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1Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos s/n,
E-41092 Sevilla, Spain
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The dependence on the single-particle states of the pairing matrix elements of the Gogny force and of the
bare low-momentum nucleon-nucleon potential vlow-k—designed so as to reproduce the low-energy observables
avoiding the use of a repulsive core—is studied for a typical finite, superfluid nucleus (120Sn). It is found that the
matrix elements of vlow-k follow closely those of vGogny on a wide range of energy values around the Fermi energy
eF , those associated with vlow-k being less attractive. This result explains the fact that around eF the pairing
gap �Gogny associated with the Gogny interaction (and with a density of single-particle levels corresponding
to an effective k mass mk ≈ 0.7 m) is a factor of about 2 larger than �low-k , being in agreement with �exp =
1.4 MeV. The exchange of low-lying collective surface vibrations among pairs of nucleons moving in time-reversal
states gives rise to an induced pairing interaction vind peaked at eF . The interaction (vlow-k + vind) Zω arising
from the renormalization of the bare nucleon-nucleon potential and of the single-particle motion (ω-mass and
quasiparticle strength Zω) associated with the particle-vibration coupling mechanism, leads to a value of the
pairing gap at the Fermi energy �ren that accounts for the experimental value. An important question that remains
to be studied quantitatively is to what extent �Gogny, which depends on average parameters, and �ren, which
explicitly depends on the parameters describing the (low-energy) nuclear structure, display or not a similar
isotopic dependence and whether this dependence is borne out by the data.
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I. INTRODUCTION

An economic description of pairing correlations in finite
nuclei is provided by Hartree-Fock-Bogoliubov (HFB) theory
[1,2], making use of phenomenological interactions such as the
finite-range Gogny force [3] or density-dependent zero-range
forces combined with appropriate renormalization procedures
or energy cutoffs (e.g., Refs. [4–6]). Such a description leads
to values of the pairing gap that are in overall agreement with
the experimental findings. Note that in these calculations, the
density of levels at the Fermi energy ρ(eF ) is controlled by
the so-called k-mass [i.e., ρ(eF ) ∼ mk], which, as a rule, is
smaller than the bare nucleon mass (e.g., mk ≈ 0.7 m in the
case of the Gogny force).

Conversely, a number of studies have shown that the
superfluid properties of nuclear systems, ranging from
infinite nuclear and neutron matter to finite atomic nuclei,
are strongly influenced by polarization phenomena [7–9]. In
these calculations one starts from a bare nucleon-nucleon
potential (Argonne, Bonn, Paris, etc.) adding afterwards the
renormalization processes. Recently, the pairing gap, the
quasiparticle spectrum and the collective modes of 120Sn have
been calculated solving the Dyson-Gor’kov equation [8],
in a single-particle space characterized by mk = 0.7 m,
allowing the nucleons to interact in the 1S0 channel through
a v14 Argonne NN potential taking into account the variety
of renormalization processes (self-energy, fragmentation,
induced interaction, and vertex corrections) arising from the

coupling of the particles with surface vibrations. While the
bare NN interaction accounts for about half of the pairing gap,
overall agreement with the experimental findings is achieved
by including medium polarization effects.

In the present article we want to shed light into the physics
of these results, by studying the magnitude of the different
pairing (Jπ = 0+) matrix elements as well as their dependence
on the energy of the single-particle states lying in the vicinity
of the Fermi energy in Sec. II and by discussing the calculation
of the pairing gaps associated with these matrix elements in
Sec. III.

II. MATRIX ELEMENTS

The matrix element of the induced interaction can be written
as follows [9]:

〈ν ′ν̄ ′|vind|ν, ν̄〉 = 2
∑
LMn

〈ν|fLnYLM |ν ′〉〈ν̄|fLnY
∗
LM |ν̄ ′〉

E0 − |eν − eF | − |eν ′ − eF | − h̄ωLn

,

(1)

where L,M , and n denote the quantum numbers of the
exchanged collective vibrations, fLn(r) = βLnR0(dU/dr) is
the associated radial form factor (βLn being the deformation
parameter associated with the nth mode of multipolarity L,R0
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FIG. 1. The nucleus 120Sn. Diagonal pairing matrix elements of
the induced interaction (upper panel, solid diamonds) and of the
Gogny force (lower panel, solid circles), displayed as a function of
the single-particle energy, eν , of the state ν calculated using the bare
nucleon mass and the single-particle wave functions of a Woods-
Saxon potential with standard parameters (depth V0 = −49 MeV,
diffusivity a = 0.65 fm, and radius R0 = 6.16 fm), including the
spin-orbit term, parametrized according to Ref. [21]. Also shown by
means of vertical lines is the position of the Fermi energy, eF =
−9.1 MeV. Note the different scale in the two figures.

the ground-state radius, and U the average potential), h̄ωLn is
the energy of the nth vibrational mode, and eν and eF are the
single-particle and Fermi energies. E0 is the pairing correlation
energy per Cooper pair, which is of the order of −�. In
practice we have used E0 = −2 MeV. The prefactor 2 in
Eq. (1) comes from the two possible time orderings associated
with the one-phonon exchange (cf. Fig. 10(f )).

In the upper panel of Fig. 1 we show the value of the diago-
nal matrix elements 〈νν̄|vind|νν̄〉 of the induced interaction for
the nucleus 120Sn as a function of the single-particle energy.
Also shown in the lower panel of Fig. 1 are the diagonal matrix
elements of the Gogny interaction. Here, and in the rest of the
article, we employ the D1 parametrization. The single-particle
levels needed to obtain these matrix elements have been
calculated making use of a standard Woods-Saxon potential,
whose parameters are provided in the caption of Fig. 1. In
most of our calculations we use this potential and an associated
effective mass mk equal to the bare mass. In the last section
we use instead an effective mass mk = 0.7 m, which simulates
the typical outcome of a Hartree-Fock calculation (with, e.g.,
the Gogny interaction). In those cases, the Woods-Saxon
parameters are changed in such a way that the Fermi energy
remains close to the experimental value (V

′
0 ≈ (m/mk)V0, see,

e.g., Fig. 8). Note that mk is, as a rule, a smooth function
of r [10]. The parameters βLn and h̄ωLn have been determined
by diagonalizing a separable multipole-multipole interaction
in the quasiparticle-random phase approximation (QRPA),
adjusting the coupling constants to reproduce the energies
and transition probabilities of the lowest lying states of each
spin.

The matrix elements of vind, which display an average value
equal to −0.15 MeV, are peaked at the Fermi energy, within an
energy range of essentially 5 MeV around eF . This behavior
reflects the fact that 〈ν ′ν̄ ′|vind|ν, ν̄〉 is controlled, through the
energy denominator appearing in Eq. (1), by the energy of
the low-lying collective vibrations [h̄ωL(n) < 5 MeV]. Outside
this energy range, the values of 〈ν ′ν̄ ′|vind|ν, ν̄〉 become very
small, less than 50 keV in absolute value. The matrix elements
of vGogny decrease on average smoothly in magnitude all the
way from the deepest levels up to the continuum threshold,
displaying a value of about −0.3 MeV at eF .

The induced interaction matrix elements depend on specific
properties of finite nuclei, namely the single-particle quantum
numbers and energies, and the energy, the zero-point am-
plitude, and the transition density of the vibrational states.
To study the global features of the bare, of the induced,
and of the Gogny interactions as well as to provide a more
transparent form for their matrix elements, we also present,
in the rest of this section, the matrix elements obtained using
the semiclassical Thomas-Fermi (TF) approximation. In fact,
this approximation averages out shell effects typical of finite
nuclei and provides the overall energy dependence of the
matrix elements. Within this context we follow Ref. [11],
where semiclassical expressions for two-body matrix elements
have been presented. In that reference a typical pairing matrix
element, 〈nn̄|v|n′n̄′〉, where |n〉 is a single-particle shell-model
state and |n̄〉 is its time reversed counterpart, is averaged over
a certain energy window, around the energy E,

v(E) = 1

g2(E)

′∑
n

′∑
n′

〈nn̄|v|n′n̄′〉, (2)

where the primes indicate that the summations run only over
those states concentrated in a region ±δE around E. One
has to normalize by the number of states in that energy
interval, derived from the density of states g(E) at energy E.
As a window function we can for example adopt a Gaussian
ρn(E) ∼ exp[−(E − en)2/γ 2], similarly to what is done in
smoothing the level density according to the Strutinsky method
(e.g., Ref. [2] Sec. 2.9.3). The width γ should be taken of the
order of the shell spacing to wash out the shell fluctuations.
Conversely, it is well known that the Strutinsky averaging
method is equivalent to the semiclassical TF method where
one replaces the Gaussian by the normalized semiclassical
density matrix at a given energy E [11]:

ρE = 1

g(E)
δ(E − Hcl) = 1

g(E)
δ

[
E − p2

2mk

− U (r)

]
. (3)

In the above relation the semiclassical level density g is as
follows:

g(E) = 1

π

∫ Rc

0
drr2

(
2mk

h̄2

)3/2 √
E − U (r), (4)

Rc being the classical turning point. To make connection with
the usual complete single-particle density matrix, we simply
observe that it is obtained by integrating Eq. (3) over the energy
up to the Fermi energy eF :

θ (eF − Hcl) =
∫ eF

0
dE g(E) ρE. (5)
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In Eq. (4) we assume a constant value for the effective mass mk ,
neglecting its possible dependence on position. The expression
for the semiclassical diagonal matrix element of a two-body
interaction v(�r1, �r2) as a function of the single-particle energy
is then given by the following [11]:

v(E) =
∫

d3r1d
3r2v(�r1, �r2)

∫
d3p1d

3p2

(2πh̄)6

e
i
h̄

( �p1− �p2)�s

g2(E)

× δ

[
E − p2

1

2mk

− U

( �r1 + �r2

2

)]

× δ

[
E − p2

2

2mk

− U

( �r1 + �r2

2

)]
. (6)

For an interaction that depends only on the magnitude of the
relative coordinate s ≡ |�r1 − �r2|, such as the Gogny interaction
in the S = 0, T = 1 channel, one can integrate first over d3s

and then over the momenta d3p1 and d3p2. We are then
left with an integral over the center-of-mass �R = (�r1 + �r2)/2,
obtaining the expression

v(E) = c(E)
∫

d3R[E − U (R)] θ (E − U (R))

× v(kE(R), kE(R)), (7)

where v(k, k) is the on-shell pairing matrix element of
the interaction v(s) in the 1S0 channel and in a plane
wave basis, evaluated at the local momentum k = kE(R) =
1
h̄

√
2mk[E − U (R)], and c(E) denotes the quantity

c(E) = 2mk
3

4π4h̄6g2(E)
. (8)

In the next section we calculate the pairing gap associated with
the different interactions, and therefore we need the matrix
elements between pairs of particles moving in time reversal
states of different energies. For this purpose we employ a
formula analogous to that given in Eq. (7), namely

v(E,E′) =
√

c(E)c(E′)
∫

d3R
√

[E − U (R)]
√

[E′ − U (R)]

× θ [E − U (R)]θ [E′ − U (R)]v(kE(R), kE′(R)).

(9)

In this relation E and E′ indicate the energies of the single-
particle states of each pair.

We now return to the case of the induced interaction,
associated with the matrix elements of Eq. (1). In this case
the matrix elements depend separately on �r1 and �r2. We then
integrate over the momenta first, obtaining for the diagonal
matrix elements

vind(E) = 2
∑
nLM

c(E)

∫
d3r1d

3r2fLn(r1)YLM (r̂1)fLn(r2)Y ∗
LM (r̂2)j 2

0 (kE(R)s)[E − U (R)]

E0 − 2|E − eF | − h̄ωnL

, (10)

where j0 is the Bessel function. The index n labels the different
phonons of multipolarity L (the phonons included in the
present calculation are specified at the end of this section).
Note that one can obtain numerical results from Eq. (10) by
avoiding the six-dimensional integration. This is achieved by
performing a multipole expansion of the quantity

j 2
0 (ks)[E − U (R)] =

∑
lm

4π

2l + 1
Fl(r1, r2; E)Ylm(r̂1)Y ∗

lm(r̂2),

which leads to

vind(E) = 2
∑
nL

4πc(E)

×
∫

dr1dr2r
2
1 r2

2 fLn(r1)fLn(r2)FL(r1, r2; E)

E0 − 2|E − eF | − h̄ωLn

. (11)

In Ref. [11] the reliability of the TF approximation in
reproducing the quantum mechanical (QM) matrix elements
has been checked in the particular case of the pairing
matrix elements of a δ interaction acting among particles
moving in a harmonic oscillator (HO) potential. Note that the
TF approach implies an averaging over the quantum num-
bers associated with the different states belonging to the
major shells and displaying an energy EN = (N + 3

2 )h̄ω. The
TF matrix elements have been compared with the averaged

QM matrix elements (taking degeneracies into account).
Overall agreement was observed (cf. Table II of Ref. [11]).

A similar comparison for the pairing matrix elements of
the Gogny force in the 1S0 channel is reported in Fig. 2. It
is seen that the TF approach provides a good approxima-
tion to the average quantum matrix elements. However, the
QM diagonal matrix elements, in particular those associated
with s-states, are systematically larger (in absolute value) than
the nondiagonal ones. One should be aware of the fact that
the semiclassical density matrix, as already mentioned, can
be considered to be the analog to the one obtained from a
Strutinsky smoothing. Therefore, Eq. (3) implicitly represents
a function of about 1 h̄ω width. Thus, the matrix element in
Eq. (6) contains at the quantum level cross terms corresponding
to at least one major shell. Taking, for example, the 2s-1d shell,
we have to weigh the two diagonal matrix elements with the
2s and 1d wave-functions with a factor 1 and 25, respectively.
The nondiagonal 2s-1d element obtains the weight factor
10. Performing the arithmetic average yields the crosses of
Fig. 2. In this way, we see that the TF expression [Eq. (6)]
reproduces very well the quantal average. The more realistic
case of the Gogny matrix elements in the Woods-Saxon
potential (including spin-orbit) is illustrated in Fig. 3. The
general pattern is similar to that shown in the previous
figure.
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FIG. 2. Schematic model for the nucleus 120Sn. The semiclassical
pairing matrix elements of the Gogny force (solid line) are compared
to the quantal matrix elements for the case in which the single-particle
wave functions have been calculated making use of a harmonic
oscillator potential without the spin-orbit term (and mk = m). The
diagonal and nondiagonal matrix elements are denoted by filled and
open circles respectively. The crosses correspond to the weighted
averages of the matrix elements within a shell.

Having assessed its validity, we now employ the semiclas-
sical approximation to compare the matrix elements of the
induced interaction, the effective Gogny interaction, and a bare
nucleon-nucleon interaction. Concerning the latter, the matrix
elements of bare nucleon-nucleon interactions that contain
a repulsive core display a qualitatively different momentum
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FIG. 3. The nucleus 120Sn. The same as Fig. 2 (i.e., also with
mk = m) but for the fact that the single-particle wave functions have
been calculated making use of the Woods-Saxon potential including
the spin-orbit term already used for Fig. 1, where the diagonal matrix
elements have already been shown. The nondiagonal matrix elements
are plotted here at an energy eν , which is the average between the
energies of the initial and final states.
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FIG. 4. The matrix elements of the Gogny (solid curve) and of
the vlow-k (dashed curve) interactions are plotted as a function of
momentum.

dependence than that displayed by the Gogny interaction.
We instead consider here the vlow-k interaction, which has
been devised to reproduce the low-momentum properties of
the nucleon-nucleon force, including the experimental phase
shifts, without the introduction of a repulsive core [12]. In
particular, we employ a parametrization of vlow-k devised
to reproduce the properties of v14 Argonne potential. This
parametrization requires a momentum cutoff kcut equal to
2.1 fm−1. The matrix elements of vlow-k in a plane wave basis
have been calculated in Ref. [13] and are reported in Fig. 4.
It is seen that, whereas vGogny is less attractive than vlow-k for
small momenta, it becomes more attractive for k larger than
≈1 fm−1.

The semiclassical matrix elements of the Gogny D1
interaction [Eq. (7)] and of the vlow-k interactions calculated as
a function of the single-particle energy for the nucleus 120Sn are
displayed in Fig. 5 (we remark that, close to the Fermi energy,
the matrix elements of the Gogny interaction calculated with
the D1S parametrization are less attractive by about 10 keV,
as compared to the D1 parametrization used in the present
paper). It is seen that the general trend is the same as that
obtained in infinite matter, with the difference that the matrix
elements of the two interactions look somewhat more similar
to one another. Insight into this difference can be obtained with
the help of Eq. (7). This relation is essentially an average of
v(k) calculated at the various local momenta in the nucleus.
From Fig. 4 we see that in the interior of the nucleus (at larger
local momenta) vGogny is more attractive than vlow-k , but on the
surface it tends to be less attractive than vlow-k .

The semiclassical matrix elements of the induced
interaction are also shown in Fig. 5. These matrix elements
are strongly peaked around the Fermi energy and reproduce
rather well the average of the quantal results already shown in
Fig. 1. In Fig. 6 we have separated the contributions arising
from the exchange of phonons of multipolarities L = 2, 3,
and 4. We include all the phonons with energy below 30 MeV
in the calculation. The importance of the contributions with
L = 2 and 3 can be understood in terms of the high collectivity
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FIG. 5. The nucleus 120Sn. The semiclassical matrix elements of
the induced interaction, calculated according to Eq. (11) (dash-dotted
curve), are compared with the matrix elements of the Gogny force
(solid curve, cf. Fig. 3) and with those of the vlow-k interaction (dashed
curve). Calculations are performed with mk = m and with the same
Woods-Saxon potential used in Figs. 1 and 3.

and low energy of the associated collective modes. The
energies and deformation parameters of the low-lying modes
are h̄ω2 = 1.17 MeV, h̄ω3 = 2.42 MeV, h̄ω4 = 2.47 MeV
and β2 = 0.12, β3 = 0.15, β4 = 0.07.

We also note that at the Fermi energy the matrix elements
of vind are rather large, of the order of those associated with
the bare nucleon-nucleon potential vlow-k in this connection,
cf. the estimate in Ref. [14]).
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FIG. 6. The nucleus 120Sn. The semiclassical matrix elements of
the induced interaction, as a function of the single-particle energy
(calculated with mk = m) associated with the multipolarities L = 2,
3, and 4 of the form factor [see Eq. (1)], are shown by a dashed,
dotted, and solid line respectively. The sum of the three contributions
is displayed by means of a dash-dotted line (cf. Fig. 5).
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FIG. 7. Pairing gaps calculated in neutron matter as a function
of the Fermi momentum, obtained with the Gogny interaction (solid
line), the Argonne v14 potential (dash-dotted line), and the vlow-k
potential (dashed line). The bare effective mass has been used in the
calculation.

III. PAIRING GAPS

In this section, we discuss the results of calculations of
the pairing gap that employ the matrix elements discussed
above. In the nucleus under study, namely 120Sn, we obtain
the state-dependent pairing gaps by solving the generalized
BCS equations [15]: this means that we solve the HFB
equations by treating the pairing sector self-consistently,
whereas the mean field is described in terms of the Woods-
Saxon potential already used in the calculation of the matrix
elements. In this way, we take into account scattering processes
between nucleons lying on orbits having different number
of nodes/energies [5], associated with nondiagonal matrix
elements of the type v(E1, E2; E′

1, E
′
2), with different energies

E1 and E2 (or E′
1 and E′

2). This is at variance with the usual
BCS method in which the pairing gap receives contributions
only from scattering processes between time-reversal states.
We refer in the following either to quantal or to semiclassical
calculations; in the latter case, this is done by solving the same
equations as in the quantal case, but replacing the QM matrix
elements with the TF ones, using Eq. (9) and the following
prescription:

E = (E1 + E2)/2, E′ = (E′
1 + E′

2)/2. (12)

The positive energy states are obtained by setting the system
in a spherical box. We have checked that convergence is
achieved using Rbox = 12 fm and including all the states from
the bottom of the potential up to the positive energy Ecut =
50 MeV.

In infinite neutron matter, the pairing gaps calculated with
the interactions vlow-k and vGogny are very similar up to Fermi
momenta of the order of 0.6 fm−1, becoming increasingly
different from each other at higher momenta, as can be seen
from Fig. 7 (cf. Ref. [6,13], where the D1S parametrization of
the Gogny interaction has been used). The pairing gap obtained
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FIG. 8. State-dependent pairing gaps of 120Sn calculated with a
Woods-Saxon potential (with depth V0 = −64 MeV, diffusivity a =
0.65 fm, and radius R0 = 6.17 fm) as a function of the single-particle
energy. The k-mass mk was set equal to 0.7 m. The Fermi energy is
eF = −8.6 MeV. Solid triangles (open squares) display the results
of a HFB calculation with the Gogny interaction, with quantal
(semiclassical) matrix elements. The solid diamonds refer instead
to a HFB calculation using the semiclassical matrix elements of the
vlow-k potential.

with vlow-k goes to zero, around saturation, as a function of
kF much faster than that associated with vGogny; it can also
be seen that the pairing gap obtained with vlow-k reproduces
quite accurately the result found allowing particles to interact
through the Argonne v14 bare NN potential [16].

In the case of 120Sn, the pairing gap with the v14 Argonne
interaction and with mk = m, was calculated previously in
Ref. [17], obtaining a value of about 2.2 MeV close to the
Fermi energy. We have verified that essentially the same value
is obtained with vlow-k , in keeping with the infinite matter
case (cf. Fig. 7). In the following, however, we adopt the value
mk = 0.7 m, which is the value associated with Hartree-Fock
calculations performed with Gogny or Skyrme forces. In Fig. 8
we compare the state-dependent pairing gap obtained with the
Gogny force and with the vlow-k interaction. We also compare
the pairing gaps obtained inserting the semiclassical pairing
matrix elements in the HFB equations. We remark that the
semiclassical approach takes out the scatter from shell effects,
which is a desirable feature when one wishes to reveal generic
trends.

The Gogny interaction leads to a pairing gap of 1.4 MeV
close to the Fermi energy, in good agreement with the experi-
mental value deduced from the odd-even mass difference. This
value is about two times larger than that obtained with vlow-k .
Note also that the pairing gap obtained with vlow-k reproduces
the results obtained with the bare v14 interaction [8].1

1We remark that using the D1S parametrization of the Gogny force,
instead of D1, one obtains a gap at the Fermi energy of about
1.2 MeV.
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FIG. 9. State-dependent pairing gap of 120Sn obtained making
use of the Woods-Saxon potential used in calculating the results
displayed in Fig. 8 (i.e., with mk = 0.7 m) and different interactions.
Diamonds and triangles show again the gaps obtained with the vlow-k
and vGogny interactions, respectively. Stars show the gap associated
with the matrix elements obtained, summing the matrix elements of
vlow-k and vind. The latter have been evaluated using Eq. (1).

In Fig. 9 we show the state-dependent pairing gaps obtained
with the pairing matrix elements of vtotal = vlow-k + vind,
resulting from the sum of the matrix elements of the bare
interaction vlow-k and of the induced interaction vind. The
average value of the resulting pairing gap �total at the Fermi
energy is about 2 MeV. This value is about 30% higher than
that obtained in Ref. [8], where we solved the Dyson-Gor’kov
equation, taking properly into account all polarization effects
(induced interaction, self-energy, and vertex corrections) [18].

This is consistent with the fact that, according to nuclear
field theory (NFT) [19], if one considers the effects of the
exchange of phonons between pairs of nucleons, one has to
consider at the same time processes where the phonon is
absorbed by the same nucleon that has virtually excited it.
Such processes lead to self-energy (ω-mass and single-particle
splitting [10]) as well as to vertex correction phenomena (see
Appendix C). Of these processes and for the nucleus under
discussion (120Sn), ω-mass effects are the most important [8].
Taking such effects into account is equivalent to use a
residual interaction vren = vtotalZω, where Zω = (mω/m)−1

is the quasiparticle strength [10] at the Fermi energy (cf.
Appendix A). Consequently �ren = Zω�tot Refs. [20,22,23].
Because vind is proportional to β2

L/DENL, that is, to the
square of the deformation parameters associated with the
low-lying collective vibration and inversely proportional to
the energy denominator DENL appearing in Eq. (1), a
typical error of 20% on βL and DENL implies a 60%
error in vind. Making use of this fact and of the results of
Figs. 5 and 9 one obtains, as discussed in Appendix B,
�ren ≈ Zω�tot ≈ 1.3 ± 0.14 MeV. It is seen that the 60%
error in vind has been reduced to a 10% in �ind. This is because
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the stronger the particle-vibration coupling is, the larger the
contribution to �tot associated with the induced interaction
but the smaller the amount of single-particle content of levels
around eF (and thus the smaller Zω), and vice versa. The
self-consistency between collectivity of the modes, strength
of the particle-vibration coupling, and quasiparticle residue at
the pole, typical of NFT, allows theory to make predictions
that are more accurate than the basic parameters entering the
calculation, as a result of a delicate process of cancelation of
errors [20].

IV. CONCLUSIONS

Summing up, we have found that the small difference
existing between the matrix elements of the bare vlow-k inter-
action and those of the Gogny interaction leads to important
differences between the pairing gaps associated with the two
forces (�Gogny ≈ 2�low-k , for mk ≈ 0.7 m). This difference
is removed and eventually overwhelmed by including the
attractive contribution coming from the induced interaction
vind arising from the exchange of surface vibrations, which
acts only on a rather small energy range around eF . We note
that the pairing gap in 120Sn is not much changed, including
also the effect of spin fluctuations [23], which instead give the
dominant (repulsive) contribution to the induced interaction in
neutron matter.

The 25% excess displayed by the resulting total pairing
gap with respect to the experimental value is corrected by
considering the corresponding quasiparticle strength at the
Fermi energy. An important question that remains to be
addressed quantitatively is the ability vlow-k + vind as well
as vGogny have to describe in detail the isotopic and nuclear
structure dependences displayed by the pairing gap �exp

derived from the experimental odd-even mass differences. On
one hand, both the Gogny force and the induced interaction
display a typical overall dependence on the nuclear mass
number [24,25]. On the other hand, on a finer scale, the
induced interaction depends on the specific properties of
the low-lying collective vibrational states of the individual
nuclei and thus on the details of the structure of each single
nucleus.

Within this context, we note that the dependence of
the pairing gaps generated by vGogny and by vlow-k + vind

on temperature and rotational frequency is expected to be
quite different, as vGogny and vlow-k are essentially indepen-
dent of these parameters, whereas vind is quite sensitive to
them.2
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APPENDIX A

A. Simple estimate of the pairing gap

In what follows we consider some of the consequences
the particle-vibration coupling has on the pairing correlations
of particles moving in a single j-shell interacting through a
bare nucleon-nucleon pairing potential with constant matrix
elements G [20].

For this simple model, the value of the occupation numbers
Uν and Vν must be the same for all the 2j + 1 orbitals. In
particular, the occupation probability for the case when the
system is occupied with N = 
 particles (half-filled shell),
where


 = 2j + 1

2
(A1)

is

V =
√

N

2

=

√
1

2
, (A2)

U =
√

1 − N

2

=

√
1

2
. (A3)

Consequently, the pairing gap is given by the following
relation:

� = G
∑
ν>0

UνVν = G


2
. (A4)

Because the density of levels is proportional to the ω-mass
(mω), the effective (dressed) degeneracy can be written as
follows:


eff = 


Zω

, (A5)

in terms of the (bare) single-particle degeneracy 
 and of the
quasiparticle strength at the Fermi energy Zω = (mω/m)−1,
where mω = m(1 + λ) and λ is the mass enhancement factor
[27]. In the case of nuclei this dimensionless quantity (which
measures the strength with which nucleons couple to low-lying
collective vibrations) is of the order of 0.5, closer to the strong
than to the weak coupling situation of BCS (in which case
� ∼ λ) [22], cf. Eq. (C19).

Because of their coupling to vibrations, nucleons spend
part of the time in more complicated configurations than pure
single-particle states. The quantity (quasiparticle strength [10])
Zω = (1 + λ)−1 ≈ 0.7 measures the content of single-particle
strength present in levels around the Fermi energy available
for nucleons to interact through a two-body interaction, in
particular through a pairing force. Consequently, because of
the self-energy processes arising from the particle-vibration
coupling phenomenon, the pairing strength becomes GZω

2.
The exchange of vibrations between pairs of nucleons

moving in time reversal states close to the Fermi energy
gives rise to an effective pairing interaction of strength
gp−vZω

2, where gp−v stands for the induced pairing interaction
controlled by the particle-vibration coupling vertices. Taking
these effects into account, one can write

�ren = Zω

2
(G + gp−v)
. (A6)
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(a) (c)(b)

(d) (e) (e′)

(f)

t

FIG. 10. Nucleons interact in a scattering ex-
periment through the bare NN-interaction (a),
the analysis of the associated differential cross
section being made in terms of phase shifts.
The main effect of this bare two-body interac-
tion acting among nucleons inside the nucleus
is to produce a mean field, sum of a local
(b) (Hartree) and a non-local (c) (Fock) potential.
In this potential, nucleons move independently of
each other feeling the pullings and pushings of the
other nucleons only when they try to leave the
nucleus. In other words, they move in a single-
particle potential produced by all the other nucleons
bouncing elastically off the surface. However, this
surface can vibrate as a whole, as testified by the
existence of low-lying collective surface modes and
of giant resonances in the inelastic spectrum of
nucleus–nucleus collisions. Thus, from time to time
a nucleon can bounce inelastically off the nuclear
surface, setting it into vibration, changing state of
motion and, at a later time, reabsorb the vibration
returning to the original state as shown in (d). A
similar process, but this time associated with the
virtual excitation of the vacuum (e′) and with the
Pauli principle is at the basis of the process depicted
in (e), obtained from a simple change in the time
ordering from process (d). A vibration excited by
a nucleon can be reabsorbed by a second nucleon
(f ). Such a process leads to an induced interaction
among nucleons, associated with the polarization of
the nuclear medium.

Identifying G with vlow-k, gp−v with vind, and 
 with the (bare,
mk ≈ 0.7 m) degeneracy, one finds from Fig. 9,

1

2
(G + gp−v)
 ≈ 2 MeV. (A7)

As seen from Eq. (A6), the number to be compared with
experimental findings is

�ren = Zω × 2 MeV ≈ 1.4 MeV. (A8)

Note that in the above discussion we have not considered the
errors to be expected in estimating both gp−v and Zω. This
subject is taken up in Appendix B.

APPENDIX B

B. Simple estimate of λ and Zω

From Fig. 5 it is seen that the average values of vind

and vlow-k at the Fermi energy are 〈vind〉 = −0.15 MeV
and 〈vlow-k〉 = −0.16 MeV. Because vind is of the order of∑

L β2
L/DENL, the matrix elements of vind will display an

error equal to twice the average error displayed by βL plus
that displayed by DENL. Assuming this error to be 20% for
both quantities (a rather extreme negative situation) one con-
cludes that 〈vind〉 = 0.15 ± 0.09 MeV. Consequently 〈vtot〉 =
〈vind〉 + 〈vlow-k〉 = −0.31 ± 0.09 MeV. Because �total =
2 MeV for 〈vtot〉 = −0.31 MeV, one obtains �total = (2 ±
0.6) MeV.

We now proceed to the calculation of λ = N (0)〈vind〉,
where N (0) is the density of single-particle levels around
the Fermi energy for one spin orientation and one type
of nucleon. Making use of the value N (0) = 3.4 MeV−1

appropriate for 120Sn, one gets λ = 0.5 ± 0.3. Consequently,
�ren = Zω�tot = 1.30 ± 0.14 MeV, where Zω = (1 + λ)−1.
We thus note a conspicuously smaller error for �ren than
for vind. This is because the larger is λ (induced pairing
contribution), the smaller is the content of single-particle
strength (and thus Zω) associated with levels lying close to
the Fermi energy and vice versa.

APPENDIX C

As seen from the graphical treatment of the processes
induced by the NN interaction acting among nucleons moving
in the atomic nucleus [cf. Fig. 10(a)–(e)], the Hamiltonian
describing the single-particle motion reads (Ch. 9 of Ref. [20])

Hsp =
[
− h̄2

2m
∇2 + Ux(k) + �E(ω)

]
+ UH (r) + iW (r),

(C1)

where UH (r)[cf. Fig. 10(b)] and Ux(k) [cf. Fig. 10(c)] are the
Hartree- and the Fock-potential. The dependence of Ux on the
momentum of the particle is associated with the nonlocality
arising from the Pauli principle and from the momentum
dependence of the force. The dependence of the real part of the
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single-particle self-energy �E on the frequency is associated
with the nonlocality in time generated by the coupling to
surface vibrations excited by the particle at a given time and
reabsorbed at a different time [virtual, off-the-energy shell
process, cf. Figs. 10(d) and 10(e)]. Effects associated with
real, energy-shell processes are described by the imaginary
part of the single-particle self-energy W (r).

For many purposes, it is possible to rewrite the term in
square brackets in Eq. (C1) as a kinetic energy term with an
effective mass m∗ (e.g., Refs. [10,20]):

Hsp = h̄2

2m∗ ∇2 + Ũ + iW̃ , (C2)

which is the optical model with Ũ = (m/m∗)UH and W̃ =
(m/m∗)W . Note that W = 0 for single-particle levels around
the Fermi energy (|eν − eF | � 5 MeV) and acquires a finite
value only when real transitions are possible (i.e., for |eν −
eF | � 5 MeV).

The effective mass

m∗

m
= mω

m

mk

m
, (C3)

is the product of the k mass

mk = m

(
1 + m

h̄2k

∂Ux

∂k

)−1

, (C4)

and of the ω mass

mω = m

(
1 − ∂�E

∂ω

)
. (C5)

Note that m∗ depends on r, as a result of the combined
r dependence of mk (inversely proportional to a function of
the density in the case of the Skyrme interaction) and mω

(peaked at the nuclear surface) [10]. In what follows we use
typical average values of both mk and mω.

The contribution to the real part of the self-energy by the
process shown in Fig. 10(d) (polarization term) can be written

�E(ω) =
∑
ν>0

V 2(ν, ν ′; L)

ω − (eν ′ + h̄ωL)
, (C6)

where V (ν, ν ′; L) is the matrix element of the particle-
vibration coupling Hamiltonian, ω is the energy of the single-
particle state measured with respect to eF , and eν ′ = eν ′ − eF .
One can thus write

mω = m

(
1 − ∂�E

∂ω

)
ω=0

= m(1 + λ), (C7)

where (
∂�E

∂ω

)
ω=0

= −
∑
ν>0

V 2(ν, ν ′; L)

(eν ′ + h̄ωL)2
. (C8)

Approximating the sum over the single-particle levels by an
integral and calling N (0) the density of single-particle levels
at the Fermi energy (for one spin orientation), one can write(

∂�E

∂ω

)
ω=0

≈ −N (0)
∫ ∞

0

V 2 de

(e + h̄ωL)2
= −N (0)

V 2

h̄ωL

,

(C9)

where for simplicity a constant particle-vibration matrix
element V has been assumed. The core correlation part of
the self-energy (see Fig. 10(e)) gives an equal contribution.
Consequently, the total value of (∂�E/∂ω)ω=0, sum of
polarization and core contributions, is given by Eq. (C9)
but multiplied by a factor of 2. Making use of this result
and of Eq. (C7) one can write the mass enhancement
factor [27] as

λ = N (0)gp−v, (C10)

where

gp−v = 2V 2

h̄ωL

, (C11)

is the particle-vibration coupling parameter.
Because N (0) ∼ m∗ = mkmω/m, where mk ≈ 0.7m (es-

sentially independent of the single-particle energy) and mω =
1.5 m over an energy range of about ±5 MeV around the Fermi
energy (that is, of the order of the energy of the low-lying
collective surface vibrations), becoming equal to the bare mass
for single-particle levels with |eν − eF | � 5 MeV [10], one
can understand why the empirical evidence concerning the
energy of single-particle levels around the Fermi energy is
well described by the motion of nucleons in a real, energy-
independent potential, with a mass equal to the bare nucleon
mass. However, the situation is in fact more subtle than that
described by such a simple model. In particular, because of its
coupling to the nuclear surface, a particle that starts in a pure
single-particle configuration is forced to more complicated
configurations [cf. Figs. 10(d) and 10(e)]. Consequently, the
probability of finding a particle in a single-particle state below
the Fermi level is smaller than one. Similarly, an empty state
lying above the Fermi energy becomes partially occupied. The
quasiparticle strength [10]

Zω =
(mω

m

)−1
, (C12)

gives a measure of the occupation factor associated with
levels close to the Fermi energy (≈0.7). Another basic
difference between the Hamiltonian (C2) (with W̃ = 0) and the
standard Hamiltonian H0 = h̄2/2m + UH , is associated with
the dependence of N (0) on the rotational frequency and on
temperature. This is because for h̄ωrot and/or T of the order of
h̄ωL (i.e., about 1–2 MeV), low-lying collective vibrations are
strongly modified and λ essentially vanishes. This means that,
for strongly rotating and/or highly excited nuclei, m∗ ≈ mk , a
fact which leads to a strong decrease of the density of levels,
as compared to that observed when the nucleus is close to its
ground state. This has important consequences, among other
things, for the cooling of highly excited, strongly rotating
nuclei, in particular concerning the decay of the giant dipole
resonance (cf. [28] and refs. therein).

The vibration excited by a nucleon interacting with the
surface can be absorbed by a second nucleon, as shown in
Fig. 10(f ), giving rise to an induced interaction. In particular
to an interaction that contributes to pairing. Nucleons in
time-reversed states with energies e exchange a phonon of
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multipolarity L and make a transition to final states |ν ′〉 and
|ν̄ ′〉 with energies e′. The symmetrized matrix element of
the pairing-induced interaction [with respect to initial and
final states, and not with respect to the energy of the two
interacting single-particle states as done in Eq. (1), where the
Bloch-Horowitz approach is used, whereas here, for simplicity,
the Rayleigh-Schrodinger prescription is employed] can be
written as

vνν ′ = 1

2

[
2

V 2(ν, ν ′; L)

eν − (eν ′ + h̄ωL)
+ 2

V 2(ν, ν ′; L)

eν ′ − (eν + h̄ωL)

]

= 2h̄ωLV 2(ν, ν ′, L)

(eν − eν ′ )2 − (h̄ωL)2
, (C13)

where the factor of two accounts for the contribution of the two
time orderings whereas the factor 1/2 averages between initial
and final states contribution. For eν ≈ eν ′ ≈ eF and assuming
again a constant particle-vibration coupling matrix element V,
it can be approximated with

vνν ′ = −2V 2

h̄ωL

= −gp−v. (C14)

Making use of typical values of λ ≈ 0.5, and of N (0) ≈
3.4 MeV−1, appropriate for 120Sn, one obtains [cf. Eq. (C10)]
|vνν ′ | ≈ 0.15 MeV, a value that is of the same order of
magnitude as that of the empirical pairing matrix element G =
25/A MeV [14,21].

From the above discussion one can conclude that although
the bare nucleon-nucleon interaction is essential for the pro-
duction of pair correlations in nuclei, the induced interaction
because of phonon exchange also contributes in a consistent
fashion to these correlations. To assess the importance of the
induced interaction we estimate the associated pairing gap
(neglecting the bare interaction completely), making use of
the BCS equation

� = gp−v

∑
ν>0

�

2Eν

. (C15)

Approximating the sum by an integral this relation can be
written as

1 = gp−vN (0)
∫ ωD

−ωD

de
1

2
√

e2 + �2

= gp−vN (0)/arcsinh
(ωD

�

)
, (C16)

where ωD is a typical energy associated with low-lying
collective nuclear vibrations. From the relation given above
one obtains

� = ωD/sinh

(
1

λ

)
, (C17)

where use was made of the definition (C10). In the case in
which λ 
 1 (weak coupling limit) one can write

� = 2ωD exp

(
−1

λ

)
, (C18)

whereas

� = ωDλ, (C19)

in the case in which λ � 1 (strong coupling limit). Arguably,
a better characterization of the weak and strong coupling
regimes is provided by the relations λ2 
 λ and λ2 � λ.
Because in the nuclear case λ ≈ 0.4–0.6, one finds within this
context an intermediate situation. Making use of this range of
values of λ and of a typical value of ωD ≈ 1.5–2 MeV, one
obtains from the above equations values of � that are of the
same order of magnitude of the empirical value 12/

√
A MeV

[14]. This result strongly indicates the need to consider on
equal footing the induced pairing interaction and the bare NN
interaction, in a quantitative description of pairing correlations
in nuclei. From a more basic point of view, and as explicitly
shown by the close relation existing among m∗, Zω,N(0),
and � (all simple functions of λ), the processes displayed in
Fig. 10 have to be considered simultaneously in a consistent
field theoretical description of the single-particle and collective
degrees of freedom of atomic nuclei and of their interweaving
[19]. A recent example of such a treatment can be found in
Ref. [8].
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