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Hyperfine anomaly in Be isotopes and the neutron spatial distribution: A three-cluster
model for 9Be
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The study of the hyperfine (hfs) anomaly in neutron rich nuclei can give a very specific and unique way to
study the neutron distribution and the clustering structure. We study the sensitivity of the hfs anomaly to the
clustering effects in the 9Be isotope using two different nuclear wave functions obtained in the three-cluster
(α+α+n) model. The results are compared to those obtained for 9,11Be in a two-body core+neutron model to
examine whether the hfs anomaly is sensitive to a halo structure in 11Be.
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I. INTRODUCTION

The study of the hyperfine (hfs) anomaly in neutron-rich
nuclei, in particular those with loosely bound neutrons, can
give a very specific and unique way to measure the neutron
distribution. In a previous article [1] we have obtained the val-
ues of the hfs anomaly calculated in a two-body core+neutron
model for the 9,11Be isotopes. The hfs anomaly ε is defined
as the sum of the hfs anomaly related to the Bohr-Weisskopf
effect (εBW) [2] and of the Breit-Rosenthal-Crawford-Shawlow
(BRCS) correction δ [3], ε = εBW + δ.

It was found in Ref. [1] that in Be isotopes, the value εBW is
comparable to the BRCS correction δ. The value εBW is very
sensitive to the weights of the partial states in the ground-state
wave function and might vary within 50% depending on those
weights. In Ref. [1], we found a difference of about 25% for
the total hfs anomaly value in the 9,11Be isotopes.

In the present article, we calculate the hfs anomaly in a
three-cluster model of 9Be and study the sensitivity of the
hfs anomaly to the clusterization effects. The calculations
are performed with two different three-body wave functions
[4,5]. These wave functions differ from each other by the
choice of the cluster-cluster interaction potentials used in their
calculations. They are characterized by the same partial states
but contributing with different weights. They both reproduce
the 9Be rms radius and the three-cluster (α+α+n) dissociation
energy (1.573 MeV). We compare the results obtained with
these two wave functions and also compare the present results
with the core+neutron model calculations [1,6].

The accuracy of the description of the 9Be ground-state
wave function can be explored by calculating the magnetic
dipole and electric quadrupole moments that are determined
by the weights and quantum numbers of the states. The 9Be
magnetic dipole moment is independent of the radial behavior
of the wave function but this is not the case for the electric
quadrupole moment. Calculation of both the magnetic dipole
and electric quadrupole moments thus provides a precise test
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of the accuracy of all aspects of the ground-state wave function
(for the experimental data on the magnetic dipole moment in
the Be isotopes, we refer to Refs. [7,8]; no experimental data
exists on the hyperfine anomaly for these nuclei). We also
compare the results for 9Be+ to that for 11Be+ to investigate
the sensitivity of the hfs anomaly to diffuse (halo) neutron
structures.

II. THREE-BODY WAVE FUNCTION

The wave function �3b
JM of the fragment relative motion in

the three-cluster model (α+α+n) of 9Be is described with the
Jacobi coordinates in the method of hyperspherical harmonics
[9,10]. It is written as follows:

�3b
JM (ξ1, ξ2) =

∑
KLSSx l1l2ML

[
FKSSx l1l2

LML
⊗ χ

s1(s2s3)Sx

SM−ML

]JM
,

where FKSSx l1l2
LML

is the “active part” of the three-body wave
function carrying the total orbital angular momentum L
with the projection ML. χSMS

is the total spin function of
the whole system with the total spin S and projection MS

(here restricted to the neutron spin function). The wave
function FKSSx l1l2

LML
(ξ1, ξ2) depends on the relative coordinates

(hyperradius and relative angles) and the neutron spin

FKSSx l1l2
LML

(ξ1, ξ2) = ρ−5/2�LSSx

Kl1l2
(ρ)�l1l2

KLML
(�5),

where l1 and l2 are the angular momenta of the relative motion
corresponding to the ξ1 and ξ2 coordinates. The sum �L = �l1 +
�l2 gives the total angular momentum; K is the hypermomentum.

The hyperradius ρ2 = ξ 2
1 + ξ 2

2 is a collective rotationally
and permutationally invariant variable, ξ1 and ξ2 are the
translationally invariant normalized sets of Jacobi coordinates.
We choose the Jacobi coordinates as follows:

x = (A23)1/2r23,
(1)

y = [A1(23)]
1/2r1(23),

where r23 is the relative coordinate of fragments 2 and 3 and
r1(23) is the coordinate of fragment 1 relative to the center
of mass of the fragments 2 and 3. A23 is the reduced mass
number for the pair (2,3); similarly, A1(23) is the reduced
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mass of the fragment 1 with respect to the mass of the
subsystem (2, 3).

The five hyperspherical polar angles are �5 = {θ, x̂, ŷ},
where θ is defined by the relations

ξ1 ≡ x = ρ sin θ,
(2)

ξ2 ≡ y = ρ cos θ.

The choice of three different systems of Jacobi coordinates
leads to three-body wave functions with different phase factor,
the three different Jacobi coordinates systems being connected
together by defined rotations. For 9Be, the T basis correspond
to choose the neutron as fragment 1, the two α particles as
fragments 2 and 3. The Y basis associates the fragment 1 with
one of the α particles.

The values of the hypermomentum are K = lx + ly + 2n

(n = 1, 2, . . .). The hyperspherical harmonics have the form

�lx ly
KLML

(�5) = ψ
lxly
K (θ )[Ylx (x̂) ⊗ Yly (ŷ)]LML

,

where

ψ
lxly
K (θ ) = N

lxly
K (sin θ )lx (cos θ )ly P

lx+1/2,ly+1/2
n (cos 2θ )

and P
α,β
n is a Jacobi polynomial. N

lxly
K is the coefficient of

normalization

N
lxly
K =

√
2(n!)(K + 2)(n + lx + ly + 1)!

�(n + lx + 3/2)�(n + ly + 3/2)

and the normalization condition for the function ψ
lxly
K (θ ) is∫ π/2

0
ψ

lxly
K (θ )ψ

l′x l
′
y

K ′ (θ ) sin2 θ cos2 θdθ = δKK ′δlx l′x δly l′y .

The charge density distribution of the three-body nucleus
entering the calculation of the electronic wave functions can
be obtained as

ρ(r) = ρ0
〈
�3b

JM

∣∣∑
i

Ziρi(r, x, y)
∣∣�3b

JM

〉
, (3)

where ρ0 is a normalization factor. In the case of 9Be, the
α-particle density distribution is approximated by a sum of
Gaussians, with the parameters taken from Ref. [11] and giving
a charge radius equal to 1.676 fm.

In the proceeding calculations two differing evaluations of
�3b

JM [4,5] as noted in Sec. I are used.

III. MAGNETIC HYPERFINE STRUCTURE

Here, we briefly mention the main points of the formalism
for the hfs anomaly calculations. For more details we refer to
Ref. [1] and references therein.

The magnetic hyperfine interaction Hamiltonian is defined
by the following:

H = −
∫

J (r) · A(r) d3r, (4)

where J is the nuclear current density and A is the vector
potential created by the atomic electrons.

The hyperfine interaction couples the electronic angular
momentum J and the nuclear one I to a hyperfine momentum
F = J + I. The magnetic hyperfine splitting energy W for a

state |IJFMF = F 〉 is defined as the matrix element of the
Hamiltonian H.

The functions FκJ ,GκJ entering the matrix element are
the radial parts of the large and small components of the
Dirac electronic wave function, with the quantum number κ =
±(J + 1

2 ) for J = le ∓ 1
2 and the orbital angular momentum

le. The calculations are preformed with a realistic electronic
wave function (see Ref. [1]).

The magnetic dipole contribution to the hyperfine splitting
W(IJ )FF has the form

W(IJ )FF = 〈IJFF |H|IJFF 〉
= 1

2 [F (F + 1) − I (I + 1) − J (J + 1)]aI , (5)

where aI is defined as follows:

aI = − 2eκµN

IJ (J + 1)
〈II|

A∑
i=1

[
M

li
Z(ri) + M

si

Z (ri)
]|II 〉,

with the Z components of the magnetic dipole moment
Mli (si )(ri) related to the angular momentum li and spin si of
each nucleon; the summation runs over all the nucleons.

For an extended nuclear charge we have

Ml(ri) = gi
l li

[∫ ∞

ri

F κJ GκJ dr +
∫ ri

0
FκJ GκJ (

r

ri

)3dr

]
,

Ms(ri) = gi
ssi

[∫ ∞

ri

F κJ GκJ dr + Di

∫ ri

0
FκJ GκJ

(
r

ri

)3

dr

]
,

with Di = −
√

5
2 [s1 ⊗ C2(r̂i)]

1

and Ck
q = √

4π/2k + 1Ykq

(r̂i).
The quantity aI can be expressed through the hfs constant

for a point nucleus a
(0)
I as

aI ≈ a
(0)
I (1 + εBW + δ), (6)

with

a
(0)
I = − 2eκ µNµ

IJ (J + 1)

∫ ∞

0
FκJ

0 (r)GκJ
0 (r)dr. (7)

Here, µ = 〈II |
A∑

i=1
(gi

ssi + gi
l li) | II 〉 defines the magnetic

dipole moment of the point nucleus in nuclear magneton
units µN . The functions FκJ

0 ,GκJ
0 are the radial parts of

the Dirac electronic wave function in the point nucleus
approximation.

The hfs anomaly in the Bohr-Weisskopf effect is

εBW = − b

µ

3∑
i=1

[
ni∑

j=1

{〈II |[g(j )
s sj + g

(j )
l lj

]
Ka(rj )|II 〉

− 〈II |[g(j )
l lj + Dj

]
Kb(rj )|II 〉}

]
, (8)

where b = [
∫ ∞

0 FκJ
0 GκJ

0 dr]−1 and

Ka(rj ) =
∫ rj

0
FκJ GκJ dr, (9)

Kb(rj ) =
∫ rj

0
FκJ GκJ

(
r

rj

)3

dr. (10)
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The index j is related to the A nucleons; i(1 − 3) denotes
one of the three clusters of ni nucleons. g

(j )
l and g

(j )
s are the

gyromagnetic ratios of the j th nucleon orbital motion and spin,
respectively.

The hfs anomaly can be approximated by the following:

εBW = − b

µ

3∑
i=1

[〈II |[g(i)
s si + g

(i)
l li

]
Ka(ri)|II 〉

− 〈II |[g(i)
l li + Di

]
Kb(ri)|II 〉]. (11)

The index i is related to the three-clusters of relative
coordinate ri and angular momentum li in respect to the
center-of-mass system and with the appropriated expressions
g(i)

s , g
(i)
l , and Di calculated for each cluster. The BRCS

correction is defined as δ = 1 − bKa(∞) [3]. This term is
defined by the nuclear charge distribution and information on
the neutron distribution is contained solely in εBW.

IV. HFS ANOMALY AND NUCLEAR MOMENTS OF 9BE
IN THE CLUSTER MODEL

To calculate the magnetic dipole moment and the hfs
anomaly, we use three systems of coordinates related to each
other by rotation: the T basis with the neutron as cluster i = 1,
and the Y (q) systems (q = 1 or 2) with one of the α particles
as cluster i = 2 or 3. The index q = 1 and q = 2 define
respectively the rotations 1(23) → 2(31) and 1(23) → 3(12)
between the T and Y bases.

The transformation of the hyperspherical harmonic function
[10] from the T basis to the Y basis is defined by the following:

�lx ly
KLML

(�5) =
∑
l′x l′y

〈l′xl′y |lx ly〉qKL�l′x l
′
y

KLML
(�′

5), (12)

where 〈l′xl′y |lx ly〉qKL are the Raynal-Revai coefficients [10].
The transformation of the spin part of the wave function is

written as

χ
s1(s2s3)Sx

SMS
=

∑
S ′

x

〈S ′
x |Sx〉qSχs ′

1(s ′
2s

′
3)S ′

x

SMS
, (13)

with s ′
1 = s2(3), s

′
2 = s3(1), and s ′

3 = s1(2) for q = 1(2),

〈S ′
x |Sx〉qS = (−)s1(2)+2s2(1)+s3+S ′

x (Sx )Ŝx Ŝ
′
x

×
{

s2(3) s3(2) Sx

s1 S S ′
x

}
, (14)

where S = s2 + s3 + s1, Sx = s2 + s3, and S′
x = s3(1) + s1(2).

To calculate the magnetic dipole moment, we consider the
contribution of each fragment with respect to the rest system.
In 9Be, the neutron spin and the α-particle orbital motion
contribute to the magnetic dipole moment as

µ =
∑

ς

ω2
ς 〈ms〉g(n)

s + 5

9

∑
q=1,2

∑
ς ′

β2
ς ′ 〈my〉qg(α)

l′y
. (15)

〈ms〉 and 〈my〉q are the expectation values of the spin and
angular momentum projections of the fragments. 〈ms〉 is found
in the T basis and associated with the neutron spin; 〈my〉q is
found in the Y basis obtained by the rotation q = 1(2) for i =

2(3) [see Eqs. (12) and (13)] and associated with the α-particle
orbital momentum. In Eq. (15) ω2

ς is the weight of the partial
state in the T basis for the channel with quantum numbers ς =
Llxly and β2

ς ′ is the weight of the partial state obtained with
Eqs. (12) and (13) for each channel with quantum numbers
ς ′ = Ll′xl

′
y in the Y basis. Here, we mean by channel the

set ς of quantum numbers characterizing the partial waves
contributing to the ground-state wave function. In the case of
9Be represented by the system α+α+n, this set of quantum
numbers is L, lx , and ly defined in Sec. II. The nuclear wave
function is summed over the hypermomentum K, which is
not included explicitly as the matrix element does not depend
on it.

In Eq. (15), µn = 1
2g(n)

s denotes the magnetic dipole

moment of the neutron and µα
l′y

= g
(α)
l′y

my = 2A1 + (A2/

AA3g
(p)
ly

my) is the magnetic dipole moment of the α particle
in the state with ly as angular momentum in the Y basis. Note
that the magnetic dipole moments are obtained using for the g
factors g(n)

s = −3.8260854(90) and g
(p)
ly

= 1.

The factor 5
9 in Eq. (15) is the center-of-mass factor

A − (A2(3)/A) in the Y basis corresponding to the α+(α+n)
system. We assume that the α-particle angular momen-
tum is defined by two orbiting protons, neglecting the
spin contribution of the nucleons. The electric quadrupole
moment is

Q = 2
3∑

i=1

〈II |r2
i C2

0 (r̂i)|II 〉, (16)

where the summation runs over the fragments.
In the three-cluster model of 9Be, the hfs anomaly in the

Bohr-Weisskopf effect is found as the weighted sum

εBW = − b

µI

(∑
ς

ω2
ς 〈ms〉g(n)

s

{
Ka

ς − Kb
ς

[
1 ∓ 6

4

2I + 1

2(I + 1)

]}

+ 5

9

∑
q=1,2

∑
ς ′

β2
ς ′ 〈my〉qgα

l′y

[
Ka

ς ′ − Kb
ς ′

])
, (17)

where the sign ∓ corresponds to I = ly ± 1
2 and where µ is

replaced by the experimental value (µI = −1.1778(9)µN [7])
of the 9Be magnetic dipole moment.

Here we denote

Ka
ς =

∫ ∞

0
|�ς (R)|2Ka

(
A − Ai

A
R

)
R2dR (18)

Kb
ς =

∫ ∞

0
|�ς (R)|2Kb

(
A − Ai

A
R

)
R2dR, (19)

where the ratio A − (Ai/A) takes into account the center-of-
mass motion and Ai is the valence fragment mass [the neutron
mass (i = 1) in the T-basis and the α-particle mass (i = 2, 3)
in the Y basis].

So, we can write

εBW =
∑

ς

ω2
ςε

ς

BW, (20)

where ε
ς

BW is obtained for each channel |ς〉.
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TABLE I. The weights of the partial waves ω2
Llx ly

, the mean 8Be-

neutron distance rn, the neutron contribution ε
ς(n)
BW to the values of the

hfs anomaly obtained with WF1.

ς Llxly ω2
ς rn fm ε

ς(n)
BW %

101 0.498355 3.274 −0.0332
121 0.315975 3.159 −0.0229
221 0.152790 2.976 0.0123
123 0.019661 3.758 −0.0312
223 0.003674 3.585 −0.0286
143 0.006608 3.689 −0.0303
243 0.001595 4.397 0.0245

V. RESULTS AND DISCUSSION

A. Three-body model of 9Be

In the calculations we use two ground-state wave functions
of the 9Be described as the three-body α+α+n system.
These wave functions are obtained with different α-α and α-n
interaction potentials.

The first wave function, WF1 [4], is obtained with su-
persymmetric equivalent potential [14]. With the α-particle
charge radius 1.676 fm [11] this wave function gives the value
2.564 fm for the 9Be charge rms radius. This value agrees with
the experimental ones, 2.519(12) and 2.50(9) fm (see Ref. [11]
and references therein). The 9Be magnetic dipole moment
µ9Be = −1.0531µN is less by 10% compared to the experi-
mental values, −1.177432(3)µN [15] and −1.1778(9)µN [7].
The calculated electric quadrupole moment is 53.39 mb, which
is in good agreement with the experimental value 52.88(38)
mb [16].

The second wave function, WF2 [5], is obtained with the
Ali-Bodmer potential [17] and the α-neutron interaction po-
tential [18]. The three-body interaction potential is adjusted to
fit the three-cluster dissociation energy 1.573 MeV. The value
of the 9Be charge radius, 2.707 fm, is overestimated compared
to the experimental one. The 9Be magnetic dipole moment
µ9Be = −1.316µN is 10% larger than the experimental value.
The electric quadrupole moment is Q = 65.42 mb.

The difference between these wave functions is in the radial
y dependence of the valence neutron wave function (obtained
by integration over the x coordinate and the angles), the core
charge radius, and the weights of the partial states L, lx, ly for
the ground-state wave function (see Tables I and II).

TABLE II. The same as in Table I calculated with the wave
function WF2.

ς Llxly ω2
ς rn fm ε

ς(n)
BW %

101 0.592607 3.778 −0.0402
121 0.286695 3.381 −0.0248
221 0.090244 3.284 0.0141
123 0.020740 3.870 −0.0313
223 0.002710 3.753 −0.0296
143 0.005362 3.770 −0.0299
243 0.001154 3.760 0.0179

TABLE III. The 9Be charge rms radius, the neutron radial
distance rn, the contributions to the hfs anomaly from the neutron
spin [ε(n)

BW] and from the α-particle orbital motion [ε(α)
BW], the values

of εBW and of δ calculated for the two wave functions WF1 and WF2
(α-particle radius: 1.676 fm) are compared to the (core+neutron)
results. WF2∗ refers to another choice of the α-particle radius
(1.46 fm).

Value Core+neutron WF1 WF2 WF2∗

rms (fm) 2.519 2.564 2.707 2.533
rn (fm) — 3.207 3.621 —
ε

(n)
BW (%) — −0.02281 −0.03059 —

ε
(α)
BW (%) — 0.00085 0.00088 —

εBW (%) −0.0236 −0.02112 −0.02882 −0.03032
δ −0.0451 −0.04644 −0.04926 −0.04634
ε −0.0687 −0.06756 −0.07809 −0.07666

Tables I and II show the neutron contribution ε
ς(n)
BW to the

hfs anomaly [first term in Eq. (17)] and the root-mean-square
distance of the valence neutron rn from the 8Be center of mass
in each channel ς .

The contributions to the hfs anomaly in the Bohr-Weisskopf
effect, ε(n)

BW and ε
(α)
BW, and the BRCS correction δ calculated with

WF1 and WF2 are listed in Table III.
The contribution of the hfs anomaly from the α-particle

orbital motion, ε
(α)
BW [second term in Eq. (17)], is small

compared to that from the neutron, ε
(n)
BW; and its variation is

small also (see Table III).
To explore the sensitivity of the results to the charge radius

of the α clusters in 9Be, we vary the value of the α-particle
charge radius from 1.676 to 1.636 fm. The lower value of
the charge radius is obtained with regard to the negative
contribution of the neutron charge distribution, (0.34)2 fm2

(see Refs. [19,20]).
Correspondingly, the 9Be charge radius changes from 2.564

to 2.534 fm for WF1 and from 2.707 to 2.678 fm for WF2.
Owing to the radial behavior of the electronic wave functions
entering the expressions (9), (10), and (17)–(19), with a smaller
charge radius (rms and rmsC) we get a larger value of the hfs
anomaly in the Bohr-Weisskopf effect. Thus, in our case, we
get an increase in the hfs anomaly value εBW by 1.6% for WF1
and 0.5% for WF2.

The α-α distance is smaller when calculated with WF1, so
correspondingly, the 9Be charge radius is smaller and the value
of the BRCS correction δ is less (see Table III). δ varies within
6% depending on the description of the nuclear wave function.

εBW and the total hfs anomaly ε, which is the sum [ε(n)
BW +

ε
(α)
BW + δ], are determined mainly by the neutron distribution.

There is no direct correspondence of the hfs anomaly value to
the nuclear charge radius. For example, if we put the radius of
the α particle at 1.46 fm, the 9Be charge radius obtained with
WF2 is 2.533 fm and the hfs anomaly ε = −0.07666% (see
Table III, WF2∗). These values are larger than those obtained
with WF1 with the charge radius 2.564 fm. Thus, even with
smaller charge radius values one can get larger values of εBW

and ε.

054304-4



HYPERFINE ANOMALY IN Be ISOTOPES AND THE . . . PHYSICAL REVIEW C 72, 054304 (2005)

Therefore, we can conclude that the hfs anomaly is more
sensitive to the neutron spatial distribution than to the charge
distribution of the whole nucleus, and the value rn is a crucial
parameter for the hfs value in the Bohr-Weisskopf effect.

With the different nuclear wave functions, rn value varies
within 10% and the hfs anomaly εBW within 30%. As the value
of the hfs anomaly εBW is about half that of δ, the total hfs
anomaly ε varies within 14% with the choice of the wave
function.

We should also mention that the value of the hfs anomaly is
very sensitive to the contribution of the different partial states
in our description of the 9Be ground-state wave function. In
particular, the hfs anomaly ε

(n)
BW in the channels ς = 121 and

ς = 221 (which exhaust 50% of the ground-state weight) is
twice as small as ε

(n)
BW in the channel ς = 101. Thus, the relative

weights of these states are of major importance. As found in
Ref. [21] the magnetic dipole moment in the α+α+n cluster
model is also rather sensitive to these weights. In the case
of 9Be, three principal channels contribute to the magnetic
dipole moment and the hfs anomaly, ς = 101, ς = 121, and
ς = 221. The magnetic dipole moment in this case is [21]

µ = −1.857ω2
101 − 1.191ω2

121 + 1.914ω2
221 + µresω

2
res,

(21)

where ω2
res and µres are the contributions of the neglected

channels respectively to the weights and to the magnetic
dipole moment. According to Ref. [21] the experimental
magnetic dipole moment value can be reproduced under
the condition ω2

221 < 16%. Otherwise the calculated value is
underestimated.

Let us analyze the correlation between the weights and
the values of the 9Be hfs anomaly, magnetic dipole, and
electric quadrupole moments, noting that the analysis is model
dependent.

To estimate how the hfs anomaly ε
(n)
BW varies with the

weights of the different states, we consider the contributions of
these three channels only (so that ω2

101 + ω2
121 + ω2

221 + ω2
res =

1) and find the weights satisfying the experimental value of
the 9Be magnetic dipole moment [µI = −1.177432(3)µN ].
Under this condition, we get the hfs anomaly value plotted in
Fig. 1 as a function of ω2

101 for the wave functions WF1 and
WF2 (solid and dashed lines, respectively).

Similarly one can express the electric quadrupole moment
through the weights of these dominant states. For WF1 we get

Q = 3.157ω2
101 − 4.553ω2

121 − 4.527ω2
221

+ 2ω101ω12132.859 + 2ω101ω22132.039

+ 2ω121ω2217.314 + Qres, (22)

where Qres = 11.97 mb.
For WF2 this relation is

Q = 4.204ω2
101 − 6.635ω2

121 − 6.662ω2
221

+ 2ω101ω12141.908 + 2ω101ω22141.610

+ 2ω121ω2219.918 + Qres, (23)

where Qres = 13.11 mb.
Similarly Qres is the contribution of the neglected channels

to the electric quadrupole moment. The square dots on the

FIG. 1. The variation of the neutron contribution to Bohr-
Weisskopf hfs anomaly as function of ω2

101 state weight for wave
function WF1 (solid line) and WF2 (dashed line)(α-particle radius:
1.676 fm). The points marked on the line represent values of
weightings that reproduce the known electric quadrupole moment(see
text). The weight ω2

221 is indicated at each point.

lines in Fig. 1 mark the hfs values obtained with the weights
that also satisfy the experimental value of the 9Be electric
quadrupole moment 52.88(38) mb. For each wave function we
get a few points—two for WF1 or even four for WF2. On this
figure we also report the corresponding values of the weight
ω2

221 (ω2
221 < 16%). One can see the ranges of the hfs anomaly

values obtained with WF1 and WF2 respectively.
The figure shows that the hfs anomaly is a very critical

quantity to test the nuclear wave function, all other parameters
being equivalently well described, in particular, the electronic
part.

B. Comparison with the core+neutron model

In Ref. [1], the hfs anomaly for 9Be was calculated within
the core+neutron model. The 9Be ground-state wave function
was given by the superposition of the following states:

|9Be(3/2−)〉 = ω0+|[8Be(0+) ⊗ np3/2 ]3/2−〉

+ω2+ |[8Be(2+) ⊗ np3/2 ]3/2−〉, (24)

corresponding to the 8Be core in the ground (0+) and excited
(2+) states with the neutron separation energies 1.665 and
4.705 MeV, respectively.

With the weights ω2
0+ = 0.535 and ω2

2+ = 0.465 obtained
with the spectroscopic factors from Ref. [22] the magnetic
dipole moment is µ = −1.0687 µN and εBW, δ, and ε have
the values reported in Table III. The εBW is close to the
values εBW = −0.0249% [6] (obtained with the weights ω2

0+ =
ω2

2+ = 0.5) and εBW = −0.0243% from Ref. [23].
The εBW values obtained for the 0+ state in the

(core+neutron) model (εBW = −0.0440%) and for the lx = 0
state of WF1 or WF2 in the (α+α+n) model (εBW =
−0.0332% or −0.0402%) are relatively close to each other.
On the contrary, the εBW values for the different partial states
lx = 2 in the three-cluster model exceed by a few times (see
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Tables I and II) the value obtained for the 2+ state in the
(core+neutron) model (εBW = −0.0063%).

The BRCS correction obtained with the two-body wave
function is −0.0451%, close to that obtained in the three-body
calculations. Thus in the core+neutron model we get ε =
−0.0687%, to be compared with the values ε = −0.06756%
and ε = −0.07809% obtained with the three clusters α+α+n

wave functions.
Thus the clustering effect, revealing itself in the set of

states contributing to the ground-state wave function, lead to a
variation of the hfs value εof less than 2% for WF1 and of about
14% for WF2. Compared to the 11Be nucleus the difference in
the value of the hfs anomaly in the Be isotopes is about 25%.
This value indicates the precision of the measurements of the
hfs anomaly needed to study clustering effects in light nuclei.

This result corroborates the conclusion in Ref. [6] that
the value of the hfs anomaly reflects the extended neutron
distribution in 11Be and might indicate a neutron halo, but the
difference for the different isotopes is not as pronounced as
was found in Ref. [6].

VI. CONCLUSION

In the present article, we have calculated the hfs anomaly
in the 9Be+ ion with the nucleus described in a three-cluster
model. The 1s22s electronic wave function is obtained taking
into account the charge distribution of the clustered (α+α+n)
nucleus and the shielding effect of two electrons in the 1s2

configuration.

The result of the calculations strongly depends on the
weights of the partial waves contributing to the ground-state
wave function. Together with the magnetic dipole and electric
quadrupole moments the value of the hfs anomaly can be
used to study the clustering effects in neutron-rich light
nuclei.

The total hfs anomaly is the sum of δ and εBW. The
BRCS correction δ is determined only by the nuclear charge
distribution and varies only slightly from isotope to isotope.
The value of the BRCS correction is comparable or larger
than the value of εBW. The hfs anomaly in 11Be differs from
that in 9Be by 25%. The clustering effect leads to variations
of the hfs value within 15%. The calculated magnitude and
differential change in the value of the hfs anomaly is indicative
of the experimental precision that must be achieved to study the
clustering effect and the neutron distribution in neutron-rich
light nuclei.
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[Sov. J. Nucl. Phys. 17, 107 (1973)].
[11] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl.

Data Tables 36, 495 (1987).

[12] A. S. Davydov, Quantum Mechanics (Pergamon Press, Oxford,
London, Edinburg, New York, Paris, Frankfurt, 1965).

[13] M. E. Rose, Relativistic Electron Theory (John Wiley & Sons,
New York, 1961).

[14] P. Descouvemont and C. Daniel, Phys. Rev. C 67, 044309 (2003).
[15] W. M. Itano, Phys. Rev. B 27, 1906 (1983).
[16] D. Sundholm and J. Olsen, Chem. Phys. Lett. 177, 91 (1991).
[17] D. V. Fedorov and A. A. Jensen, Phys. Lett. B389, 631 (1996).
[18] A. Cobis, D. V. Fedorov, and A. S. Jensen, Phys. Rev. C 58,

1403 (1998).
[19] I. Sick, Eur. J. Phys. A 24, 65 (1999).
[20] G. S. Anagnostatos, A. N. Antonov, P. Ginis, J. Giapitzakis, and

M. K. Gaidarov, J. Phys. G: Nucl. Part. Phys. 24, 69 (1999).
[21] V. T. Voronchev, V. I. Kukulin, V. N. Ponomarev, and

G. G. Ryzhikh, Few-Body Syst. 18, 191 (1995).
[22] S. Cohen and D. Kurath, Nucl. Phys. A101, 1 (1967).
[23] N. Yamanaka, Hyperfine Interact. 127, 129 (2000).

054304-6


