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Pairing properties of nucleonic matter employing dressed nucleons
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A survey of pairing properties of nucleonic matter is presented that includes the off-shell propagation associated
with short-range and tensor correlations. For this purpose, the gap equation has been solved in its most general
form employing the complete energy and momentum dependence of the normal self-energy contributions. The
latter correlations include the self-consistent calculation of the nucleon self-energy that is generated by the
summation of ladder diagrams. This treatment preserves the conservation of particle number unlike approaches
in which the self-energy is based on the Brueckner-Hartree-Fock approximation. A huge reduction in the strength
as well as temperature and density range of 3S1-3D1 pairing is obtained for nuclear matter as compared to the
standard BCS treatment. Similar dramatic results pertain to 1S0 pairing of neutrons in neutron matter.
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I. INTRODUCTION

Advances in the understanding of the single-particle (sp)
properties of nucleons in nuclei and nuclear matter [1]
demonstrate the dominant influence of short-range and tensor
correlations in generating the distribution of the spectral
strength. One aspect of this influence is expressed in the
global depletion of Fermi sea due to these correlations. A
recent experiment from National Institute for Nuclear Physics
and High Energy Physics in the Netherlands (NIKHEF) puts
this depletion of the proton Fermi sea in 208Pb at a little
less than 20% [2] in accordance with earlier nuclear matter
calculations [3]. Another consequence of the presence of
short-range and tensor correlations is the appearance of high-
momentum components in the ground state to compensate for
the depleted strength of the mean field. Recent experiments [4]
at the Jefferson Laboratory indicate that the amount and
location of this strength is consistent with earlier predictions
for finite nuclei [5] and calculations for infinite matter [6,7].
Of particular relevance is the observed energy distribution of
the sp strength of the high-momentum nucleons that is located
at energies far removed from the Fermi energy. This situation
is similar to the case of nuclear matter [8] and also holds
above the Fermi energy. Such sp strength distributions lead
to substantial modifications of the calculated properties of
low-energy phenomena, like pairing, as compared with those
generated by a traditional mean-field treatment.

Pairing properties of nuclear and neutron matter have
been studied for quite some time. A recent review can be
found in Ref. [9]. The study of pairing correlations in infinite
quantum systems is an interesting question in general, relating
nuclear and neutron matter to the classical systems studied
in condensed matter physics as well as to the studies of
pairing correlations in fermionic atomic gases [10]. The study
of pairing correlations in nuclear and neutron matter is of
particular interest in understanding the properties of neutron
stars. The formation of a BCS gap has a significant effect on
neutrino emissivity, which is crucial to the cooling of neutron
stars [11]. The existence of superfluid layers will affect the
rotation of neutron stars.

Of particular interest is the observation that several calcu-
lations for the bare nucleon-nucleon (NN) interaction in the
3S1-3D1 coupled channel lead to a sizable gap of around
10 MeV at normal nuclear matter density [12–16]. Those
calculations typically solve the BCS gap equation using a
mean-field sp propagator with sp energies as determined, e.g.,
in a Brueckner-Hartree-Fock (BHF) calculation.

The empirical data for finite nuclei give no indication of
such strong proton-neutron pairing correlations, that would
correspond to a gap as large as 10 MeV. Therefore, one may
conclude that such evaluations of a pairing gap in infinite
matter yield quite different results from those observed for
finite nuclei. This appears plausible since pairing effects are
very sensitive to the sp spectrum close to the Fermi energy,
which is continuous in infinite matter while it is discrete in
finite nuclei.

This observation may also cast some doubt on the reliability
of the approach in determining the pairing gap for infinite
matter as outlined above. Therefore, attempts have been made
to go beyond this mean-field approach. One issue discussed
in the literature has been the role of vertex corrections, i.e.,
the medium dependence of the NN interaction to be used in
solving the gap equation [17–20]. Using effective interactions
like the Gogny force [21], Shen et al. [19,20] observed
indeed a significant effect, which was larger for nuclear matter
than for neutron matter. The effects of the so-called induced
interaction could indeed affect the low-energy spectroscopy
of nuclear matter in a significant way. Before conclusions can
be drawn, calculations employing realistic interactions should
be performed, which, unfortunately, are very difficult [22]. In
addition, it is possible that polarization effects are different in
nuclear matter and finite nuclei on account of the difference of
the sp spectra discussed above.

In the present work, we would, like to focus on the study
of pairing correlations with a proper treatment of the nucleon
propagator that accounts for the effects of short-range and
tensor correlations. The crucial effects of short-range and
tensor correlations on the distribution of the sp strength
have recently been treated at a very sophisticated level.
Various groups have developed techniques to evaluate the
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sp strength from realistic NN interactions, such as the Argonne
V18 [23] or the CDBonn [24] interaction, within the self-
consistent Green’s function (SCGF) approach [6,25–32]. Such
calculations reproduce the energy and momentum distributions
of the sp strength corresponding to high-momentum nucleons
as observed in experiments [4] and account for the depletion
of the mean-field strength obtained in Ref. [2].

In these calculations, the scattering equations for two
nucleons in the medium are solved by employing dressed
sp propagators that contain the complete information about
the energy and momentum distributions of the sp strength.
The resulting scattering matrix T is then used to calculate
the nucleon self-energy. The solution of the Dyson equation,
employing this complex and energy-dependent self-energy,
yields the sp propagator that enters the T-matrix equation
to close the self-consistency cycle. In determining the two-
nucleon Green’s function or the corresponding scattering
matrix T, one has to face the problem of the so-called
pairing instabilities that reflect the existence of NN bound
state solutions in the scattering equation. The presence of
such solutions provides a major numerical obstacle for a
self-consistent evaluation of one- and two-body propagators
within the normal Green’s function approach at densities where
such instabilities can occur. For this reason, recent SCGF
calculations have been performed for temperatures above the
critical temperature for a possible phase transition to pairing
condensation [6,25].

In Sec. II of this work, we will review some basic features
of the SCGF method for the normal Green’s function at
temperatures above the critical one for the pairing instability.
The effects of the anomalous Green’s functions will be
considered in Sec. III. This leads to the generalized gap
equation that corresponds to the homogeneous scattering
equation for dressed nucleons. The analogous problem occurs
for two nucleons in the vacuum, where the solution of the
homogeneous scattering equation yields the description of the
bound two-nucleon state, the deuteron. In the nuclear medium,
however, one has to consider a scattering equation with dressed
sp propagators. If one considers the Hartree-Fock (HF) or
BHF approximation for the normal sp propagator, in which the
spectral function is replaced by a δ function, this gap equation
reduces to the usual BCS approximation.

Results of SCGF calculations above the critical temperature
will be discussed in Sec. IV. We will pay special attention to
the spectral functions associated with sp strength around the
Fermi energy and discuss the extent to which these exhibit
typical precursor phenomena for a phase transition to a pairing
condensate [33]. In Sec. IV we will also investigate how the
distribution of the sp strength modifies the solution of the gap
equation and the subsequent predictions for a phase transition
to a superfluid state of nuclear matter. Such investigations
have been performed before by Bożek [34,35] using simplified
models for the NN interaction. These studies suggest an
important sensitivity to these correlations, accompanied by
a substantial suppression of the strength of pairing. A similar
conclusion was reached for a realistic interaction in Ref. [36]
by studying the phase shifts of dressed nucleons in the medium
that signal the presence of bound pair states as in the case
of two free particles. The inclusion of dressing effects in

the study of pairing has also been studied in Refs. [37–39]
based on the hole-line expansion of the nucleon self-energy.
While in this work a substantial reduction of the strength of
pairing is also observed, the implementation of the scheme to
solve the gap equation relies on approximations that do not
conserve particle number, since they involve the introduction
of quasiparticle strength factors to represent the effect of
dressing. Final conclusions are drawn in Sec. V.

II. GREEN’S FUNCTIONS AND T-MATRIX
APPROXIMATION

One of the key quantities within the SCGF approach is the
sp Green’s function, which can be defined in a grand-canonical
formulation for both real and imaginary times t, t ′ [40] as

iG(x, t ; x′, t ′) = tr{exp[−β(H − µN )]T [ψ(xt)ψ†(x′t ′)]}
tr{exp[−β(H − µN )]} ,

(1)

where T is the time ordering operator, β the inverse temper-
ature, and µ the chemical potential of the system. Because of
the invariance of the trace under cyclic permutations, the one-
particle Green’s function obeys the following quasiperiodicity
condition:

G(x, t = 0; x′, t ′) = −eβµG(x, t = −iβ; x′, t ′). (2)

For a system invariant under translation in space and time, the
propagator depends only on the differences |x − x′| and t − t ′,
allowing a Fourier transformation into momentum and energy
variables k and ω. Because of the quasiperiodicity in Eq. (2),
Green’s function can be expressed in terms of the Fourier
coefficients G(k, zν), where zν = πν/−iβ are the (fermion)
Matsubara frequencies with odd integers ν. Since these are
related to the spectral function A(k, ω) by

G(k, zν) =
∫ +∞

−∞

dω

2π

A(k, ω)

zν − ω
, (3)

G(k, zν) can be continued analytically to all nonreal z. On the
other hand, the spectral function is related to the imaginary
part of the retarded propagator G(k, ω + iη) by

A(k, ω) = −2 Im G(k, ω + iη). (4)

In the limit of the mean-field or quasiparticle approximation,
the spectral function is represented by a δ function and takes
the simple form

A(k, ω) = 2πδ(ω + µ − εk) = 2πδ(ω − χk), (5)

with the quasiparticle energy εk for a particle with momentum
k and χk = εk − µ. Note that for convenience we define the
energy variable relative to the chemical potential µ.

The sp Green’s function is obtained as a solution of the
Dyson equation, which, for a translationally invariant system,
is a simple algebraic equation[

ω + µ − k2

2m
− 
(k, ω)

]
G(k, ω) = 1, (6)

where 
(k, ω) denotes the complex self-energy. By expanding
the self-energy in terms of one-particle Green’s functions,
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it can be demonstrated that it inherits all analytic properties of
G. It it thus possible to write


(k, ω) = 
HF(k) − 1

π

∫ +∞

−∞
dω′ Im 
(k, ω′ + iη)

ω − ω′ . (7)

The next step is to obtain the self-energy in terms of the
in-medium two-body scattering T matrix. It is possible to ex-
press Im 
(k, ω + iη) in terms of the retarded T matrix [6,40]

Im 
(k, ω + iη) = 1

2

∫
d3k′

(2π )3

∫ +∞

−∞

dω′

2π

×〈kk′|Im T (ω + ω′ + iη)|kk′〉
× [f (ω′) + b(ω + ω′)]A(k′, ω′). (8)

Here and in the following,

f (ω) = 1

eβω + 1
,

(9)

b(�) = 1

eβ� − 1
,

denote the Fermi and Bose distribution functions, respectively.
The pole in the Bose function b(�) at � = 0 is compensated
by a corresponding zero in the T matrix [41,42] such that the
integrand remains finite as long as the T matrix does not acquire
a pole at this energy. Such a pole may occur below a critical
temperature Tc, a phenomenon that is often referred to as a
pairing instability. We will come back later to this problem.

The scattering matrix T is to be determined as a solution of
the integral equation

〈kk′|T (� + iη)|pp′〉 = 〈kk′|V |pp′〉 +
∫

d3q d3q ′

(2π )6

×〈kk′|V |qq′〉G0
II(qq′,� + iη)

×〈qq′|T (� + iη)|pp′〉 , (10)

where

G0
II(k1, k2,� + iη) =

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
A

× (k1, ω)A(k2, ω
′)

1 − f (ω) − f (ω′)
� − ω − ω′ + iη

(11)

stands for the two-particle Green’s function of two noninter-
acting but dressed nucleons.

The Green’s function method yields a hierarchy of re-
lations for the N-particle Green’s functions. The Dyson
equation for the one-particle Green’s function involves the
two-body potential as well as the two-particle Green’s function
GII(x, t ; · · · ; x′′′, t ′′′). In general, the equation of motion for the
N-particle propagator will be coupled to the (N + 1)-particle
propagator, if the Hamiltonian contains a two-body interaction.
In the self-consistent T-matrix approach, as outlined above,
one ignores the effects of N-particle Green’s functions with N
larger than or equal to 3, but solves the coupled equations for
the one- and two-body Green’s functions in a self-consistent
way.

In order to allow for an efficient solution of the two-body
scattering equation, one expresses the two-particle Green’s

function in (11) as a function of the total momentum P =
1
2 (k1 + k2) and the relative momentum q = 1

2 (k1 − k2). Using
the usual angle-average approximation for the angle between P
and q (see, e.g. [43] for the accuracy of this approximation), the
two-particle Green’s function can be written as a function of
the length of the two vectors P and q only. This approximation
leads to a decoupling of partial waves with different total
angular momentum J. Therefore, the integral equation (10)
reduces to an integral equation in only one dimension of the
form

〈q|T JST
ll′ (P,� + iη)|q ′〉
= 〈q|V JST

ll′ |q ′〉 +
∑
l′′

2

π

∫ ∞

0
dk′ k′2〈q|V JST

ll′′ |k′〉

×G0
II(P,� + iη, k′)〈k′|T JST

l′′l′ (P,� + iη)|q ′〉. (12)

The summation of the partial waves,

〈kk′ |Im T (� + iη)| kk′〉
= 1

4π

∑
(JST)l

(2J + 1)(2T + 1)〈q(k, k′)|Im T JST
ll

× (P (k, k′),� + iη)|q(k, k′)〉, (13)

yields the T matrix in the form that is needed in Eq. (8). Finally,
the Hartree-Fock contribution has to be added to the real part
of 



HF(k) = 1

8π

∑
(JST)l

(2J + 1)(2T + 1)

×
∫

d3k′

(2π )3
〈q(k, k′)|V JST

ll |q(k, k′)〉n(k′), (14)

where n(k) is the correlated momentum distribution

n(k) =
∫ +∞

−∞

dω

2π
f (ω)A(k, ω). (15)

Note that Eq. (14) corresponds to a generalized Hartree-Fock
contribution, since the full one-particle spectral function is
employed.

III. PAIRING IN THE T-MATRIX APPROXIMATION

For temperatures below the critical temperature for a
transition to a superfluid, one has to supplement the evaluation
of the normal Green’s function G(k, ω) with the anomalous
Green’s function F (k, ω). While the self-consistent inclusion
of ladder diagrams has reached quite a sophistication, it
remains to fully account for the possibility of a pairing
solution in such calculations for realistic NN interactions. In
this paper, we present a first step toward such a complete
scheme by including the full self-consistent dressing due to
normal self-energy terms generated by ladder diagrams, in the
calculation of the anomalous self-energy and the solution of
the corresponding generalized gap equation.

The inclusion of the anomalous Green’s function F (k, ω)
yields a modification of the normal Green’s function in the
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superfluid phase that can be written as [44–47]

Gs(k, ω + iη) = G(k, ω + iη)

− G(k, ω + iη)�(k)F (k, ω + iη),
(16)

F (k, ω + iη) = G(−k,−ω − iη)

× Gs(k, ω + iη)�(k),

under the assumption that the anomalous part of self-energy
� does not depend on the energy. Therefore, the full Green’s
function can be obtained as

Gs(k, ω + iη) = 1

G(k, ω + iη)−1 + �2(k)G(−k,−ω − iη)
.

(17)

These equations must be supplemented with the definition of
the anomalous self-energy

�(p) =
∫

dω

2π

∫
d3k

(2π )3 〈p|V |k〉2 Im F (k, ω + iη)f (ω).

(18)

If one employs Eq. (16) and uses representation of Green’s
function G in terms of the spectral function in Eqs. (3) and
(4), supplemented by a corresponding definition of a spectral
function for the total Green’s function

As(k, ω) = −2 Im Gs(k, ω + iη) , (19)

one can rewrite the expression for the self-energy � [34] in a
partial wave expansion as

�JST
l (p) =

∑
l′

2

π

∫ ∞

0
dk k2

∫ +∞

−∞

dω

2π

×
∫ +∞

−∞

dω′

2π
〈p|V JST

ll′ |k〉A(k, ω)As(k, ω′)

×1 − f (ω) − f (ω′)
−ω − ω′ �JST

l′ (k) . (20)

If we ignore for a moment the difference between the spectral
functions A and As , we see that this equation for the self-energy
� corresponds to the homogeneous scattering equation for
the T matrix in (10) at energy � = 0 and center-of-mass
momentum P = 0. This means that a nontrivial solution of
Eq. (20) is obtained if and only if the scattering matrix
T generates a pole at energy � = 0, which reflects a bound
two-particle state. This is precisely the condition for the
pairing instability discussed above, demonstrating that this
treatment of pairing correlations is compatible with the
T-matrix approximation in the nonsuperfluid regime discussed
in Sec. II.

We may also consider Eq. (20) in the limit in which we
approximate the spectral functions A(k, ω) and As(k, ω) by
the corresponding mean-field and BCS approximation. The
expression for the normal spectral function has been presented
already in Eq. (5). The BCS approximation for the spectral
function yields

As(k, ω) = 2π

(
Ek + χk

2Ek

δ(ω − Ek) + Ek − χk

2Ek

δ(ω + Ek)

)
,

(21)

with the quasiparticle energy

Ek =
√

χ2
k + �2(k) . (22)

Inserting these approximations for the spectral function into
Eq. (20) and taking the limit T = 0 reduces it to the usual BCS
gap equation

�JST
l (p) =

∑
l′

2

π

∫ ∞

0
dk k2〈p|V JST

ll′ |k〉 1

−2Ek

�JST
l′ (k). (23)

Therefore, we can consider Eq. (20) as a generalization of the
usual gap equation. It accounts for the spreading of sp strength
leading to a generalization of the form

1

−2Ek

→
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
A(k, ω)

×As(k, ω′)
1 − f (ω) − f (ω′)

−ω − ω′ . (24)

IV. RESULTS AND DISCUSSION

A. SCGF above the critical temperature

In the first part of this section, we will focus on the discus-
sion of SCGF calculations for symmetric nuclear matter and
pure neutron matter at temperatures above the critical tempera-
ture Tc for a phase transition to a pairing condensate. This
means that we solve Eqs. (12)–(15) in an iterative procedure
until a self-consistent solution is obtained. Some details of this
procedure have been published in Refs. [6] and [48].

As a typical example, we present in Fig. 1 results for the
imaginary part of the retarded self-energy 
(k, ω) for nucleons
with a fixed momentum k as a function of the energy variable ω.
All the results displayed in this figure have been determined for
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FIG. 1. (Color online) Imaginary part of the retarded self-energy
for nucleons with momentum k = 225 MeV/c in symmetric nuclear
matter at the empirical saturation density (ρ = 0.16 fm−3). Results
for temperatures T larger than or equal to 4 MeV are directly
determined by SCGF calculations, while the T = 0 result originates
from an extrapolation. All results were obtained using the CDBonn
interaction.
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FIG. 2. (Color online) Imaginary (upper panel) and real part
(lower panel, including the generalized HF contribution) of the
retarded self-energy for nucleons with momentum k = 225 MeV/c
in symmetric nuclear matter at the empirical saturation density (ρ =
0.16 fm−3). Results obtained for CDBonn interaction are compared to
those resulting from SCGF calculations using ArV18. Also included
are results for neutrons with the same momentum in neutron matter
at ρ = 0.08 fm−3. The temperature in all these calculations was fixed
at T = 5 MeV.

symmetric nuclear matter at the empirical saturation density
using the CDBonn [24] interaction. The energy scale in this
figure has been constrained to energies around the Fermi
energy (ω = 0), since the self-energy is most sensitive to the
temperatures for these energies. The results for temperatures
larger than or equal to 4 MeV, which are all above Tc

(see below), have been obtained directly from SCGF cal-
culations. They exhibit a rather smooth dependence on the
temperature, so an extrapolation to temperatures below Tc

appears feasible. As an example of such an extrapolation,
we show the T = 0 result. The extrapolation is limited to
energies around the Fermi energy (ω = 0); for other energies,
the imaginary part of the self-energy has been taken from
the corresponding values at the lowest temperature available.
The extrapolation has been done with the constraint that the
imaginary part of the self-energy for T = 0 vanishes at ω = 0,
assuming a quadratic form around ω = 0 in such a way that a
smooth transition is obtained.

The imaginary part of the nucleon self-energy is also
displayed in the upper panel of Fig. 2. The purpose of this
figure is to visualize some differences between various models
of the NN interaction and between symmetric nuclear matter
and pure neutron matter. Therefore, we consider a larger
interval for the energy variable ω. The imaginary parts of
the self-energy derived from the CDBonn interaction and the
Argonne V18 (ArV18) interaction [23] are very similar at
energies, around ω = 0. At those energies, the ArV18 yields a
slightly weaker imaginary part than CDBonn. The differences
get larger at positive values of ω, where the imaginary part

of the self-energy derived from ArV18 reaches a minimum
of around −100 MeV at an energy ω around 1.7 GeV. The
minimum for the CDBonn interaction is only about −35 MeV
and occurs at energies ω around 0.5 GeV.

Another indication of the feature is that a fit of a local
interaction like ArV18 to NN phase shifts yields a larger
amount of NN correlations than does a fit of a nonlocal
relativistic meson exchange model like the CDBonn fitting
identical phase shifts [49,50]. In short, the ArV18 is a
stiffer interaction than the CDBonn. A further illustration is
provided by a Hartree-Fock calculation for nuclear matter at
the empirical saturation density that yields a total energy of
30 MeV per nucleon for the ArV18, while the CDBonn gener-
ates 5 MeV per nucleon [49]. This implies that the generalized
Hartree-Fock contribution to the self-energy in Eq. (7), defined
in Eq. (14), is more repulsive for ArV18, and a larger part of
the attraction is provided by the energy-dependent contribution
to the real part of the self-energy. This is immediately
obvious, since the energy-dependent contribution to the real
part of 
 is connected to the imaginary part by a dispersion
relation. The lower panel of Fig. 2, which displays results for
the real part of the self-energy, illustrates this observation:
The energy dependence is larger for ArV18 than for
CDBonn. The stronger attraction of the self-energy derived
from CDBonn (for most values of ω) reflects the less repulsive
contribution of the generalized Hartree-Fock contribution.

Figure 2 also displays results for the real and imaginary
part of the self-energy for neutrons with the same momentum
(k = 225 MeV) in pure neutron matter. The density of neutron
matter considered in this figure is one half of the empirical
saturation density of nuclear matter, which implies that these
systems have the same Fermi momentum. The imaginary
part of the self-energy in neutron matter is weaker than the
corresponding one for symmetric nuclear matter, reflecting
the dominance of proton-neutron correlations. For both in-
teractions, a minimum is obtained around 1.7 GeV. At these
high energies, the absolute value for the imaginary part of
the self-energy is about a factor of 3 larger for ArV18 than
for CDBonn. This means that the distribution of sp strength
to high energies due to central short-range correlations is
much stronger for the local ArV18 interaction than for the
nonlocal meson-exchange model CDBonn. The results for
the lower energies are closer to each other. The differences
in the amount of NN correlations is also reflected in the
occupation probability n(k) defined in (15). For symmetric
nuclear matter at saturation density, we obtain for n(k = 0)
the values 0.89 and 0.87 for CDBonn and ArV18, respectively.
The corresponding values for neutron matter are n(k = 0) =
0.968 and 0.963. Earlier non-self-consistent calculations with
older NN interactions tended to yield values of 0.83 for this
quantity [3] in nuclear matter, with self-consistency raising the
number to 0.85 [25].

Examples for spectral functions A(k, ω) are displayed in
Fig. 3. Again we consider the case of symmetric nuclear
matter at the empirical saturation density and use the CDBonn
interaction. As examples, we consider two momenta k =
255 and k = 277 MeV/c, which are below and above the
Fermi-momentum kF , respectively. For the momentum k <

kF , the dominant peak occurs at an energy below the Fermi
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FIG. 3. (Color online) Spectral function for nucleons in sym-
metric nuclear matter at the empirical saturation density. Results of
SCGF calculations have been extrapolated to T = 0. The CDBonn
interaction has been used.

energy ω = 0 and a much smaller maximum is seen at ω larger
than zero. For momenta k > kF , the dominant quasiparticle
peak is located at positive values of ω and a second maximum
occurs at ω < 0. Since this feature of two maxima in the
spectral function is reminiscent of the two poles that are present
in the BCS approximation to the Green’s function, it has been
discussed as the formation of a pseudogap or as a precursor
phenomenon to a pairing condensate [34]. We note, however,
that our calculations exhibit this feature of two pronounced
maxima in the spectral function only if we consider rather low
temperatures, in particular T < Tc. The examples displayed
in Fig. 3 originate from an extrapolation of the self-energy to
T = 0. This is different from results obtained with simplified
interactions, as they are used, e.g., in Ref. [34]. The interaction
employed by Bożek yields an imaginary part of the self-energy,
which is different from zero in a much smaller energy interval
than the realistic calculations considered here. Because of this
difference, spectral functions with two maxima are obtained
also at temperatures above Tc for this model interaction.

B. Pairing correlations

As a first step toward the study of pairing correlations, we
consider the usual BCS approach. This means that we solve
the gap equation (23) assuming a spectrum of sp energies
ε(k) = χk + µ, which we determine from the quasiparticle
energies

ε(k) = k2

2m
+ Re
(k, ε(k) − µ) . (25)

In this equation, Re
 denotes the result of a SCGF calculation
extrapolated to T = 0. Such spectra of quasiparticle energies
are rather similar to the sp spectra used in other work. The
corresponding BCS calculations therefore involve the usual
procedure as it has been applied, e.g., in Refs. [9,12–16].
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FIG. 4. (Color online) Results for the gap functions |�l(k)| for
symmetric nuclear matter (ρ = 0.16 fm−3, upper panel) and pure
neutron matter (ρ = 0.08 fm−3, lower panel) obtained from a solution
of the BCS equation (23) using the CDBonn and ArV18 interactions
at T = 0. The dotted line identifies the Fermi momentum kF .

Results for the gap functions |�l(k)| are displayed in Fig. 4.
The upper panel of this figure shows results for symmetric
nuclear matter at saturation density. The partial wave that
yields the largest value for � and is therefore the relevant one in
this case is the 3S1-3D1 channel describing the proton-neutron
interaction. We therefore display the absolute values of the gap
functions for l = 0 and l = 2 (�0 and �2) as well as the total
gap function � =

√
�2

0 + �2
2 as a function of the momentum

k. Below we will mainly consider the value of the gap function
� at the Fermi momentum kF . We also compare in this figure
the results obtained from CDBonn with those from ArV18.
For smaller values of k, the CDBonn yields larger values for
the gap function, while ArV18 leads to larger gap values for
momenta larger than k = 400 MeV/c. This is true for the l = 0
component as well as the l = 2 component and consequently
also for the total result. This feature at large values of k is
in line with our observation made above, that ArV18 tends
to produce a larger amount of correlations at high momenta
and large energies. For lower momenta, however, CDBonn
yields larger gap functions. Therefore the gap (at the Fermi
momentum) resulting from a BCS calculation which uses the
CDBonn (8.6 MeV) is larger than the corresponding value
calculated for ArV18 (7.6 MeV), although ArV18 tends to
produce more short-range correlations than CDBonn.

The situation is quite similar for the case of neutron-neutron
pairing in pure neutron matter, which is displayed in the lower
part of Fig. 4. In this case, the pairing effects are dominated
by the 1S0 partial wave. At high momenta, we obtain larger
values for the gap function using ArV18, whereas CDBonn
yields larger values for �(k) at low momenta. Therefore, the
value �(kF ) is larger for CDBonn (1.4 MeV) than for ArV18
(1.1 MeV). These values for the neutron-neutron pairing gap
are, however, much lower than the corresponding values for
proton-neutron pairing at the same Fermi momentum. On one
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hand this sounds natural, as we know that the proton-neutron
interaction is stronger than the neutron-neutron interaction,
leading to a bound deuteron and to more correlations (see
above). On the other hand, however, one observes the effects
of proton-proton and neutron-neutron pairing in finite nuclei,
while there is hardly any trace of proton-neutron pairing effects
in nuclei.

As a next step, we now try to consider the effects of
temperature and short-range correlations on the solution of
the gap equation. For that purpose, we will reconsider the
two-particle propagator of Eq. (24) but replace the spectral
function of the superfluid phase As(k, ω′) by the corresponding
one for the normal phase A(k, ω′). This leads to a definition of
an average energy denominator χ̃k of the form

1

−2χ̃k

=:
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
A(k, ω)

×A(k, ω′)
1 − f (ω) − f (ω′)

−ω − ω′ . (26)

If we consider this propagator in the limit of the mean-field
approximation [A(k, ω) = δ(ω − χk)] at T = 0, the energy
variable χ̃k reduces to χk , the difference between the single-
particle energy εk and the Fermi energy µ defined in Eq. (5),

1

−2χ̃k

mf,T =0−→ 1

−2|χk| . (27)

This means that the energy χ̃k has been defined in this equation
to exhibit the effects of finite temperature and correlations on
the two-particle propagator. Figure 5 displays results for this
quantity χ̃k , the inverse of this propagator multiplied by −2,
and compares it with |χk| using the corresponding quasiparticle
energies. The dashed-dotted line represents the effects of
temperature, i.e., the propagator has been calculated using the
quasiparticle approach for the spectral function and the Fermi
function for the temperature under consideration; the solid
line accounts for finite temperature and correlation effects.
The finite temperature yields an enhancement of the effective
sp energy χ̃k for momenta around the Fermi momentum only.
Including in addition the effects of correlations in the prop-
agator, we obtain larger values for χ̃k for all momenta. This
corresponds to the well-known feature that a finite temperature
yields a depletion of the occupation probability of sp states
only for momenta just below the Fermi momentum, whereas
strong short-range correlations provide such a depletion for all
momenta of the Fermi sea.

Now one may try to describe this depopulation of the sp
strength due to the short-range correlations by a factor Z,
which represents the part of the sp strength contained in the
quasiparticle peak. Considering the propagator of Eq. (26), we
define

1

−2χ̃k

(T , dressed) = Z2
eff(k)

−2χk

(T , QP) , (28)

which means that we determine Zeff , e.g., from the ratio of
the results displayed by the solid and the dashed-dotted line
in Fig. 5. Results for such a strength factor are displayed
in Fig. 6. Typical values for Zeff(k) are around 0.8 to 0.9
and show only a weak dependence on k. This demonstrates
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FIG. 5. (Color online) Quantity χ̃k defined in Eq. (26), which
represents the energy denominator for the propagator of two nucleons
in the medium. Results are displayed for the quasiparticle (QP)
approximation in the limit T = 0, the QP approximation for finite
temperature T = 5 MeV, and the dressed propagator resulting from
SCGF calculations (full prop., T = 5 MeV). All results displayed
in this figure were obtained for symmetric nuclear matter at density
ρ = 0.16 fm−3, using the CDBonn interaction.

that the effects of correlations may be expressed in terms of
a renormalization factor Z(k) to be used in the usual BCS
equation. Such renormalization effects have been discussed
by Bożek [35,51] and Baldo et al. [39]. Note, however, that
the renormalization factor Zeff(k) is defined by Eq. (28), and
the complete distribution of sp strength is required to calculate
it. It will be interesting to examine to which extent this factor
can be approximated by simpler estimates for the strength
located in the quasiparticle peak.

For that purpose, we also present in Fig. 6 results from
simple estimates of this strength distribution. If one assumes
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FIG. 6. (Color online) Effective renormalization constants for the
sp strength located in the quasiparticle peak as derived from Eq. (28)
are compared to the estimates of Eqs. (29) and (30). Further details
as in Fig. 5.
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that the imaginary part of the self-energy is a constant, not
depending on the energy variable ω, one can estimate this
renormalization factor by

Z1(k) = 1

1 − dRe

dω

. (29)

Note, however, that the real part of the self-energy Re 


calculated in SCGF yields negative slopes as a function
of energy for various momenta and energies (see Fig. 2).
Therefore the values for Z1(k) yield values larger than 1 over
a wide range of momenta, which is very different from the
corresponding values for Zeff(k). One may try to improve the
estimate for the strength factor by accounting for an energy
dependence of the imaginary part of the self-energy Im 
. This
leads to [52]

Z2(k) = 1√(
1 − dRe


dω

)2 + (
dIm

dω

)2
. (30)

This improvement also does not lead to results that are
consistent with Zeff(k) (see Fig. 6). This means that we expect
results for the generalized gap equation (20) which are similar
to those obtained in Refs. [35,39,51] using appropriate values
for Zeff(k), but we cannot give a simple reliable scheme to
estimate the values for the renormalization constants. One may
consider using sum rules to obtain values for Zeff(k) along
the lines of Ref. [26]. We determine the dressed two-particle
propagator in Eq. (26) within the SCGF approximation by
extrapolating the self-energy to temperatures below Tc, as
discussed above. We define an effective sp spectrum according
to Eq. (26) and solve the gap Eq. (23) with this effective sp
spectrum.

Results for the gap parameter �(kF ) in symmetric nuclear
matter of various densities are presented in Fig. 7 as a function
of the temperature T. We will first discuss the results obtained
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FIG. 7. (Color online) Gap parameter �(kF ) in symmetric nuclear
matter as a function of temperature T. Results are presented for various
densities, with and without taking into account the dressing of the sp
propagator due to short-range correlations. The pairing gap disappears
at ρ = 0.16 fm−3 if dressed propagators are considered. All results
displayed in this figure were obtained using the CDBonn interaction.

within the usual BCS approximation (see discussion above) in
the 3S1-3D1 partial wave. At the empirical saturation density,
the CDBonn interaction yields a gap parameter �(kF ) at
temperature T = 0 of 8.6 MeV (see above), which decreases
with increasing temperature until it vanishes at T = 5.2 MeV.
At ρ = 0.08 fm−3, which is about half the empirical density,
the value of the gap parameter at T = 0 is even larger
[�(kF ) = 10.6 MeV], and the gap calculated within the usual
BCS approach disappears only at a temperature of 5.9 MeV.
This increase of the pairing gap with decreasing density can
be related to the momentum dependence of the pairing gap
�(k) as displayed in Fig. 4: the gap function increases with
decreasing momentum. Therefore, as the Fermi momentum
decreases with density, the value �(kF ) tends to decrease
with density. At even lower densities, however, this effect is
more than compensated by the feature that the phase-space
of two-hole configurations decreases with density, so that
ultimately the gap parameter will approach the binding energy
of the deuteron in the limit of ρ → 0. This explains the
decrease of the gap parameter going from ρ = 0.08 fm−3 to
ρ = 0.04 fm−3.

If we take the effects of short-range correlations into
account, the generalized gap equation of Eq. (20) does not give
a nontrivial solution for symmetrical nuclear matter at ρ =
0.16 fm−3. This means that a proper treatment of correlation ef-
fects in nuclear matter at normal density yields a disappearance
of the proton-neutron pairing predicted by the usual BCS ap-
proach. The effects of short-range correlations tend to decrease
with density. As a consequence, we obtain nonvanishing gaps
for proton-neutron pairing at lower densities (see solid lines in
Fig. 7). This also leads to an increase of the critical temperature
and the value of �(kF ) at T = 0 going from ρ = 0.08 fm−3

to ρ = 0.04 fm−3. Note that these functions are qualitatively
different from the corresponding BCS predictions.

Differences associated with the various interactions are
displayed in Fig. 8. For nuclear matter with a density of
ρ = 0.08 fm−3, the gap parameter is presented as a function
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FIG. 8. (Color online) Gap parameter �(kF ) in symmetric nuclear
matter at ρ = 0.08 fm−3 as a function of temperature T using the
ArV18 and CDBonn interactions.
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FIG. 9. (Color online) Spectral function for nucleons with mo-
mentum k = 193 MeV/c with (solid line) and without (dashed line)
inclusion of pairing correlations. Results are presented for nuclear
matter of ρ = 0.08 fm−3 at a temperature T = 0.5 MeV.

of temperature T using the BCS approximation and the
generalized gap equation with dressed propagators. As already
discussed above, the ArV18 interaction yields smaller values
for the gap parameter and critical temperature than does the
CDBonn interaction.

Effects of pairing correlations on the spectral function are
visualized in Fig. 9. As an example, we consider nuclear matter
at ρ = 0.08 fm−3 and show results for the spectral function
without [A(k, ω)] and with inclusion of pairing correlations
[As(k, ω), see Eq. (19)]. The momentum considered for
this figure, k = 193 MeV/c, is slightly below the Fermi
momentum kF = 208 MeV/c. One observes that the inclusion
of pairing correlations enhances considerably the maximum
of the spectral distribution at positive values of ω and shifts
the quasiparticle peak to more negative values of ω. The
pairing correlations modify the spectral distribution into the
direction which is obtained in the simple BCS approximation
for As(k, ω) in Eq. (21). Also note that these modifications
of the spectral function As(k, ω) as compared to A(k, ω) are
limited to a small interval of energies around ω = 0 and to
momenta close to the Fermi momentum.

Finally, we consider the case of neutron-neutron pairing
in pure neutron matter. We will focus on densities at which
the pairing correlations in the 1S0 partial wave are dominant.
Results for the gap parameter �(kF ) as a function of temper-
ature are displayed in Fig. 10. Using the BCS approximation
with sp energies derived from the quasiparticle energies of
SCGF calculations, we obtain a gap at T = 0, which, for
the range of densities considered, increases with decreasing
density. This agrees with results of similar calculations, which
are summarized, e.g., in Ref. [9].

The effects of short-range correlations are weaker in
neutron matter than in nuclear matter. This has been discussed
already above in connection with the results displayed in
Fig. 2. This can also be seen in a comparison of the dressed
two-particle propagator and the effective strength factor Zeff
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FIG. 10. (Color online) Gap parameter �(kF ) in neutron matter
as a function of temperature T. Results are presented for the usual
BCS approximation (dashed lines) and the solution of the generalized
gap equation (20) in the 1S0 partial wave using the CDBonn
interaction.

defined in Eq. (28). While a calculation of Zeff for symmetric
nuclear matter at ρ = 0.16 fm−3 yields values for Zeff , which
are typically around 0.8 (see Fig. 6), corresponding values
for Zeff in neutron matter at ρ = 0.08 fm−3 are around 0.9.
Nevertheless, these weaker effects of short-range correlations
in neutron matter are sufficient to suppress the formation of
a pairing gap in neutron matter at ρ = 0.08 fm−3. Such a
suppression of pairing correlations is also observed at smaller
densities. In this case, however, the inclusion of the correlation
effects just leads to a reduction of the gap parameter at a
given temperature and a reduction of the critical temperature
(see Fig. 10). Extrapolating our results to neutron matter with
higher densities, we expect that the short-range correlations
will suppress the formation of pairing in the 3P2-3F2 partial
waves at those densities [53].

V. CONCLUSIONS

An attempt has been made to treat the effects of short-
range and pairing correlations in a consistent way within
the T-matrix approach of the self-consistent Green’s function
(SCGF) method. The pairing effects are determined from a
generalized gap equation that employs sp propagators fully
dressed by short-range and tensor correlations. This equation
is directly linked to the homogeneous solution of the T-matrix
equation of NN scattering in the medium, which is one of
the basic equations of the SCGF approach at temperatures
above the critical temperature for a phase transition to pairing
condensation. While short-range and tensor correlations yield
a redistribution of sp strength over a wide range of energies,
the effects of pairing correlations on the spectral function are
limited in nuclear matter to a relatively small interval in energy
and momentum around the Fermi surface.
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The formation of a pairing gap is very sensitive to the
quasiparticle energies and strength distribution at the Fermi
surface and can be suppressed by moderate temperatures.
The formation of short-range correlations are sensitive to a
larger range of energies and momenta. So we observe that
the nonlocal CDBonn interaction is softer with respect to
the formation of short-range correlations but yields larger
pairing gaps compared to the local ArV18 model for the NN
interaction.

From this sensitivity to different areas in momentum and
energy, one may conclude that the features of short-range
correlations should be rather similar in studies of nuclear mat-
ter and finite nuclei. The investigation of pairing phenomena,
however, is rather sensitive, e.g., to the energy spectrum around
the Fermi energy. Therefore the shell effects of finite nuclei
may lead to quite different results for pairing properties than
corresponding studies in infinite matter.

The redistribution of sp strength due to short-range correla-
tions has a significant effect on the formation of a pairing
gap. While the usual BCS approach predicts a gap for
proton-neutron pairing in nuclear matter at saturation density
as large as 8 MeV, the inclusion of short-range correlations
suppresses this gap completely. Correlation effects are weaker
at smaller densities but still lead to a significant quenching
of the proton-neutron pairing gap and to a reduction of the
critical temperature for the phase transition. Compared to
those in symmetric nuclear matter, correlation effects are
weaker in neutron matter. Nevertheless, the inclusion of
correlations completely suppresses the formation of a gap

for neutron-neutron pairing at ρ = 0.08 fm−3 and yields a
significant quenching at lower densities.

The effects of a dressed sp propagator in the generalized gap
equation could be described in terms of an effective strength
factor Zeffk, which has been considered in the literature
before [35,39,51]. Unfortunately, we have not been able to
derive the value of this strength factor from bulk properties of
the self-energy.

Although the effects of pairing correlations on the sp
Green’s function is weak and limited to a small range in energy
and momentum, these modifications are very important when
extending SCGF calculations to densities and temperatures
that suffer from the so-called pairing instability. The present
study is a first step toward a consistent treatment of pairing
and short-range correlations. Future work should also include
polarization effects in the residual interaction. One must be
aware, however, that such effects in the anomalous part of
the the self-energy � must be accompanied by a consistent
treatment of the normal self-energy 
.
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[22] W. H. Dickhoff and H. Müther, Nucl. Phys. A473, 394 (1987).
[23] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[24] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53,

R1483 (1996).
[25] W. H. Dickhoff and E. P. Roth, Acta Phys. Pol. B 33, 65 (2002);

E. P. Roth, Ph.D. thesis, Washington University, St. Louis,
2000.

[26] Y. Dewulf, D. Van Neck, and M. Waroquier, Phys. Rev. C 65,
054316 (2002).
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