
PHYSICAL REVIEW C 72, 054302 (2005)

Isospin symmetry breaking in an algebraic pairing Sp(4) model

K. D. Sviratcheva,1 A. I. Georgieva,1,2 and J. P. Draayer1

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
2Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia BG-1784, Bulgaria

(Received 23 August 2004; published 14 November 2005)

An exactly solvable sp(4) algebraic approach extends beyond the traditional isospin-conserving nuclear
interaction to bring forward effects of isospin symmetry breaking and isospin mixing resulting from a
two-body nuclear interaction that includes proton-neutron (pn) and like-particle isovector pairing correlations
plus significant isoscalar pn interactions. The model yields an estimate for the extent to which isobaric analog
0+ states in light and medium-mass nuclei may mix with one another and reveals possible, but still extremely
weak, nonanalog β-decay transitions.
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I. INTRODUCTION

A fundamental feature of nuclear structure is the basic
symmetry between neutrons and protons, namely, the charge
independence of the nuclear force, which is evident in the
striking similarity in the energy spectra of nuclear isobars [1].
This implies that the proton-proton (pp) interaction and the
neutron-neutron (nn) interaction are equal to the isospin T = 1
pn interaction and leads to “rotational” invariance in isotopic
space. However, the isospin invariance is violated by the
electromagnetic interaction, mainly the Coulomb repulsion
between nucleons, which has become the focus of many
phenomenological and microscopic studies [1–20].

The primary effect of the Coulomb force is to introduce
into the theory a dependence on the third isospin projection,
T0, resulting in energy splitting of isobaric analog states
(a T multiplet) without coupling different isospin-multiplets.
At the same time, the isospin-violating part of the Coulomb in-
teraction leads to small isospin mixing in nuclear ground states,
increasing with Z and largest for N = Z. The ground-state
isospin impurity is theoretically estimated to be as small as a
percent for nuclei in the 1f7/2 level [1] and up to 4–5% toward
the fpg shell closure [9]. Another source of mixing probability
is the isospin-nonconserving part of the nuclear Hamiltonian,
which includes effects resulting from the proton-neutron mass
difference and small charge-dependent components in the
strong nucleonic interaction [4]. Experimental results clearly
reveal the existence of isospin mixing [21,22]. The increase in
isospin mixing toward medium-mass nuclei has been detected
in novel high-precision experiments [23–27], which continue
to push the exploration of unstable nuclei with the advent of
advanced radioactive beam facilities.

The violation of the charge independence of the nuclear
interaction is well established. The purely nuclear parts of the
pp force and the T = 1 pn force differ from each other, which
appears to be associated with the electromagnetic structure of
the nucleons [4]. Analyses of 1S scattering in the pn system
and low-energy pp scattering lead to the estimate that the
nuclear interaction between protons and neutrons (V T =1

pn ) in
T = 1 states is more attractive than the force between the
protons (Vpp) by 2%, that is, |V T =1

pn − Vpp|/Vpp ∼ 2% [28].
In addition, the charge asymmetry between the pp and nn

interactions was found to be smaller (less than 1%) [29].
More recent investigations confirm isospin violation in light
nuclei [13,30–33]. These studies start with modern charge-
dependent realistic interactions [34–37] and include valuable
input information from particle physics (see, e.g. [38,39]).
Furthermore, after the Coulomb energy is taken into account
the discrepancy in the isobaric-multiplet energies is bigger for
the seniority-zero levels as compared to higher seniority states,
indicating the presence of a short-range, charge-dependent
interaction [7]. Indeed, the J = 0 pairing correlations have
been recently shown to have an overwhelming dominance in
the isotensor energy difference within isobaric multiplets [40],
which manifests itself in the charge-dependent T = 2 nature
of the pairing interaction.

These findings point out the need for a charge-dependent
microscopic description of J = 0 pairing correlations. An al-
gebraic sp(4) approach is ideally suited for this purpose [41,42]
for it combines, on the one hand, a microscopic modeling of the
pairing interaction and its charge dependence, and on the other
hand, a straightforward scheme for estimating the significance
of the isospin mixing resulting from pairing correlations
without the need for carrying out large-dimensional matrix
diagonalizations. Strong isospin breaking in pair formation,
if found, implies a significant presence of isospin admixture
among the seniority-zero isobaric analog 0+ states including
0+ ground states. This in turn will affect the predictive
power of precise studies of superallowed 0+ → 0+ Fermi
β-decay transitions. This is because the latter provide reliable
tests of isospin mixing (see [43] for a review) and as well
furnish a precise test of the unitary condition of the Cabbibo-
Kobayashi-Maskawa matrix [44] (for a review of this subject,
see [45]).

Our objective is to explore isospin mixing beyond that
resulting from the Coulomb interaction, which is isolated
with the help of an advanced Coulomb correction formula
[46]. Specifically, we focus on the isospin-nonconserving
part of the pure nuclear interaction, which recently has been
found to be at least as important as the Coulomb repulsion
[40]. The outcome of this study shows the significance
of the pairing charge dependence and its role in mixing
isospin multiplets of pairing-governed isobaric analog 0+
states.
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II. THEORETICAL FRAMEWORK: THE
REASONABLE APPROXIMATION

We employ a simple but powerful group-theoretical model,
which is based on the sp(4) algebra (I which is isomorphic
to so(5) [47–49]). The Sp(4) microscopic model is precisely
suitable for the qualitative study of isospin violation in
isobaric analog 0+ states because it naturally extends the
isospin-invariant nuclear interaction to incorporate isospin-
nonconserving forces, while it retains the Sp(4) dynamical
symmetry of the Hamiltonian (see [50] for a review on
dynamical symmetries).

A comparison with experimental data demonstrates that
the Sp(4) model provides a reasonable description of the
pairing-governed isobaric analog 0+ states1 in light and
medium-mass nuclei, where protons and neutrons occupy the
same shell [41,42,51]. The two-body model interaction in-
cludes proton-neutron and like-particle pairing plus symmetry
terms and contains a non-negligible implicit portion of the
quadrupole-quadrupole interaction [52]. Moreover, the Sp(4)
model interaction itself, which relates to the whole energy
spectrum rather than to a single Jπ = 0+, T = 1 state, was
found to be quite strongly correlated (0.85) with the realistic
CD-Bonn + 3 terms interaction [53] in the T = 1 channel
and with an overall correlation of 0.76 with the realistic
GXPF1 interaction [54] for the 1f7/2 orbit [52]. In short,
the relatively simple Sp(4) model seems to be a reasonable
approximation that reproduces especially that part of the
interaction responsible for shaping pairing-governed isobaric
analog 0+ states.

The Sp(4) model reflects the symplectic dynamical sym-
metry of isobaric analog 0+ states [42] determined by the
strong nuclear interaction. The weaker Coulomb interaction
breaks this symmetry and significantly complicates the nuclear
pairing problem. This is why, in our investigation, we adopt a
sophisticated phenomenological Coulomb correction to the
experimental energies such that a nuclear system can be
regarded as if there is no Coulomb interaction among its
constituents. The Coulomb-corrected experimental energy,
Eexp, for given valence protons N+1 and neutrons N−1 is
adjusted to be

Eexp(N+1, N−1) = EC
exp(N+1, N−1) − EC

exp(0, 0)

+VCoul(N+1, N−1), (1)

where EC
exp is the total measured energy including the Coulomb

energy, EC
exp(0, 0) is the binding energy of the core, and

VCoul(N+1, N−1) is the Coulomb correction for a nucleus
with mass A and Z protons taken relative to the core:
VCoul(N+1, N−1) = VCoul(A,Z) − VCoul(Acore, Zcore). The re-
cursion formula for the VCoul(A,Z) Coulomb energy is derived
in [46] with the use of the Pape and Antony formula [55].
The Coulomb-corrected energies (1) should reflect solely the
nuclear properties of the many-nucleon systems.

1The lowest among these states include ground states for even-
even nuclei and only some (N ≈ Z) odd-odd nuclei, as well as,
for example, low-lying 0+ states in odd-odd nuclei that have the
same isospin as the ground state of a semimagic even-even isobaric
neighbor with fully paired protons (or neutrons).

Assuming charge independence of the nuclear force, the
general isoscalar Hamiltonian with Sp(4) dynamical symme-
try, which consists of one- and two-body terms and conserves
the number of particles, can be expressed through the Sp(4)
group generators,

H0 = −G

1∑
i=−1

Â
†
i Âi − E

2�

(
T̂ 2 − 3N̂

4

)

−C
N̂ (N̂ − 1)

2
− εN̂, (2)

where T̂ 2 = �{T̂+, T̂−} + T̂ 2
0 and 2� is the shell dimension

for a given nucleon type. The generators T̂± and T̂0 are
the valence isospin operators, Â

(†)
0,+1,−1 create (annihilate),

respectively, a proton-neutron (pn) pair, a proton-proton (pp)
pair, or a neutron-neutron (nn) pair of total angular momentum
Jπ = 0+ and isospin T = 1, and N̂ = N̂+1 + N̂−1 is the
total number of valence particles with an eigenvalue n.
The G,E, and C are interaction strength parameters and
ε > 0 is the Fermi level energy (see Table I in [42] for
estimates). The isospin-conserving Hamiltonian (2) includes
an isovector (T = 1) pairing interaction (G � 0 for attraction)
and a diagonal isoscalar (T = 0) force, which is related to a
symmetry term (E).

Charge-dependent but charge-symmetric nucleon-nucleon
interaction (Vpp = Vnn �= Vpn) brings into the nuclear Hamil-
tonian a small isotensor component (with zero third isospin
projection so that the Hamiltonian commutes with T0). This is
achieved in the framework of the Sp(4) model by introducing
two additional terms,

HIM = −FÂ
†
0Â0, Hsplit = −D

(
T̂ 2

0 − N̂/4
)
, (3)

to the isospin-invariant model Hamiltonian (2) in a way that
the Hamiltonian

H = H0 + HIM + Hsplit (4)

possesses Sp(4) dynamical symmetry. In other words, charge
dependence is introduced into the pairing Hamiltonian (2) by
allowing the strength of two of the underlying interactions
to vary. The interaction strength parameters F and D (3)
determined in an optimum fit over a significant number of
nuclei (149) [41] are given in Table I and yield nonzero
values. These parameters yield quantitative results that are
superior to the ones with F = 0 and D = 0; for example, in
the case of the 1f7/2 level the variance between the model
and experimental energies of the lowest isobaric analog 0+
states increases by 85% when the D and F interactions are

TABLE I. Interaction strength parameters related to the isospin
problem for three regions of nuclei specified by the valence model
space. F, D, and E are in MeV.

Strength Model space
parameters

(1d3/2) (1f7/2) (1f5/22p1/22p3/21g9/2)

F/� 0.007 0.072 0.056
D 0.127 0.149 −0.307
|D/ E

2�
| 0.090 0.133 0.628
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turned off. For the present investigation the parameters in
(2) along with F and D (3) are not varied as their values
were fixed to be physically valid and to yield reasonable
energy [41,42] and fine-structure [51] reproduction for light
and medium-mass nuclei with valence protons and neutrons
occupying the same shell. For these nuclei in the mass range
32 � A � 100, the pairing-governed isobaric analog 0+ states
are well described, but still approximately, by the eigenvectors
of the effective Hamiltonian (4) in a basis of fully paired 0+
states [42].

Whereas the second interaction (Hsplit) in (3) takes into
account only the splitting of the isobaric analog energies,
the first correction induces small isospin mixing (IM). The
IM interaction (3) does not account for the entire interaction
that mixes states of same angular momentum and parity
but different isospin values. It only describes a possible
�T = 2 mixing between isobaric analog 0+ states owing
to a pure nuclear-pairing interaction. Although the extent of
such isospin admixing is expected to be smaller than the total
mixing resulting from isospin-nonconserving terms [6,10,11,
13,43], it may influence precise model calculations depending
on the importance of the charge dependence in pairing
correlations.

III. ISOSPIN-INVARIANCE BREAKING
AND ISOSPIN MIXING

The estimate for the model parameters (Table I) can
determine the extent to which isospin symmetry is broken
while T remains a good quantum number. Breaking of the
isospin invariance |D/ E

2�
| (Table I) is in general negligi-

ble for light nuclei (1d3/2 and 1f7/2 levels) in agreement
with the experimental data. For medium-mass nuclei in the
1f5/22p1/22p3/21g9/2 major shell isospin breaking is signifi-
cantly greater. Furthermore, as expected from observations,
for the 1d3/2 level the interaction strengths of all pn, pp,
and nn pairing are almost equal (T is a good quantum
number), F ≈ 0 (Table I), and they differ for the 1f7/2 and
for the 1f5/22p1/22p3/21g9/2 shells, with the pn isovector
strength being more attractive, F > 0. Indeed, the F isospin
mixing interaction strength is extremely small and hence a
charge-independent nuclear interaction (where F is neglected)
comprises a quite reasonable approximation. The latter yields
major simplifications to the pairing problem and consequently
most isovector pairing studies have been done by assuming
good isospin.

The question regarding the strength of individual isospin-
nonconserving nuclear interactions [such as (3)] still remains
open—there are no definitive answers at the present level of
experimental results and microscopic theoretical interpreta-
tions. Only their overall contribution is revealed by the free
nucleon-nucleon data [28] and it is found to be slightly
(by 2%) more attractive in the pn T = 1 system than in
the pp one. Within the framework of the Sp(4) model, the
charge dependence of the pure nuclear interaction can be
estimated through the comparison of the T0 = 0 two-body
model interaction [(4) with ε = 0] relative to the T0 = 1 in
the T = 1 multiplets, which, for example in the 1f7/2 level, is

on average ∼2.5%. This estimation does not aim to confirm
the charge dependence, which is very difficult to pin down
at this level of accuracy compared to the broad energy range
considered in the model for nuclei with masses 32 � A � 100.
Nonetheless, it reflects the fingerprints of the experimental
data in the properties of the model interaction (4).

In addition, the Sp(4) model reproduces reasonably well
the c-coefficient in the well-known isobaric multiplet mass
equation [2,8,56]

a + bT0 + cT 2
0 (5)

for the binding energies of isobaric analogs (of the same
mass number A, isospin T, angular momentum J, etc.), where
the coefficient c (b) depends on the isotensor (isovector)
component of the nuclear interaction [i.e., of rank 2 (1) with
respect to isospin “rotations”]. The c coefficient is indeed
an energy filter; 2c = E(T0 + 1) + E(T0 − 1) − 2E(T0), for
a given mass number A and isospin T. In the framework of
our model, this energy function for the lowest isobaric analog
0+ states was found to be in a good agreement with observed
fine-structure effects (where data were available) [51] and it
reproduces the experimental staggering behavior with respect
to A (Fig. 1). Both theoretical and experimental results show
this finite energy difference, when centered at an N = Z odd-
odd nucleus (T0 = 0 and A/2 odd), and hence c, to be negative
and very close to zero for T = 1 multiplets in the 1f7/2 shell
(see Fig. 1 for A/2 odd). Such an agreement of the Sp(4) model
outcome with experimental evidence is a valuable result. The
requirement that the coefficients of (5) are well reproduced is
essential for isospin-nonconserving models [6,10,40], which
has been achieved in [6] by increasing (by approximately 2%)
all the T = 1 pn matrix elements relative to the nn ones and
which has led to a conclusion in [40] that the isotensor nature
of the nuclear interaction is dominated by a J = 0 pairing
term.

In short, the freedom allowed by introducing additional
parameters (such as F and D) reflects the symmetries observed
in light nuclei (good isospin) and the comparatively larger
symmetry breaking as expected in medium-mass nuclei.
Hence, the charge dependence of the nuclear force, being a
very challenging problem, yields results, based on a simple
group-theoretical approach, that are qualitatively consistent
with the observations.

-20

-15

-10

-5

0

5

40 42 44 46 48 50 52 54 56

theory experiment

A

E
(T

0+ 1
)+

E
(T

0− 1
)−

2E
(T

0)
(M

eV
)

FIG. 1. (Color online) Energy difference, E(T0 + 1) + E(T0 −
1) − 2E(T0) with T0 = 0, for the lowest isobaric analog 0+ states
in nuclei in the 1f7/2 level [or twice the c coefficient of (5) for
the A/2-odd T = 1 multiplets] according to the Sp(4) model (red
solid line with open squares) in comparison to the experiment (blue
diamonds).
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TABLE II. Sp(4) model estimate for the overlap (%) of isobaric analog 0+ states of almost good
isospin T̃ with the states of definite isospin for 36Ar in the 1d3/2 level and the nuclei in the 1f7/2 level.
The table is symmetric with respect to the sign of n − 2�.

AX(T̃ ) (N+1, N−1) T = 0 T = 1 T = 2 T = 3 T = 4

36Ar(0) (2, 2) 99.9999 — 0.0001 — —
44Ti(0) (2, 2) 99.90 — 0.10 — —
46Ti(1) (2, 4) — 99.98 — 0.02 —
46V(1) (3, 3) — 99.98 — 0.02 —
46Cr(1) (4, 2) — 99.98 — 0.02 —
48Ti(2) (2, 6) — — 99.997 — 0.003
48V(2) (3, 5) — — 99.994 — 0.006
48Cr(0) (4, 4) 99.83534 — 0.16465 — 10−5

48Cr(2) (4, 4) 0.143 — 99.849 — 0.008
48Mn(2) (5, 3) — — 99.994 — 0.006
48Fe(2) (6, 2) — — 99.997 — 0.003

A. Near isospin symmetry of the isobaric analog 0+ states

Neither empirical evidence (such as scattering analysis and
finite energy differences) nor the comparison of the model to
experimental data (Table I) yield equal pairing strengths (F >∼
0), resulting in a coupling of isospin eigenstates |n, T , T0〉
from different isospin multiplets with a degree of mixing
expected to be very small. Therefore, the eigenvectors of
the total Hamiltonian (4), |n(T̃ )T0〉, have an almost good
isospin T̃ quantum number. Their overlap with the states of
definite isospin values yields an estimate for the magnitude
of the isospin admixture (see Table II for the 1d3/2 and 1f7/2

orbits):

δT̃ ,T = |〈n, T , T0|n(T̃ )T0〉|2 × 100[%]. (6)

The overlap percentages in Table II confirm that the nuclear
lowest isobaric analog 0+ states have primarily isospin T =
|T0| for even-even and T = |T0| + 1 for odd-odd nuclei, with
a very small mixture of the higher possible isospin values.
As expected, the δT̃ ,T isospin mixing increases as Z and N
approach one another and toward the middle of the shell. For
nuclei occupying a single-j shell, mixing of isospin states is
less than 0.17%. Although isospin mixing is negligible for
light nuclei in the j = 3/2 orbit, it is clearly greater for the
j = 7/2 level. The mixing is expected to be even stronger in
multishell configurations.

B. Nonanalog β-decay transitions

For a superallowed Fermi β-decay transition (0+ → 0+)
the f t comparative lifetime is nucleus-independent according
to the conserved-vector-current (CVC) hypothesis and is given
by

f t = K

G2
V |MF |2 , K = 2π3h̄ ln 2

(h̄c)6

(mec2)5
, (7)

where K/(h̄c)6 = 8.120270(12) × 10−7 GeV−4 s, me is the
mass of the electron, and GV is the vector coupling constant
for nuclear β decay (see, e.g. [10]). MF is the Fermi matrix
element 〈F|√2�T±|I〉 between a final (F) state with isospin

projection T F
0 and an initial (I) states with T I

0 in a decay
generated by the raising (for β− decay) and lowering (β+)
isospin transition operator2

√
2�T±, which in the framework

of our model is given as

|MF |2 = 2�|〈F; n(T̃ )T0 ± 1|T±|I; n(T̃ )T0〉|2. (8)

Typically, the isospin impurity caused by isospin-
nonconserving forces in nuclei is estimated as a correction
to the Fermi matrix element |MF |2 of the superallowed
T̃ analog 0+ → 0+ transition: δC = 1 − |MF |2/{T̃ (T̃ + 1) −
T F

0 T I
0 }. For more than two-state mixing, the degree of isospin

admixture among isobaric analog 0+ states should be estimated
using the normalized transition matrix element between
nonanalog (NA) states (e.g. [43]),

δIAS =
∣∣MNA

F

∣∣2{
T̃ (T̃ + 1) − T F

0 T I
0

} , (9)

where T̃ is the almost good isospin of the parent nucleus (see
Table III for 1f7/2). In general, the δIAS correction may be
very different than the order of the δT̃ ,T overlap quantity (6)
presented in Table II because in decays the degrees of isospin
mixing among nonanalog states within both the parent and
daughter nuclei are significant.

Analysis of the results shows that the mixing among
isobaric analog 0+ states (which is at least �T = 2 mixing) is
on average 0.006%, excluding even-even N = Z nuclei. This
is on the order of a magnitude less than the mixing of the first
excited 0+ nonanalog state owing to isospin-nonconserving
interaction, which is typically about 0.04% for the 1f7/2

level [21,43]. In addition, this yields nonanalog β decays
weaker than possible Gamow-Teller transitions; the strength
of the latter is found to be less than 0.02% of the total
beta decay strength for the nuclei in the 1f7/2 shell [21]
and to substantially increase with increasing mass number
A [14,25,57]. This makes δIAS mixing very difficult to detect
especially when the isospin symmetry breaking correction (δC)

2The factor of
√

2� appears because of the normalization of the
basis operators adopted in the sp(4) algebraic model.
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TABLE III. Nonanalog β-decay transitions to energetically
accessible 0+ states under consideration and the corresponding
isospin mixing estimates δIAS (9) according to the Sp(4) model
for nuclei in the 1f7/2 level.

β decay δIAS

A
ZX(T̃X ) → A

Z−1 Y (T̃Y ) (%)

44
23V(2) → 44

22Ti(0) 0.098
46
25Mn(3) → 46

24Cr(1) 0.0169
46
24Cr(3) → 46

23V(1) 0.0104
46
23V(3) → 46

22Ti(1) 0.00447
48
27Co(4) → 48

26Fe(2) 0.00327
48
26Fe(4) → 48

25Mn(2) 0.00280
48
25Mn(4) → 48

24Cr(2) 0.00189
48
24Cr(4) → 48

23V(2) 0.00103
48
23V(4) → 48

22Ti(2) 0.00038
48
25Mn(4) → 48

24Cr(0) 4.5 × 10−7

48
25Mn(2) → 48

24Cr(0) 0.14328
50
27Co(3) → 50

26Fe(1) 0.0169
50
26Fe(3) → 50

25Mn(1) 0.0104
50
25Mn(3) → 50

24Cr(1) 0.00447
52
27Co(2) → 52

26Fe(0) 0.098

to analog Fermi matrix elements in this level is on the order of
a percent [9,14].

Not surprising, the largest values for the δIAS correction are
observed for �T = 2 β± decays to energetically accessible
0+ ground states of even-even N = Z nuclei (Table III).
Although for these decays δIAS is extremely small, (<0.14%),
as expected for the contribution of the higher lying 0+ states
[43], it is comparable to the order of isospin symmetry breaking
corrections for the 1f7/2 orbit that are typically taken into
account [43]. The reason may be that for the even-even N = Z

nuclei the second-lying isobaric analog 0+ states are situated
relatively low owing to a significant pn interaction (Fig. 2).

Above all, the δIAS results in Table III clearly show the
overall pattern and the order of significance of the isospin
mixing under consideration. This is evident within the first-
order approximation in terms of the F parameter (F � 1) of
δIAS, which for 1f7/2 deviates on average by only 2% from
its exact calculations in Table III. The δIAS isospin mixing
correction is then proportional to F 2 and one finds out that its
order of magnitude remains the same for large variations of the
F parameter of more than 60%. In addition, greater F values
are not very likely because the δIAS estimates (Table III) all fall
below an upper limit, which does not contradict experimental
and theoretical results for other types of isospin mixing.

Moreover, in this first-order approximation the ratio of
any two isospin corrections for 1f7/2 is independent of the
parameters of the model interaction. This implies that such
a ratio does not reflect the uncertainties of the interaction
strength parameters but rather is characteristic of the relative

strength of both decays. It identifies the decay for which
the maximum isospin mixing correction is expected in the
1f7/2 orbit, namely 48

25Mn(2) → 48
24Cr(0), as well as the amount

by which δIAS of the other possible nonanalog decays is
relatively suppressed. For example, the δIAS correction for the
44
23V(2) → 44

22Ti(0) decay is around two-thirds the maximum one
and that for the 46

25Mn(3) → 46
24Cr(3) decay is around one-eighth

the maximum one. Such ratios exhibit a general trend of
increasing δIAS isospin mixing with Z within the same isospin
multiplets and reveals enhanced �T = 2 decays to the ground
state of even-even N = Z nuclei with increasing δIAS toward
the middle of the shell. Furthermore, this behavior continues
for the nonanalog β decays between nuclei with the same
valence proton and neutron numbers as in Table III but
occupying the 1f5/22p1/22p3/21g9/2 major shell. Therefore,
among the nonanalog β decays for the A = 60–64 isobars
with valence protons and neutrons in the 1f5/22p1/22p3/21g9/2

shell the δIAS isospin mixing of the 64
33As(2) → 64

32Ge(0) decay is
expected to be the largest with a tendency of a further increase
toward the middle of shell. In short, the significance of isospin
mixing caused by charge-dependent J = 0 pairing correlations
is evident from Table III for the 1f7/2 level and this trend
continues for the upper fp shell.

The limited mixing of the 0+ isospin eigenstates from
different isospin multiplets yields very small but nonzero
|MNA

F |2 matrix elements for nonanalog β± decay transitions,
as indicated by δIAS in Table III. For nuclei in the 1f7/2 shell,
such nonanalog transitions to energetically accessible states
are shown in Fig. 2 along with the ft values (where we use
K/G2

V = 6200 s [60]). In the framework of the Sp(4) model,
these values are symmetric with respect to the sign of T0

(possible β− decays are not shown in Fig. 2) and of n − 2� (the
A = 50 and A = 52 multiplets are analogous to the A = 46
and A = 44 ones, respectively). The results yield that 10 of
the transitions are classified as forbidden (log10 ft � 7); The
other four are suppressed (log10 f t ≈ 7) and the four decays
to the ground state of an even-even N = Z nucleus appear
to have comparatively larger decay rates (log10 f t ≈ 6). In
Fig. 2 the theoretically calculated isobaric analog 0+ state a
energies are shown together with the available experimental
ones. It is worth mentioning that while the energies of the
lowest isobaric analog 0+ states directly determined the
parameters of the model interaction, a quite good reproduction
of the experimental higher lying isobaric analog 0+ state
energies followed without any parameter adjustment [42]. This
outcome is important because the energy difference between
two isobaric analog 0+ states within a nucleus directly affects
the degree of their mixing. In summary, the theoretical Sp(4)
model suggests the possible existence, albeit highly hindered,
of �T = 2 nonanalog β-decay transitions.

IV. CONCLUSIONS

We employed a group-theoretical approach based on the
Sp(4) dynamical symmetry to describe microscopically possi-
ble isospin mixing induced by a short-range charge-dependent
nuclear interaction. The Sp(4) model interaction incorporates
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FIG. 2. (Color online) Nonanalog 0+ → 0+

β+-decay transitions to energetically accessible
J π T̃ states under consideration indicated by
arrows and by the corresponding theoretically
calculated log10 ft values (which lack available
experimental ft values for comparison). The
theoretical (blue, “th”) and experimental [58,59]
(red, “exp”) binding energies EC in MeV
(including the Coulomb potential energy) are
shown for the isobar sequences with A = 44 to
A = 48 in the 1f7/2 level.

the main driving forces, including J = 0 pairing correlations
and an implicit quadrupole-quadrupole term, that shape the
nuclear pairing-governed isobaric analog 0+ states in the 1f7/2

level where the Sp(4) Hamiltonian correlates strongly with
realistic interactions. This approach provides a reasonable
reproduction of the energies of the lowest isobaric analog 0+
states in a total of 149 nuclei. It also reproduces the available
experimental energies of the higher lying isobaric analog 0+
states in the 1f7/2 level and fine structure effects without any
variation of the parameters of the model interaction. In this
respect, as predicted by our model, the coefficient related to the
isotensor part of a general nonconserving force, c, which has
been recently found to be dominated by a charge-dependent
J = 0 pairing interaction [40], agrees quite well with the
experimental values.

The breaking of isospin symmetry resulting from the
coupling of isobaric analog 0+ states in nuclei was estimated
to be extremely small for nuclei in the 1d3/2 and 1f7/2 orbitals,
with the N = Z even-even nuclei being an exception. For these
nuclei, strong pairing correlations, including a significant pn

interaction, are responsible for the existence of comparatively
greater isospin mixing, although the latter is still at least an
order of a magnitude smaller than the overall isospin admixture
in the ground state. The results also show that a variation of
more than 60% in the F isospin mixing parameter is required
to reduce the present δIAS results by an order of a magnitude.

The analysis also shows that there is a trend of increasing
isospin mixing among isobaric analog 0+ states owing to a
charge-dependent J = 0 pairing interaction toward the middle
of the shell and for �T = 2 decays to the ground state of an
even-even N = Z daughter nucleus. Such behavior is free of
the uncertainties in the strength parameters of the interaction
and is adequate for larger multi-j shell domains such as
1f5/22p1/22p3/21g9/2. For nuclei with valence protons and
neutrons occupying the 1f7/2 level the strongest nonanalog
decay is identified to be 48

25Mn(2) → 48
24Cr(0), while the δIAS

isospin mixing correction for the rest of the decays that is 2/3
to 1/300 the maximum one.

In short, the sp(4) algebraic model yields an estimate for the
decay rates of possible nonanalog β-decay transitions resulting
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from a pure strong interaction, which, although a few of them
may slightly affect precise calculations, are not expected to
comprise the dominant contribution to the isospin symmetry
breaking correction tested in studies of superallowed Fermi
β-decay transitions.
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