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We study the J-pairing Hamiltonian and find that the sum of eigenvalues of spin-I states equals the sum of the
norm matrix elements within the pair basis for four identical particles such as four fermions in a single-j shell
or four bosons with spin l. We relate the number of states to sum rules of nine-j coefficients. We obtained sum
rules for nine-j coefficients 〈(jj )J, (jj )K : I |(jj )J, (jj )K : I 〉 and 〈(ll)J, (ll)K : I |(ll)J, (ll)K : I 〉 summing
over (1) even J and even K, (2) even J and odd K, (3) odd J and odd K, and (4) both even and odd values for J
and K, where j is a half integer and l is an integer.

DOI: 10.1103/PhysRevC.72.054307 PACS number(s): 05.30.Fk, 05.45.−a, 21.60.Cs, 24.60.Lz

I. INTRODUCTION

The J-pairing Hamiltonian for a single-j shell is an
important topic for studying both nuclear structure theory and
general many-body systems. For the case of J = 0 (i.e., the
monopole pairing interaction), the famous seniority scheme
[1,2] provides exact solutions; for J = Jmax, the “cluster”
picture of Ref. [3] presents an asymptotic classification of
states. For other J cases, it was found that pairs with spin J
are reasonable building blocks for low-lying states but little
is known about exact eigenvalues [4]. In this paper we shall
go one step forward along this line by proving that for four
identical particles the sum of eigenvalues for the J-pairing
interaction is connected with a sum of nine-j coefficients.

The enumeration of spin I states (where the number of
spin I states is denoted by DI in this paper) for fermions in
a single-j shell or bosons with spin l (with a convention that
j is a half integer and l is an integer) is also a very common
practice in nuclear structure theory. DI is usually obtained by
subtracting the number of states with total angular momentum
projection M = I + 1 from that with M = I [5]. Because
numbers of states with different M’s seem irregular, DI values
are usually tabulated in textbooks, for the sake of convenience.
Other methods include Racha’s method [1] in terms of
the seniority scheme and the generating function method
proposed and studied by Katriel et al. [6] and Sunko and
collaborators [7]. All these works are interesting and impor-
tant. However, the results are not algebraic. It is therefore
desirable to obtain analytical formulas of DI . For n = 1 and
2, DI is known and is understood very well; but the situation
becomes complicated when n � 3, except for a few cases with
I ∼ Imax.

Historically, the first interesting formula of DI was given for
the case with I = 0 and n = 4 by Ginocchio and Haxton [8].
Their result was revisited by Zamick and Escuderos [9]. In
Ref. [10], the authors of the present paper empirically
constructed DI for n = 3 and 4 and some DI ’s for n = 5.

∗Electronic address: ymzhao@sjtu.edu.cn

Recently, Talmi suggested a recursion formula of DI [11] and
used this formula to prove DI formulas obtained empirically
for n = 3 [10]. Talmi’s recursion formula is also readily
applied to prove the empirical formulas of Ref. [10] for n = 4.
In Ref. [12], we showed that DI of n particle systems can be
enumerated by using the reduction from SU(n + 1) to SO(3),
and as an example, DI for n = 4 was obtained analytically.

The results of DI for three identical particles were applied to
obtain a number of sum rules for six-j symbols in the appendix
of Ref. [3]. One can ask whether the results for n = 4 can
be used similarly to obtain sum rules for nine-j symbols. If
the answer is yes, the application would be very interesting,
because sum rules of angular momentum couplings are widely
applied in many branches of physics, in particular in nuclear
structure theory. (Angular momentum coupling-recoupling
coefficients and sum rules were compiled in Ref. [13] in 1988.)
This paper addresses the following question: Can we obtain
sum rules for nine-j symbols based on studies of J-pairing
Hamiltonian and number of spin I states for four identical
particles? Furthermore, how far can one proceed along this
line?

This paper is organized as follows. In Sec. II, we study
J-pairing Hamiltonian to obtain summation of all nonzero
eigenvalues in the presence of only one J-pairing force. In
Sec. III, we present sum rules of nine-j symbols found by using
these summations and number of states for n = 4 obtained in
earlier works. In this paper we show that the DI formulas
provide us with a bridge between the J-pairing interaction
and sum rules of nine-j symbols for identical particles. A
summary and discussion are given in Sec. IV. Appendix A
present formulas of nine-j symbols in some special cases.
Appendix B discusses the number of matrices involved in our
sum-rule calculations.

II. J-PARING INTERACTION

In this section we discuss the J-pairing interaction only for
identical fermions in a single-j shell. Similar results are readily
obtained for bosons with spin l. Our J-pairing Hamiltonian HJ
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is defined as follows:

HJ = GJ

J∑
M=−J

A
(J )†
M A

(J )
M ,A

(J )†
M = 1√

2
[a†

j × a
†
j ](J ),

A
(J )
M = −(−1)M

1√
2

[ãj × ãj ](J )
−M, (1)

Ã(J ) = − 1√
2

[ãj × ãj ](J ),

where [](J )
M means coupled to angular momentum J and

projection M. We take GJ = 1 in this paper.
For n = 3, it was shown in Ref. [3] that there is only one

nonzero eigenvalue for HJ when I � j − 1, and all eigenvalues
are zero when I < j − 1. For n = 4 the situation is more
complicated, because there can be many nonzero eigenvalues
of spin I states for HJ , and most of these eigenvalues are not
known except I = 0 and I � Imax. However, their summation
is the trace of the HJ matrix with total spin I and is a constant
with respect to any linear transformation. This trace can be
obtained by summing the diagonal matrix elements

〈0|[A(J ) × A(K)](I )
M [A(J )† × A(K)†](I )

M |0〉

= 1 + (−)I δJK − 4(2J + 1)(2K + 1)




j j J

j j K

J K I


 (2)

over K. Here J and K take only even values. This fact can be
proved by using two-body coefficients of fractional parentages,
which are defined by

〈j 4αIM|}j 2(J ), j 2(K)I 〉
= 1√

6
(−)I 〈j 4αIM|[A(J )† × A(K)†](I )

M |0〉.

The trace can be calculated as follows:∑
α

〈j 4αI |HJ |j 4αI 〉 =
∑
K

∑
α

6〈j 2(J ), j 2(K)I |}j 4αI 〉2

=
∑
K

∑
α

〈0|[A(J ) × A(K)](I )
M |Iαj 4〉

×〈Iαj 4|[A(J )† × A(K)†](I )
M |0〉

=
∑
K

〈0|[A(J ) × A(K)](I )
M [A(J )†

×A(K)†](I )
M |0〉,

where GJ = 1 is used. This is just the summation of
Eq. (2) over even K. One can also regard Eq. (2) as a simple
generalization of the result in Ref. [3], where it was shown that
the nonzero eigenvalue of HJ for spin I states of three particles
is given by the norm 〈j (j 2)J : I |j (j 2)J : I 〉. Note that similar
results are applicable to bosons with spin l.

Let us look at nine-j symbols of identical particles under
certain conditions. Based on Eq. (2) we easily find the
following well-known fact:


j j J

j j J

K K ′ I


 = 0 (3)

for odd I when K �= J or K ′ �= J , based on the fact that
two identical pairs produce only even values of I and thus
the norm in Eq. (2) equals zero. Here K and K ′ take even
values, or odd values simultaneously. This can be also seen
from the permutation symmetry of the nine-j symbol, which
requires the left-hand side of Eq. (3) to equal zero unless
K + K ′ + I is even. We note without details that this formula
is also applicable to four bosons with spin l [i.e., one can
replace j by l in formula (3)]. This is a generalization of the
result in Ref. [14], where it was found that


j j 2j − 1

j j 2j − 1

2j − 1 2j − 3 4j − 4


 = 0.

The norm of Eq. (2) equals zero when I = 4j − 7, 4j −
5, 4j − 4, because there are no such states. We thus find


j j J

j j K

J K I


 = 1

4(2J + 1)(2K + 1)
(4)

for I = 4j − 7, 4j − 5, 4j − 4 and J �= K (J,K are even).
This is also a generalization of a formula in Ref. [14]:


j j 2j − 3

j j 2j − 1

2j − 3 2j − 1 I


 = 1

4(4j − 5)(4j − 1)

for I = 4j − 7, 4j − 5, 4j − 4. Similarly, we have


j j 2j − 1

j j 2j − 1

2j − 1 2j − 1 I


 = 1

2(4j − 1)2
(5)

for I = 4j − 2, 4j − 4. This formula was also obtained in
Ref. [14] and holds for both integer and half-integer values
of j. In Appendix A, we present some explicit formulas of
nine-j symbols with J = K = 2j or J = K = 2j − 1. For
completeness, we also refer to Refs. [4,13–15], concerning
formulas of six-j and nine-j symbols for identical particles.

Now we enumerate the number of matrices of Eq. (2)
with different J. This is related to the number of nonzero
two-body coefficients of fractional parentage obtained for
specific examples in studying regularities of energy centroids
in the presence of random interactions [16]. Without going
into details we present the results of the number of matrices
involved in Eq. (2) with different J.

For I � 2j , the number of matrices with K = J is given by

[(4j + 2 − I )/4] (6)

and the number of matrices with K �= J is

[(4j − I )/2]([(4j − I )/2] + 1)/2 − [(4j + 2 − I )/4]. (7)

The [] notation in this paper means that one takes the largest
integer not exceeding the value inside.

For I � 2j − 1, the number of matrices with J = K is
always 1 for even I; the case with J �= K is more complicated
and the number of such matrices is given in Appendix B. It is
noted that J and K take only even values in this Section.
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III. SUM RULES FOR NINE-J SYMBOLS

The procedure to obtain sum rules of nine-j symbols in this
paper is straightforward. In Sec. II we obtained summation
of eigenvalues for H = HJ . From the sum rule of two-body
coefficients of fractional parentage, one obtains n(n − 1)/2
multiplied by the number of spin I states, DI , if one sums
Eq. (2) over even J and even K, namely,

∑
J

∑
α

〈j 4αI |HJ |j 4αI 〉 =
∑

even J even K

〈0|[A(J )

×A(K)](I )
M [A(J )† × A(K)†](I )

M |0〉 = 6DI , (8)

where the DI formulas were given in Refs. [10,12]. New sum
rules of nine-j symbols now can be obtained by using the DI

formulas, Eq. (2), and Eq. (8).
For realistic systems both J and K are even, as in Eq. (2)

of Sec. II and Eq. (8). In this paper we also discuss sum rules
of nine-j symbols under other conditions for J and K, such as
odd J and odd K, etc. We denote

SI (j 4, condition X on J and K)

=
∑

X

4(2J + 1)(2K + 1)




j j J

j j K

J K I


 (9)

for sake of simplicity. The condition X of the sum rules for J and
K will be one of the following: (1) even J and even K (realistic);
(2) even J and odd K or odd J and even K; (3) odd J and odd K;
and (4) both even and odd values for J and K. Conditions
(2)–(4) are not physical for identical particles in quantum
mechanics. We similarly define SI (l4, condition X onJ and K

for l.
First we present our results of SI (j 4, requirement X on J and

K ), which provides us with rich sum rules of nine-j symbols.
For I � 2j , one obtains

SI (j 4, even J even K) = 1

2

[
4j − I

2

]
×

[
4j − I + 2

2

]

× (−)I
[

4j + 2 − I

4

]
− 6DI , (10)

based on Eqs. (2) and (6)–(8). Let us introduce I0 by the
relation I = Imax − 2I0 for even I and I = Imax − 2I0 − 3 for
odd I, where Imax = 4j − 6. Using I0 we can rewrite DI =
DImax−2I0 for even I and DI = DImax−2I0−3 for odd I. According
to Ref. [12],

DI = 3

[
I0

6

]([
I0

6

]
+ 1

)
−

[
I0

6

]

+
([

I0

6

]
+ 1

)
((I0mod 6) + 1) + δ(I0mod 6),0 − 1.

One thus has

SI (j 4, even J even K)

= (−)I
[

4j + 2 − I

4

]
+ 1

2

[
4j − I

2

]
×

[
4j − I + 2

2

]

− 18

[
I0

6

]([
I0

6

]
+ 1

)
+ 6

([
I0

6

]
+ 1

)

− 6

([
I0

6

]
+ 1

)
((I0mod 6) + 1) − 6δ(I0mod 6),0. (11)

The behavior of the right-hand side is not easy to see owing
to terms such as (I0 mod 6), δ, and [ I0

6 ]. The situation becomes
much more transparent when one writes SI (j 4, even J even K)
values explicitly. For I = even, we find the following formulas:

SI (j 4, even J even K) =




2 for I = Imax,

6 for I = Imax − 2,

6 for I = Imax − 4,

6 for I = Imax − 6,

8 for I = Imax − 8,

10 for I = Imax − 10,

...
... ;

(12)

for I = odd we can use Eq. (12) to obtain the sum rules SI (j 4,

even J even K) = SI+3(j 4, even J even K). We find that SI (j 4,

even J even K) has a modular behavior:

SI (j 4, even J even K) = S((Imax−I )mod 12)(j
4, even J even K)

+ 6

[
Imax − I

12

]
. (13)

For I = Imax − 1, one obtains SI (j 4, even JK) = 4 based on
the right-hand side of Eqs. (2) and (8).

For I � 2j − 1, Eq. (8) is less easily simplified [17],
owing to the complexity of the DI formula (see Eq. (3) of
Ref. [10]) and number of J = K and J �= K matrices of
Eq. (2). However, by using Eq. (8) of this paper, Eq. (3) of
Ref. [10], and the results in Appendix B, one is able to obtain
explicitly the sum rules for I � 2j − 1:

SI (j 4, even J even K) =




2m − 2 for I = 0,

0 for I = 1,

4 − 2m for I = 2,

2m for I = 3,

2 for I = 4,

4 − 2m for I = 5,

2 + 2m for I = 6,

4 for I = 7,

6 − 2m for I = 8,

2 + 2m for I = 9,

6 for I = 10,

8 − 2m for I = 11,

...
...

(14)
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which has a modular behavior:

SI (j 4, even J even K)

= S(Imod 12)(j
4, even J even K) + 6

[
I

12

]
. (15)

In Eq. (14), m = (j − 3/2)mod 3.
In Eqs. (8) and (10)–(15) J and K take only even values.

It is interesting to discuss whether there are simple sum
rules in which J and K can be both even and odd. For
this case 0 � I � Imax = 4j . Starting from Eq. (9.29) of
Ref. [2] for J1 = J2 = J3 = J4, J12 = J13 = J, J34 = J24 =
K, J = I , we multiply 4(2J + 1)(2K + 1) and sum over all
JK (i.e., J and K take both even and odd non-negative integers).
By using Eq. (9.28) of Ref. [2], we find

SI (j 4, both even and odd values for J and K)

=
2j∑

J,K=0;�(JKI )

(−)J+1

=
{

4 [(1 + I )/2] for I � 2j + 1,

4 + 4 [(4j − I )/2] for I � 2j,
(16)

where �(JKI ) means that J,K , and I satisfy the triangle
relation of angular momentum coupling.

If both J and K are odd values, 0 � I � Imax = 4j . In this
case we consider fictitious “bosons” (which are not realistic
for identical particles) with a half-integer spin j. According to
Ref. [12], the number of states DI for four bosons with spin
j equals that for four fermions in a single-l shell with 2l =
2j + 3. As DI for four fermions in a single-l shell was given
in Ref. [4], we can derive SI (j 4, odd J odd K) by using Eqs.
(2) and (8), together with Eqs. (3)–(5) in Ref. [4]. Similarly to
Eqs. (10), (11), and (14), we obtain that, when I � 2j ,

SI (j 4, odd J odd K) =




2 − 2m for I = 0,

0 for I = 1,

2m for I = 2,

4 − 2m for I = 3,

2 for I = 4,

2m for I = 5,

6 − 2m for I = 6,

4 for I = 7,

2 + 2m for I = 8,

6 − 2m for I = 9,

6 for I = 10,

4 + 2m for I = 11,

...
...

(17)

has a modular behavior:

SI (j 4, oddJ oddK) = S(Imod12)(j
4,oddJ oddK) + 6

[
I

12

]
,

(18)

where m = (j − 3/2)mod 3 in Eq. (17); and when I � 2j

SI (j 4, odd J odd K) =




4 for I = 4j,

2 for I = 4j − 2,

4 for I = 4j − 4,

6 for I = 4j − 6,

6 for I = 4j − 8,

6 for I = 4j − 10,
...

...

(19)

has a modular behavior:

SI (j 4, odd J odd K)

= S((4j−I )mod 12)(j
4, odd J odd K) + 6

[
4j − I

12

]
(20)

for even I, and SI (j 4, odd J odd K) = SI+3(j 4, odd J odd K)
for odd I. For I = 4j − 1 (odd I), SI (j 4, odd J odd K) = 0.

For even J and odd K or for odd J and even K, 0 �
I � Imax = 4j − 1. For this case

SI (j 4, even J odd K) ≡ SI (j 4, odd J even K)
= (SI (j 4, both even and odd values for J and K)

−SI (j 4, even J even K) − SI (j 4, odd J odd K))/2.

Using this relation and previous results we find that, when
I � 2j ,

SI (j 4, even J odd K) ≡ SI (j 4, odd J even K)

=
{

2
[

I
4

]
for even I,

2 + 2
[

I
4

]
for odd I ;

(21)

and, when I � 2j ,

SI (j 4, even J odd K) ≡ SI (j 4, odd J even K)

= 2 +
[
Imax − I

4

]
. (22)

Similarly, we obtain sum rules by replacing the half-integer
j with the integer l. First, let us study the case for even values
of J and K. We find that, when I � 2l,

SI (l4, even J even K)

=
∑

even J even K

4(2J + 1)(2K + 1)




l l J

l l K

J K I




=




4 − 2m for I = 0,

0 for I = 1,

2m for I = 2,

2 − 2m for I = 3,

4 for I = 4,

2m for I = 5,

6 − 2m for I = 6,

2 for I = 7,

4 + 2m for I = 8,

6 − 2m for I = 9,

6 for I = 10,

2 + 2m for I = 11,
...

...

(23)
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has a modular behavior:

SI (l4, even J even K)

= S(Imod 12)(l
4, even J evenK) + 6

[
Imax − I

12

]
, (24)

where m = l mod 3 in Eq. (23), and, when I � 2l,

∑
even JK

4(2J + 1)(2K + 1)




l l J

l l K

J K I




=
∑

even JK

(
1 + (−)I δJK

)

− 18

[
I0

6

] ([
I0

6

]
+ 1

)
+ 6

[
I0

6

]

− 6

([
I0

6

]
+ 1

)
((I0mod 6) + 1) − 6δ(I0mod 6),0 + 6

=




4 for I = Imax,

0 for I = Imax − 1,

2 for I = Imax − 2,

4 for I = Imax − 3,

4 for I = Imax − 4,

2 for I = Imax − 5,

6 for I = Imax − 6,

4 for I = Imax − 7,

6 for I = Imax − 8,

6 for I = Imax − 9,

6 for I = Imax − 10,

6 for I = Imax − 11,

...
...

(25)

has a modular behavior:

SI (l4, even J even K)

= S((Imax−I )mod 12)(l
4, even JK) + 6

[
Imax − I

12

]
, (26)

where Imax = 4l.
If J and K take both even and odd values, similarly to the

process of obtaining Eq. (16), we find for I � 2l

SI (l4, both even and odd values for J and K)

=
{

4 + 4
[

I
2

]
for even I,

4
[

I
2

]
for odd I ;

(27)

for I � 2l,

SI (l4, both even and odd values for J and K)

= 4 + 4

[
4l − I

2

]
. (28)

We note that this sum rule has the same form as Eq. (16) for
I � 2j .

For odd J and odd K values, 0 � I � Imax = 4l − 2. We find
that, when I � 2l,

SI (l4, odd J odd K) =




2m for I = 0,

0 for I = 1,

4 − 2m for I = 2,

−2 + 2m for I = 3,

4 for I = 4,

4 − 2m for I = 5,

2 + 2m for I = 6,

2 for I = 7,

8 − 2m for I = 8,

2 + 2m for I = 9,

6 for I = 10,

6 − 2m for I = 11,

...
...

(29)

has a modular behavior:

SI (l4, oddJ oddK) = S(Imod12)(l
4, oddJ oddK) + 6

[
I

12

]
,

(30)

where m = lmod 3 in Eq. (29); and, when I � 2l,

SI (l4, odd J odd K) =




2 for Imax − I = 0,

4 for Imax − I = 2,

2 for Imax − I = 4,

6 for Imax − I = 6,

6 for Imax − I = 8,

6 for Imax − I = 10,

...
...

(31)

has a modular behavior:

SI (l4, odd J odd K)

= S((Imax−I )mod 12)(l
4, odd J odd K) + 6

[
Imax − I

12

]
.

(32)

For odd I � 2l, SI = SI+3 with SImax−1 = 0.
If we take odd J and even K values or we take even J and

odd K values, 0 � I � Imax = 4l − 1. For this case

SI (l4, even J odd K) ≡ SI (l4, odd J even K)

= (
SI (l4, both even and odd values for J and K)

− SI (l4, even J even K) − SI (l4, odd J odd K)
)
/2

=
{

2
[

I+2
4

]
for I � 2l,

2 + [
Imax−I

4

]
for I � 2l.

(33)
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IV. SUMMARY AND DISCUSSION

In summary, in this paper we first showed that the sum of
eigenvalues of spin I states for the J-pairing interaction is given
by

∑
K

(
1 + (−)I δJK

) − 4
∑
K

(2J + 1)(2K + 1)




j j J

j j K

J K I




for fermions and by

∑
K

(
1 + (−)I δJK

) − 4
∑
K

(2J + 1)(2K + 1)




l l J

l l K

J K I




for bosons. Then we related them with number of spin I states
to obtain nine-j sum rules. We studied

4(2J + 1)(2K + 1)




j j J

j j K

J K I




and

4(2J + 1)(2K + 1)




l l J

l l K

J K I


 ,

summing over J and K under the following situations: (1) all J
and K are even; (2) J and K can be both even and odd; (3) all
J and K are odd; (4) J is even and K is odd. We also obtained
formulas for special J,K , and I values, based on the physical
meaning of the norm in Eq. (2).

Sum rules in Eqs. (A1) and (A2) of Ref. [3] can be
obtained as a special case of the results in this paper: I = 0 for
Eqs. (14) and (23). This work is therefore a generalization of
some of our earlier results. We use the J-pairing interaction as
a tool to obtain the sum rules but these results are independent
of the interaction.

In Ref. [12], it was found that the number of spin I states
DI for four bosons with spin l and that for four fermions in a
single-j shell are the same when 2l = 2j − 3. This produces
the same value of the right-hand side in Eq. (8) for fermions
and bosons. Unfortunately, the numbers of J and K for these
two cases are different (the number of J for bosons is l + 1 =
j − 1/2 whereas that for fermions is j + 1/2), which present
different sum rules of the case with even values for both J
and K.

One may ask how far one can proceed along this line, that
is, to construct sum rules of angular momentum coupling by
using formulas of DI . As n increases, the DI formulas and
the sum of eigenvalues of spin I states become more and more
complicated. The situation is already complicated for n = 4.
For n = 5 there are DI formulas for only I ∼ 0 or ∼ Imax.
Therefore, it is difficult to obtain DI formulas and new sum
rules of angular momentum couplings in which more particles
(n � 5) are involved, except for a few cases with I ∼ Imax

where the DI is given by a fixed number series [10,11].
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APPENDIX A: FORMULAS OF SPECIAL NINE-J SYMBOLS

In this Appendix we present formulas for the nine-j symbol


j j J

j j J

J J I


 , (A1)

where J = 2j or 2j − 1, based on its expansion in terms of
six-j symbols. The value of j in this Appendix can be either
a half integer or an integer. One sees that the nine-j symbol
of Eq. (A1) equals zero if I is odd, because a phase factor
(−)4j+4J+I = (−)I appears if one exchanges the first and the
second rows in Eq. (A1). From this one obtains that the nine-j
symbol of Eq. (A1) vanishes unless I is even. In the following
we discuss the nine-j symbols of Eq. (A1), with I being even
and J = 2j or 2j − 1.

We define

f ′
m =




j j 2j

j j 2j

2j 2j 4j − m


 (A2)

and obtain following formulas:

f ′
0 = 1

(4j + 1)2
,

f ′
2 = −1

2(4j + 1)2(4j − 1)
,

f ′
4 = 3(2j − 1)

2(16j 2 − 1)2(4j − 3)
,

f ′
6 = −3 × 5(2j − 2)

4(4j − 5)(4j − 3)(4j − 1)2(4j + 1)2
,

f ′
8 = 3 × 5 × 7(2j − 2)(2j − 3)

4(4j − 7)(4j − 5)(4j − 3)2(4j − 1)2(4j + 1)2
,

f ′
10 = −3 × 5 × 7 × 9

8(4j − 3)2(4j − 1)2(4j + 1)2

× (2j − 4)(2j − 3)

(4j − 9)(4j − 7)(4j − 5)
,

f ′
12 = 3 × 5 × 7 × 9 × 11

8(4j − 5)2(4j − 3)2(4j − 1)2(4j + 1)2)

× (2j − 3)(2j − 4)(2j − 5)

(4j − 11)(4j − 9)(4j − 7)
.

We define

fI =




j j 2j

j j 2j

2j 2j I



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and obtain following formulas:

f0 = (−)2j [(2j − 1)!]2

(4j + 1)2(4j − 1)!

1

2
(2j ),

f2 = −(−)2j [(2j − 1)!]2

(4j + 1)2(4j − 1)!

1

2

(2j )(2j + 1)

(4j − 1)
,

f4 = (−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

3

4

(2j )(2j + 1)(2j + 2)

(4j − 3)(4j − 1)
,

f6 = −(−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

5

4

× (2j )(2j + 1)(2j + 2)(2j + 3)

(4j − 5)(4j − 3)(4j − 1)
,

f8 = (−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

7 × 5

16

× (2j )(2j + 1)(2j + 2)(2j + 3)(2j + 4)

(4j − 7)(4j − 5)(4j − 3)(4j − 1)
,

f10 = −(−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

9 × 7

16

× (2j )(2j + 1) · · · (2j + 5)

(4j − 9)(4j − 7) · · · (4j − 3)(4j − 1)
,

f12 = (−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!
× 11 × 9 × 7/3

32

× (2j )(2j + 1) · · · (2j + 6)

(4j − 11)(4j − 9) · · · (4j − 3)(4j − 1)
,

f14 = −(−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

13 × 11 × 9/3

32

× (2j )(2j + 1) · · · (2j + 7)

(4j − 13)(4j − 11) · · · (4j − 3)(4j − 1)
,

f16 = (−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

15 × 13 × 11 × 9/3

256

× (2j )(2j + 1) · · · (2j + 8)

(4j − 15)(4j − 13) · · · (4j − 3)(4j − 1)
,

f18 = −(−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

17 × 15 × 13 × 11/3

256

× (2j )(2j + 1) · · · (2j + 9)

(4j − 17)(4j − 15) · · · (4j − 3)(4j − 1)
,

f20 = (−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

19×17×15×13×11
5×3

512

× (2j )(2j + 1) · · · (2j + 10)

(4j − 19)(4j − 17) · · · (4j − 3)(4j − 1)
,

f22 = −(−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

21×19×17×15×13
5×3

512

× (2j )(2j + 1) · · · (2j + 11)

(4j − 21)(4j − 19) · · · (4j − 3)(4j − 1)
,

f24 = (−)2j [(2j − 1)!]

(4j + 1)2(4j − 1)!

23×21×19×17×15×13
5×3×3

512

× (2j )(2j + 1) · · · (2j + 12)

(4j − 23)(4j − 21) · · · (4j − 3)(4j − 1)
.

We define

g′
m =




j j 2j − 1

j j 2j − 1

2j − 1 2j − 1 4j − m




and obtain g′
2 = g′

4 = 1/[2(4j − 1)2], [see Eq. (5) of Sec. II].
For g′

m with larger m we obtain

g′
6 = − 3(2j − 2)(16j − 15)

2(4j − 5)(4j − 3)2(4j − 1)2
,

g′
8 = 15(2j − 3)(6j − 7)

2(4j − 7)(4j − 5)(4j − 3)2(4j − 1)2
,

g′
10 = − 7 × 5 × 3

(4j − 5)(4j − 3)(4j − 1)

× (2j − 4)(2j − 3)(32j − 45)

4(4j − 9)(4j − 7) · · · (4j − 1)
,

g′
12 = 9 × 7 × 5 × 3

(4j − 5)(4j − 3)(4j − 1)

× (2j + 4)(2j − 5)(20j − 33)

4(4j − 11)(4j − 9) · · · (4j − 1)
.

We define

gI =




j j 2j − 1

j j 2j − 1

2j − 1 2j − 1 I




and obtain

g0 = (−)2j j (4j − 3) [(2j − 1)!]2

(4j − 1)(4j − 1)!
,

g2 = −(−)2j j (8j 2 − 6j − 3) [(2j − 1)!]2

(4j − 3)(4j − 1)(4j − 1)!
,

g4 = (−)2j 3j (2j + 1)(4j 2 − 3j − 5) [(2j − 1)!]2

(4j − 5)(4j − 3)(4j − 1)(4j − 1)!
,

g6 = −(−)2j j (j + 1)(2j + 1) [(2j − 1)!]2

(4j − 1)!

× 5(8j 2 − 6j − 21)

(4j − 7)(4j − 5)(4j − 3)(4j − 1)
,

g8 = (−)2j j (j + 1)(2j + 1)(2j + 3) [(2j − 1)!]2

(4j − 1)!

× 35(4j 2 − 3j − 18)

2(4j − 9)(4j − 7)(4j − 5)(4j − 3)(4j − 1)
,

g10 = −(−)2j j (j + 1)(j + 2)(2j + 1)(2j + 3)

(4j − 1)!

× 63(8j 2 − 6j − 55) [(2j − 1)!]2

2(4j − 11)(4j − 9) · · · (4j − 1)
,

g12 = (−)2j j (j + 1)(j + 2)(2j + 1)(2j + 3)(2j + 5)

(4j − 1)!

× 231(4j 2 − 3j − 39) [(2j − 1)!]2

2(4j − 13)(4j − 11) · · · (4j − 1)
.

054307-7



Y. M. ZHAO AND A. ARIMA PHYSICAL REVIEW C 72, 054307 (2005)

Some of these gm were also obtained for fermions in a single-j
shell in Ref. [4], where j is a half integer, whereas here j can
be either an integer or a half integer.

APPENDIX B: NUMBER OF MATRICES WITH K �= J
FOR I � 2 j

The number of matrices with J = K is always 1 for an even
value of I, which contribute 2 × (j + 1/2) on the left-hand side
of Eq. (8), whereas that (denoted by FJ here) with J �= K is
rather complicated:

for I � [j ] with J > 2[(I − 1)/2] and

J < 2j − 1 − 2
[

I
2

]
, FJ = 2

[
I
2

]
;

for I � [j ] with J < 2[(I − 1)/2], FJ = J ;

for I � [j ] with J � 2j − 1 − 2
[

I
2

]
,

FJ = [
I
2

] + [ 2j−1−J

2

]
;

for [j ] � I � 2j with J < 2j − 1 − 2
[

I
2

]
, FJ = J ;

for [j ] � I � 2j with J � 2j − 1 − 2
[

I
2

]
and J < 2

[
I
2

]
,

FJ = 2j − 1 − 2
[

I
2

] + [ J−
(

2j−1−2
[

I
2

])
2

]
;

for [j ] � I � 2j with J > 2
[

I
2

]
,

FJ = (2j − 1 − J )/2 + [
I
2

]
.

The complexity in this classification makes it tedious to show∑
JK (1 + (−)I ) by one formula, because one must simplify

many terms such as [], which means taking the largest integer
not exceeding the value inside. However, one can obtain
explicit sum rules by writing down their value and studying
their individual modular behavior, as shown in this paper.
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