set of equations (A2) is easily seen to be

Wπ = sign(π )
A∏

i<j=1

[2λ − eπ(i) + eπ(j )], (A3)

by noting that

Wπtk = −Wπ

2λ + eπ(k) − eπ(k+1)

2λ − eπ(k) + eπ(k+1)
. (A4)

This shows that a wave function �SO
(A) of the form (6), with

coefficients Wπ given by Eq. (A3), is an eigenfunction of the
Hamiltonian HA for an arbitrary choice of the ei .
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