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Renormalization of the deuteron with one pion exchange
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We analyze the deuteron bound state through the one pion exchange potential. We pay attention to the short
distance peculiar singularity structure of the bound state wave functions in coordinate space and the elimination
of short distance ambiguities by selecting the regular solution at the origin. We determine the so far elusive
amplitude of the converging exponential solutions at the origin. All bound state deuteron properties can then
be uniquely deduced from the deuteron binding energy, the pion-nucleon coupling constant, and pion mass.
This generates correlations among deuteron properties. Scattering phase shifts and low energy parameters in the
3S1-3D1 channel are constructed by requiring orthogonality of the positive energy states to the deuteron bound
state, yielding an energy independent combination of boundary conditions. We also analyze from the viewpoint
of short distance boundary conditions the weak binding regime on the light of long distance perturbation theory
and discuss the approach to the chiral limit.
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I. INTRODUCTION

Pion dynamics plays a dominant role in the low energy
structure of the nucleon-nucleon interaction, and in particular
in the description of light nuclei like the deuteron [1]. The
long distance part of the interaction is given by one, two,
and higher pion exchanges and the fact that the deuteron is a
weakly bound state suggests that many of its properties can
indeed be explained in terms of these dynamical degrees of
freedom in a model independent way and regardless on the less
known short distance interaction. Glendenning and Kramer [2]
in the early 60s recognized clear correlations between several
deuteron observables generated by truncating the one pion
exchange (OPE) potential at a distance R = 0.4915 fm and
assuming a hard core inside. Tight constraints on deuteron
observables were established by Klarsfeld, Martorell, and
Sprung [3,4] by integrating the deuteron wave function from
infinity down to a cut-off radius using the OPE potential and
rigorous inequalities. An accurate determination of the D/S

asymptotic ratio was made by Ericson and Rosa-Clot [5,6]
based on assuming the OPE correlation between the S and D
wave functions and taking realistic potential models to describe
the S wave function. (For a review on these developments see,
e.g., Ref. [7].) Friar et al. use a multipole form factor [8]
whereas Ballot et al. used separate monopole forms factor for
the central and tensor part of the OPE potential mimicking
the finite size of nucleons [9,10]. Along a similar line of
investigation Sprung et al. used a square well potential [11] for
the central component and a vanishing potential for the tensor
component.

Within the effective field theory (EFT) approach to nuclear
physics proposed by Weinberg [12] the situation was revisited
from a somewhat different perspective since the OPE potential
appears as the lowest order of a perturbative hierarchy based
on chiral symmetry [13] (for a review see, e.g., Ref. [14]),
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and short distance ambiguities could be eliminated by the
renormalization program if the auxiliary regulator is removed
from the theory at the end of the calculation. This cut-off
independence should occur at any level of approximation, no
matter how many pions are exchanged. At long distances,
renormalization group methods suggest that one is close to an
infrared fixed point [15]. The renormalization procedure can
be explicitly and analytically carried out within perturbation
theory [16]. However, these nice features become a nontrivial
numerical problem beyond perturbation theory motivating the
use of truncation cut-off schemes. The work of Ref. [17]
uses a Gaussian cut-off, in coordinate space to regulate
the contact delta interaction, Ref. [18] proposes the use of
a subtraction method in momentum space regulating the
central part, Ref. [19] uses a sharp momentum cut-off, and
in Ref. [20] it was proposed to use a finite short distance
cut-off, whereas Ref. [21] puts exponentially suppressed
regulators in momentum space. It should be mentioned that
in all cases the corresponding coordinate/momentum space
cut-off parameter a/� is uncomfortably large/small from
the viewpoint of renormalization theory. Typically, one has
a ∼ 1.4 fm (see, e.g., Ref. [20]) and � = 600 MeV [17],
respectively. So, it is not obvious that according to the basic
principles of EFT the short distance ambiguities are, as one
might expect, indeed under control. Moreover, the existence
of a well behaved finite renormalized limit is never guaranteed
a priori and one relies mainly on numerics. Actually, the fact
that the results on deuteron observables look rather similar,
regardless on the particular way how the potential is modeled
at short distances, proves that the long distance pion dynamics
dominates the physics confirming the findings of Glendenning
and Kramer [2] more than 40 years ago, but does not resolve
the mathematical problem whether the OPE potential can make
unambiguous predictions regardless of any short distance
physical scale.

The OPE potential is local in coordinate space where the
problem is naturally formulated by the standard Schrödinger
framework. Moreover, it is singular at the origin and giving
boundary conditions at that point is not a well defined
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M. PAVÓN VALDERRAMA AND E. RUIZ ARRIOLA PHYSICAL REVIEW C 72, 054002 (2005)

procedure for uniquely determining the solution [22] (for
a comprehensive review in the one channel case see, e.g.,
Ref. [23]). There is the added difficulty that we have two
coupled second order differential equations. In the deuteron
channel one has four independent solutions, which according
to their singularity structure correspond to either two regular
and two irregular solutions at infinity or three regular and one
irregular solution at the origin. The normalizability condition
of the deuteron wave functions eliminates all constants for
a given deuteron binding energy, which instead of being
predicted has to be treated as an independent parameter.
One of the advantages of the coordinate space treatment
of renormalization is that it can directly be extended to
other singular cases such as the two pion exchange (TPE)
potential [24,25] which is also finite everywhere except the
origin. In contrast, momentum space treatments require an
extra regularization of the potential besides the standard cut-off
regularization of the Lippmann-Schwinger equation.

The authors of Ref. [11] found a discrete sequence of
equivalent short distance cut-off radii having almost the same
deuteron properties. In their analysis of the problem one
regular solution at the origin with a converging exponential
behavior, exp(−4(2R/r)

1
2 ) with R ∼ 1 fm, was discarded on

numerical grounds. The same result was also implicitly used
in Ref. [26] and large Nc arguments in favor of it were
raised in Ref. [27]. This extra condition would actually predict
the deuteron binding energy from the OPE potential. As
we will show in this paper, the converging exponential is
nonvanishing although rather elusive because its contribution
to the deuteron wave function only becomes sizable at
relatively large distances and accurate numerical work must be
done to pin down its value with a certain degree of confidence.

In the present work we show that there is no need to truncate
the OPE potential on a physical scale to produce unique
and cut-off independent predictions for deuteron properties
and scattering observables in terms of the OPE potential
parameters and the deuteron binding energy. These might then
legitimately be called OPE model independent predictions
and paves the way for a systematic investigation on the case
where more pions are exchanged and other effects are taken
into account [24,25]. After presenting the basic notation in
Sec. II A, we discuss in Sec. II B the regular solutions at
the origin and establish that the limit when the regulator is
removed is finite. For numerical purposes it is useful to define
some short distance regulator as an auxiliary tool. In Sec. II C
we use six different regulators based on boundary conditions
of the wave function and check for stability to high preci-
sion for all regulators. This procedure generates correlations
among deuteron observables if the deuteron binding energy
is varied as a free and independent parameter as we do in
Sec. III. A particularly interesting situation is provided by
the weak binding limit, which can be taken with fixed OPE
potential parameters. In such a case the long distance behavior
should dominate and one might expect perturbative methods
to apply and be compared to the exact OPE calculation.
The details of the perturbative calculation are postponed to
Appendix A where we present a coordinate space version of
the method, in consonance with the exact treatment. A detailed
comparison shows that the perturbative argument is too naive

and would only hold in the weak coupling regime as well,
due to the appearance of nonanalytical contributions in the
πNN coupling constant. Mathematically, we show that it is
not possible to go beyond first order since the coefficients of
the expansion diverge. Numerically, the disagreement at first
order is typically on the 30% level for physical values of the
OPE parameters at zero binding. After Ref. [28] the chiral
limit in nuclear physics has attracted considerable attention
in recent works [29–31] and also the limit of heavy pions
in connection with lattice QCD calculations, where the pion
mass is still far from its physical value. We study in Sec. IV the
correlations among those observables if the pion mass is varied
away from its physical value by studying a suitable extension of
the Feynman-Helmann theorem. Another remarkable property
of the OPE potential which we deal with in Sec. V is that low
energy parameters as well as the scattering phase-shifts can be
uniquely determined from the OPE potential parameters and
the deuteron binding, due to orthogonality constraints of the
bound state and scattering states. In Sec. VI the determination
of the nonvanishing coefficient of the converging exponential
at the origin is carried out by a short distance expansion to
eighth order of the OPE deuteron wave functions.

One of the surprising results in the OPE description of the
deuteron has to do with the small asymptotic ratio between
the D and S waves, w(∞)/u(∞) = η = 0.0256 coming from
a large ratio at short distances of order unity, w(0)/u(0) =
1/

√
2 = 0.707. Although this feature is specific to the OPE

potential it is somewhat a bit outside the main topic of this
work. So we relegate this issue to Appendix C where we show
how this can be easily understood if a local rotation of the
deuteron wave functions diagonalizing the coupled channel
potential is carried out. Obviously, such a transformation
cannot simultaneously diagonalize the kinetic terms, but the
residual mixing is related to the derivative of a local mixing
angle which numerically turns out to be a slowly varying
function. Using this as a starting approximation we can
determine in a perturbative fashion the asymptotic D/S ratio
yielding the exact OPE value with a 1% accuracy.

II. BOUND STATE EQUATIONS AND THEIR SOLUTIONS

A. The OPE deuteron equations

The deuteron coupled channel 3S1-3D1 set of equations read

−u′′(r) + Us(r)u(r) + Usd (r)w(r) = −γ 2u(r),

(1)

−w′′(r) + Usd (r)u(r) +
[
Ud (r) + 6

r2

]
w(r) = −γ 2w(r),

(2)

together with the asymptotic conditions at infinity

u(r) → ASe
−γ r ,

(3)

w(r) → ADe−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
,
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where γ = √
MB is the deuteron wave number, AS is the

normalization factor and the asymptotic D/S ratio parameter is
defined by η = AD/AS . The 3S1-3D1 coupled channel potential
is given by

Us = Uc, Usd = 2
√

2UT , Ud = UC − 2UT , (4)

where the OPE reduced potential (U = 2µV ) is given for
r > 0 by

UC = −mMg2
A

16πf 2
π

e−mr

r
(5)

UT = −m2Mg2
A

16πf 2
π

e−mr

r

(
1 + 3

mr
+ 3

(mr)2

)
, (6)

where m is the pion mass, M = 2µnp = 2MnMp/(Mn + Mp)
twice the reduced proton-neutron mass, gA the axial nucleon
coupling constant, and fπ the pion weak decay constant. Note
that we assume this potential to be valid for any strictly positive
distance, r �= 0, so the limit r → 0+ will be carefully taken,
without subtracting any contribution in the potential.

It is convenient to define the length scale

R = 3g2
AM

32πf 2
π

(7)

which value is around 1 fm. For numerical calculations
we take fπ = 92.4 MeV,M = 938.918 MeV, gA = 1.29 and
hence R = 1.07764 fm and gπNN = 13.1083, i.e., f 2

πNN =
0.07388. The corresponding pion nucleon coupling constant
is gπNN = 13.1083 according to a phase shift analysis of NN
scattering [32]. Nevertheless, after the latest determinations
from the GMO sum rule [33] we will also take the value
gπNN = 13.3158. As we will see this variation at the 5% level
dominates the uncertainties in the OPE calculations.

B. The short distance regular solutions

We look for normalized functions of the Eq. (2),

1 =
∫ ∞

0
(u(r)2 + w(r)2) dr, (8)

from which AS can be determined. The normalization at
infinity is guaranteed due to the asymptotic conditions, Eq. (3).
However, the coupled channel potential becomes singular at
short distances, since UT → −2R/r3. Keeping only this term
in Eq. (2) one can decouple the equations through the unitary
transformation [11]

uA(r) =
√

2

3
u(r) + 1√

3
w(r),

(9)

uR(r) = − 1√
3
u(r) +

√
2

3
w(r),

yielding an attractive singular potential UA → −4R/r3 for uA

and UR → 8R/r3 for uR . Any solution obtained by integrating
from infinity with the Eq. (3) down to the origin has the

asymptotic short distance behavior,1

uR(r) →
( r

R

)3/4 [
C1Re+4

√
2
√

R
r + C2Re−4

√
2
√

R
r

]
,

(10)
uA(r) →

( r

R

)3/4
[C1Ae−4i

√
R
r + C2Ae4i

√
R
r ].

The constants C1R, C2R, C1A, and C2A depend on both γ and η

and the OPE potential parameters, gπNN and m. Note that the
leading short distance r dependence does not involve the pion
mass and the deuteron wave number. Higher order corrections
to these solutions can be computed systematically to high
orders and are presented below in Sec. VI.

The regular solution at infinity contains the normalization
constant AS , which is customarily set to one for computational
purposes, the deuteron wave number γ and the asymptotic
D/S ratio parameter η. The normalizability of the wave
function at the origin requires

C1R(γ, η) = 0, (11)

which is a relation between η and γ . The other remaining
constants are then completely fixed. This means that for the
OPE potential, the deuteron binding energy can be used as
an independent parameter. Thus, one has three independent
variables, γ , the coupling constant with length scale dimension
R (or equivalently gπNN ) and the pion mass m. Obviously, this
suggests integrating in from infinity and determining η from
the regularity condition at the origin (11).

To analyze whether some additional condition arises let us
check the selfadjointness of the coupled channel Hamiltonian.
The flux at a point r is given by

iJ (r) = u∗(r)′u(r) − u∗(r)u′(r) + w∗(r)′w(r) − w∗(r)w′(r),

(12)

so that current probability conservation at the origin implies

|C1A|2 − |C2A|2 = 2
√

2i(C∗
1RC2R − C∗

2RC1R). (13)

Thus, if we set C1R = 0 there is no condition on C2R and
one has C1A = CAeiϕ and C2A = CAe−iϕ with CA and ϕ

real. So, we have three constants, C2R(γ ), CA(γ ), and ϕ(γ ),
characterizing the normalizable solutions at short distances for
a given value of the deuteron wave number γ ,

uR(r) → CR(γ )
( r

R

)3/4
e−4

√
2
√

R
r ,

(14)

uA(r) → CA(γ )
( r

R

)3/4
sin

[
4

√
R

r
+ ϕ(γ )

]
.

Actually, if we have any other state, say a scattering state
with positive energy, unitarity (i.e., orthogonality) requires
that the constant ϕ(k) coincides with the bound state phase
ϕ(γ ). We will come back to this issue later when discussing
low energy parameters and scattering solutions in Sec. V. It
is natural to expect that some combination of short distance
constants is independent on the OPE potential parameters as

1The solutions for uA and uR are written in terms of spherical Bessel
functions [11]. We keep the leading short distance behavior only.
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they encode short distance physics. In Sec. IV we establish,
by demanding the standard Feynman-Hellmann theorem, that
specifically the short distance phase ϕ does not depend on the
OPE potential parameters. In Sec. VI we determine the values
of the three constants characterizing the three regular solutions
by a detailed short distance analysis of the OPE deuteron wave
functions.

Note that any additional condition would actually predict
both γ and η from m and R. This contradicts the claim
of Ref. [11] that C2R = 0, a conclusion implicitly used in
Ref. [26] and supported by the large Nc argument of Ref. [27].
On the other hand, if one takes the experimental values of η

and γ as done in Ref. [20] one obtains both nonvanishing C1R

and C2R , i.e., the irregular non-normalizable solution, unless a
short distance cut-off, R > 0.8 fm, is introduced as a physical
scale and not as an auxiliary removable regulator.

C. Regularization with boundary conditions

Ideally, one would integrate in the large asymptotic solu-
tions, Eq. (3), and match the short distance behavior of Eq. (11)
imposing the regularity condition (11). In practice, however,
the converging exponential at the origin is rather elusive
since integrated-in solutions quickly run into the diverging
exponentials due to round-off errors for r ∼ 0.05 fm and
dominate over the converging exponential. The reason has to
do with the fact that the natural scale where both exponentials
are comparable is rather large r = 4

√
2R ∼ 6 fm, but in that

region the lowest order short distance approximation does not
hold.

Instead, we will also try putting several short distance
boundary conditions corresponding to the choice of regular
solutions at the origin,

u(a) = 0 (BC1),

u′(a) = 0 (BC2),

w(a) = 0 (BC3),
(15)

w′(a) = 0 (BC4),

u(a) −
√

2w(a) = 0 (BC5),

u′(a) −
√

2w′(a) = 0 (BC6).

The advantage of using this kind of short distance cut-offs
based on a boundary condition is that there is only a single
scale in the problem as one naturally expects, and that one
never needs to declare what is the wave function below
the boundary radius. Putting a square well potential as a
counter-term [26] with depth U0 appears natural from standard
perturbative experience but needs specification of a further
length scale, 1/

√
U0, and moreover, generates multivaluation

ambiguities [36,37].
It is convenient to use the superposition principle of

boundary conditions to write

u(r) = uS(r) + ηuD(r),
(16)

w(r) = wS(r) + ηwD(r),

where (uS,wS) and (uD,wD) correspond to the boundary
conditions at infinity, Eq. (3) with AS = 1 and AD = 0 and
with AS = 0 and AD = 1, respectively. Thus, at the boundary

 0.0262
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 0.0264

 0.02645

 0.0265

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

η

Cutoff Radius a (fm) 

u(r) = 0
du(r) = 0
w(r) = 0

dw(r) = 0
u(r)  √ 2 w(r) = 0

du(r)  √ 2 dw(r) = 0−
−

FIG. 1. The dependence of the asymptotic D/S ratio η on
the cut-off radius a for several boundary conditions. We use
m = 138.03 MeV and R = 1.07764 fm (corresponding to gπNN =
13.1083).

we can impose any of the conditions by just eliminating η.2

The resulting η value obtained by all these boundary conditions
is presented in Fig. 1. Actually, we see that the boundary
condition u′(a) − √

2w′(a) is about the smoothest condition
we can think of, since the uR combination goes to zero at small
distances, its derivative, u′

R also goes to zero, although a bit less
faster since u′

R/uR ∼ 1/r3/2. We see that all determinations
of η based on any of the proposed cut-offs yield the same
value with great accuracy at cut-off radii below 0.2 fm . This
is somewhat fortunate since arithmetic precision is outraged
typically for r < 0.06 fm. Obviously, any short distance cut-off
generates finite cut-off effects in the wave functions for
distances close to the cut-off radius. In Sec. VI we analyze
this problem by matching solutions of the form of Eq. (14) to
the integrated in numerical solutions and find that for many
practical purposes these finite cut-off effects are negligible.
Thus, we will base most of our results on the “smoothest”
condition BC6 of Eq. (15).

The resulting deuteron wave functions u and w obtained by
integrating in from infinity to the origin the OPE potential are
plotted in Fig. 2 where the irregular solutions are obtained with
the experimental D/S ratio ηd = 0.0256 and the regular ones
with the OPE D/S ratio ηOPE = 0.026333. For comparison we
also plot the NijmII deuteron wave functions. We emphasize
that the value of η is a direct consequence of taking the OPE
down to the origin seriously.

2Numerically we find at the cut-off boundary r = 0.2 fm

u(0.2) = 1139.23 − 43263.2 η

w(0.2) = −1807.33 + 68632.5 η

u′(0.2) = −35529.8 + 1.34913 × 106 η

w′(0.2) = 55194.3 − 2.09606 × 106 η

These large numbers appear because the of the dominance of the
diverging exponential at short distances.
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FIG. 2. The deuteron wave functions u and w, obtained by
integrating in from infinity to the origin the OPE potential, compared
to those obtained with the Nijm II potential [35]. The irregular
solutions are obtained with the experimental D/S ratio, ηd = 0.0256,
and the regular ones with the OPE D/S ratio, ηOPE = 0.026333.
We use m = 138.03 MeV and R = 1.07764 fm (corresponding to
gπNN = 13.1083).

D. Deuteron observables

Once the solutions are known we can determine several
properties of interest. The matter radius reads

r2
m = 1

4
〈r2〉 = 1

4

∫ ∞

0
r2(u(r)2 + w(r)2) dr (17)

while potential contribution to the quadrupole moment (with-
out meson exchange currents)

Qd = 1

20

∫ ∞

0
r2w(r)[2

√
2u(r) − w(r)] dr. (18)

An important observable is the deuteron inverse radius

〈r−1〉 =
∫ ∞

0
dr

u(r)2 + w(r)2

r
(19)

which appears in low energy pion-deuteron scattering. Finally,
the D-state probability is given by3

PD =
∫ ∞

0
w(r)2dr. (20)

Both PD and 〈r−1〉 are sensitive to the intermediate distance
region around 2 fm whereas Qd and rm get their contribution
from larger distances ∼4 fm.

The results for the asymptotic S-wave normalization AS ,
the matter radius rm, the quadrupole moment, Qd , and the
D-state probability, PD are presented in Table I. The errors
in the numerical calculation have been assessed by varying
the short distance cut-off in the range a = 0.1-0.2 fm (in
momentum space that would naively correspond to take
� = 1/a = 2-4 GeV). As we see, the cut-off uncertainty is
smaller than the one induced by variations at the 2% level in
the gπNN coupling constant in the range between the lowest
value (∼13.1) obtained by a fit to NN phase-shifts [32] and
the highest recent value (∼13.3) determined from the GMO
sum rule [33]. Equivalently, this uncertainty corresponds to
take R = 1.0776 fm and R = 1.1108 fm respectively. Our
results are generally speaking in agreement with previous
determinations where different sorts of cut-off methods have
also been implemented.

E. Discussion

At this point it may prove useful to ponder on the previous
results from a wider perspective. Let us remind the reader that
the basic assumption of an EFT is that the study of long wave
length phenomena such as low energy scattering or weakly
bound systems do not require a detailed knowledge of short
distance physics. This general and widely accepted principle
requires some qualification because attractive and repulsive
singular potentials behave quite differently in this respect.
Singular attractive potentials, ∼1/rn, generate wave functions
vanishing as a power law, rn/4 sin(r−n/2+1 + ϕ), and which

3Strictly speaking this is not an observable, but in the nonrelativistic
limit it can be related to the deuteron magnetic moment, µd = (µp +
µn)(2 − 3PD) + 3PD/2, see, e.g., Ref. [34].

TABLE I. Deuteron properties for the OPE compared to the short-range approximation and first order perturbation theory. We use
the nonrelativistic relation γ = √

2µnpB with B = 2.224575(9) and take m = 138.03 MeV and R = (3/8M)g2
πNN/(4π ) = 1.07764 fm

corresponding to gπNN = 13.1083 [32] (except the row OPE∗ where the value gπNN = 13.316 [33] has been taken). The error is estimated by
changing the short distance cut-off in the range a = 0.1–0.2 fm .

γ (fm−1) η AS(fm−1/2) rm(fm) Qd (fm2) PD 〈r−1〉 α0(fm) α02(fm3) α2(fm5) r0(fm)

Short Input 0 0.6806 1.5265 0 0% ∞ 4.3177 0 0 0
OPE(pert) Input 0.051 0.7373 1.6429 0.4555 0% ∞ 4.6089 2.5365 0 0.4831
OPE Input 0.02633 0.8681(1) 1.9351(5) 0.2762(1) 7.88(1)% 0.476(3) 5.335(1) 1.673(1) 6.169(1) 1.638(1)
OPE∗ Input 0.02687 0.8718(2) 1.9429(6) 0.2826(2) 7.42(1)% 0.471(3) 5.353(1) 1.715(1) 6.4001(1) 1.663(1)
NijmII Input 0.02521 0.8845(8) 1.9675 0.2707 5.635% 0.4502 5.418 1.647 6.505 1.753
Reid93 Input 0.02514 0.8845(8) 1.9686 0.2703 5.699% 0.4515 5.422 1.645 6.453 1.755
Exp.a 0.231605 0.0256(4) 0.8846(9) 1.9754(9) 0.2859(3) 5.67(4) 5.419(7) 1.753(8)

a(Nonrelativistic) see, e.g., Ref. [39] and references therein.
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FIG. 3. The dependence of the asymptotic
D/S ratio η (upper left panel), the S-wave
normalization AS (in fm−1/2, upper right panel),
the matter radius rm (in fm, lower left panel),
and the quadrupole moment Qd (in fm2, lower
right panel) on the deuteron wave number γ

(in fm−1) for the short-range theory, the first
order perturbative result and the exact OPE
result. The points represent the experimental
values or potential model estimates [39]. We use
m = 138.03 MeV and R = 1.07764 fm.

need a mixed boundary condition to specify the short distance
phase ϕ. Thus, short distance details become less important,
regardless on the value of ϕ. On the contrary, for singular
repulsive potentials the wave functions behave as rn/4e±r−n/2+1

and only for the regular solution short distance details become
irrelevant. In the OPE potential, it is precisely the repulsive
short distance OPE component which requires a fine tuning
of the solutions and eliminates one a priori independent
parameter like, e.g., the asymptotic D/S ratio η. As we see, if η

is treated as an independent variable the short distance behavior
of the deuteron wave functions precludes the definition of a
normalizable state due to the onset of the irregular solution.
This short distance insensitivity at low energies could only be
implemented by keeping the experimental η value and ignoring
OPE physics below some scale. The lower limit established
in Ref. [20] to obtain a normalizable state was a ∼ 1.3 fm for
the OPE potential. This obviously requires some extension
of the wave function below that scale and the pretended
model independence becomes a bit obscured. Our point is that
the short distance insensitivity materializes automatically
for the regular OPE deuteron wave functions since they vanish
at the origin.

III. OPE CORRELATIONS IN DEUTERON OBSERVABLES

As we have said, in the OPE potential we can use the
deuteron wave number as an input of the calculation on the
same footing as gπNN and the pion mass m. Then, other
observables are predicted. We will study now the dependence
of these observables on γ,m and R.

A. Dependence on the binding energy

In Fig. 3 we show the dependence of the D/S ratio as
a function of the deuteron wave number γ keeping m and
R fixed. In the weak binding limit γ 
 mπ , long distances
dominate and the finiteness of the wave function at a point
r � 1/m requires η ∼ γ 2. The radius of convergence of
such an expansion for the observables is |γ | < m/2, since
the integrals involve the factor e−(2γ+m)r at large distances,
diverging for γ < −m/2. The experimental number is not far
from γ = m/3, which is within the domain of analyticity but
somewhat close to the convergence radius. So, one expects a
slow convergence. As we see in the weak binding limit we have
a quadratic behavior ηOPE ∼ γ 2 whereas for stronger binding
a linear behavior sets in. It is remarkable that the experimental
values in the intermediate regime. On the other hand, in the
strong binding case γ � mπ , short distances dominate and we
must have η ∼ 1/

√
2. Numerically we find for the deuteron

observables,

ηOPE = 0.9638γ 2 − 3.46864γ 3 + O(γ 4), (21)

AOPE
S√
2γ

= 1 + 1.2455γ − 0.4705γ 2 + O(γ 3), (22)

√
8γ rOPE

m = 1 + 1.2455γ − 0.4705γ 2 + O(γ 3), (23)

QOPE
d = 0.6815 − 3.5437γ + O(γ 2). (24)

Note that we have the weak binding correlation

rm = AS

4 γ 3/2
+ O(γ 3) (25)
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which is compatible at the 2σ confidence level with data;
for the experimental value AS = 0.8845(8) the value rm =
1.984(2) to be compared with the experimental number rm =
1.971(6). In the weak binding limit one also has the correlation

√
2γ 2Qd

ηd

= 1 + O(γ ) (26)

a dependence that one would expect on general grounds
by just taking the asymptotic formulas and neglecting the
w(r)2 term in the expression for the quadrupole moment.
Experimentally this relation is fulfilled with a 15% accuracy.
The nonperturbative OPE value is actually closer to potential
models.

B. Comparison with perturbation theory

It is instructive to solve the coupled deuteron equations,
Eq. (2) in standard perturbation theory for the fixed energy
bound state. One of the reasons is to check the correctness of
our nonperturbative calculations in the weak binding regime.
Another motivation is to establish contact with the perturbative
calculations of Ref. [16] where dimensional regularization
in the power divergence subtraction (PDS) scheme was
implemented. Finally, there is the question of quantitatively
assessing the validity of such an approximation. We relegate
the calculation to Appendix A. At first order in perturbation
theory one gets in the weak binding limit

ηpert = 1.5497γ 2 − 4.15479γ 3 + O(γ 4, R2),

AS,pert√
2γ

= 1 − 0.7184γ − 2.7394γ 2 + O(γ 3, R2),

(27)
rm,pert

√
8γ = 1 + 0.71843γ − 2.7394γ 2 + O(γ 3, R2),

Qpert = 1.09587 − 5.87576γ + O(γ 2, R2).

The nominally O(R2) second order contributions are in fact
divergent because the leading order correction to the D-wave
component w(r) diverges at the origin (see Appendix A). In
general terms we find that the exact OPE results are estimated
within 30% by the first order perturbative calculations of
Appendix A.

IV. DEPENDENCE ON THE PION MASS AND
CHIRAL LIMIT

Recent works [28–31] predict the change of the deuteron
binding energy as a function of the pion mass by taking the
experimental binding energy at the physical value of the pion
mass and making the additional assumption short distance
physics to be independent on the pion mass. While it is true
that the leading short distance r dependence of the deuteron
wave functions are independent on the pion mass, the constants
CA,CR and ϕ do in principle depend on the three independent
parameters m, gπNN and γ . As we have noted γ cannot be
predicted for the OPE potential. So the approach pursued in
Refs. [28–31] is equivalent to integrate in with the physical
pion mass and then integrate out fixing some combination of
short distance constants with the unphysical pion mass and
searching for the appropriate regular solution at infinity. If one
makes the pion lighter long distance effects should dominate,

and one could just use the OPE potential to estimate the chiral
limit as a first approximation. It is thus interesting to analyze
the pion mass dependence both explicitly (i.e., varying m
in the OPE potential) and implicitly (i.e., taking into account
the dependence of the OPE coupling R on the pions mass).
We will determine the pertinent combination of short distance
constants by demanding the Feynman-Hellmann theorem in
the OPE potential.

A. Explicit pion mass dependence

To proceed, let us assume that to an infinitesimal change
in m → m + �m there corresponds a change both in the
deuteron wave number γ → γ + �γ and in the coupled
channel potential matrix U (r) → U (r) + �U (r). We can
write a Lagrange identity by varying the equation and its
adjoint, yielding for a normalized state

− ∂γ 2

∂m
= 〈
m|∂U

∂m
|
m〉

+
[
u′ ∂u

∂m
− u

∂u′

∂m
+ w′ ∂w

∂m
− w

∂w′

∂m

] ∣∣∣∣∣
∞

0

. (28)

This is an extended Feynman-Hellmann theorem where the
second term in the l.h.s. corresponds to the short distance
contribution (the term at infinity vanishes for a bound state).
One of the advantages of the Feynman-Hellmann theorem is
that one could in principle establish comparison theorems,
provided the change in the coupled channel potential matrix,
�U , is a definite quadratic form. Note also that the derivative
with respect to m annihilates the centrifugal term, 6/r2,
and one can diagonalize the coupled channel potential by
the unitary transformation Eq. (9) so that the result behaves
additively in the attractive and repulsive eigenchannels. Using
the leading short distance behavior, Eq. (14), we therefore get

− ∂γ 2

∂m
=

∫ ∞

0
dr

[
uA(r)2 ∂UA

∂m
+ uR(r)2 ∂UR

∂m

]
+ C2

A

dϕ

dm
.

(29)

As we see, assuming as suggested in Ref. [28] that the short
distance physics does not depend on the pion mass corresponds
to demanding the standard Feynman-Hellmann theorem where
only the OPE potential change contributes. For CA �= 0 one
obtains the condition

d

dm
ϕ(γ,m) = ∂ϕ

∂γ

dγ

dm
+ ∂ϕ

∂m
= 0, (30)

whence a functional relation between the pion mass and the
deuteron binding energy follows. However, note that even in
this case the sign of the result is indefinite since

∂γ 2

∂m
=

∫ ∞

0
dr

[
uA(r)2 ∂UA

∂m
+ uR(r)2 ∂UR

∂m

]
. (31)

So, we have to determine the sign numerically.
The relation (30) has an equivalent formulation in the

boundary condition regularization. For instance, if we assume
the same condition BC6 of Eq. (42) for all values of the pion
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TABLE II. Deuteron properties for the OPE and their dependence on the pion mass. We use the nonrelativistic relation γ = √
2µnpB =

0.231605 fm−1 with B = 2.224575(9) for m = 138.03 and gπNN = 13.1083. m = 0 (explicit) means taking m = 0 but using R = 1.07764 fm
(or equivalently gπNN = 13.1083). m = 0 (implicit) means taking m = 0 and using R0 = 1.06(2) × R.

γ (fm−1) η AS(fm−1/2) rd (fm) Qd (fm2) PD

m = 138.03 MeV Input 0.02633 0.8681(1) 1.9351(5) 0.2762(1) 7.88(1)%
m = 0 (explicit) 0.3240(1) 0.09452 0.8444(1) 1.550(1) 0.3006(3) 10.96(2)%
m = 0 (implicit) 0.61(10) 0.15(2) 0.48(7) 0.98(10) 0.15(3) 15(1)%

mass we get

d

dm

[
w′(a)

u(a)
√

2 + w(a)

]
= 0, (32)

where a is taken to be independent of m. In practice, one
computes the ratio within the bracket for the physical pion
mass and searches for γ such that the ratio for the unphysical
pion mass yields the same numerical value. The dependence on
the pion mass can be looked up at Fig. 4. If we take the chiral
limit we get Bd (0, gπNN ) = 4.3539 MeV This value is very
close to the one found in Ref. [26]Bd (0, gπNN ) = 4.2 MeV.4

Deuteron properties in the explicit m = 0 limit are listed in
Table II.

B. Implicit pion mass dependence

To take into account the implicit pion mass dependence
we have to take into account the dependence of R =
3g2

AM/32πf 2
π on the pion mass. In the chiral limit one

gets a larger OPE coupling [30]. The value is uncertain
and as an educated guess we take R0 = 1.06(2)R. Using the
same formulation as in the m dependence, the change in the
deuteron binding with respect to the gπNN coupling constant
or equivalently the scale dimension R we get (assuming as
before the short distance angle ϕ to be independent on m),

− R
∂γ 2

∂R
=

∫ ∞

0
dr[uA(r)2UA + uR(r)2UR]. (33)

Again, the result is indefinite since UA < 0 and UR > 0 and
it is not obvious, unlike naive expectations, that a stronger
coupling provides stronger binding. The sign depends actually
on the details of the wave functions and the particular values
of the parameters. Numerically one finds dγ /dR > 0, a trend
that can be understood if the repulsive term in Eq. (33) is
neglected or on the basis of the inequality |uA| > |uR| which
is numerically fulfilled. In any case one has the differential
inequality dγ /dR < γ/R.

4These authors look for poles of the S-matrix so constructed
as to reproduce the physical scattering length α0 = 5.42 fm and
effective range r0 = 1.75 fm at the physical value of the pion mass
in the 3S1 eigen channel. By doing so the explicit dependence
on gπNN becomes rather weak. Actually, they take gπNN = 12.73
and we would get instead Bd (0, gπNN ) = 0.98 MeV instead. This
apparent contradiction is resolved by noting that, as we will see
below, for gπNN = 13.1083 in the OPE we get an scattering length
α0 = 5.335 fm an effective range of r0 = 1.63 quite close to the
experimental values.

Numerically, we get γ0 = 0.61(10) fm−1 and hence

B0
d = 15(5) MeV, (34)

a value compatible with the analysis of Ref. [30]B0
d = 9.6 ± 3

(perhaps with larger errors [31])5 but in disagreement with
Refs. [26,29] where the deuteron becomes unbound for m <

90 MeV. In any case we confirm the trend of having a stronger
binding of the deuteron in the chiral limit. The corresponding
observables can be looked up in Table. II.

V. SCATTERING PROPERTIES IN THE 3S1-3D1 CHANNEL

A. Orthogonality constraints and phase shifts

For the α and β positive energy scattering states we choose
the asymptotic normalization

uk,α(r) → cos ε

sin δ1
(ĵ0(kr) cos δ1 − ŷ0(kr) sin δ1),

(35)
wk,α(r) → sin ε

sin δ1
(ĵ2(kr) − ŷ2(kr) sin δ1),

uk,β(r) → − 1

sin δ1
(ĵ0(kr) cos δ2 − y0(kr) sin δ2),

(36)
wk,β(r) → tan ε

sin δ1
(ĵ2(kr) cos δ2 − ŷ2(kr) sin δ2),

5If we take R0 = 1.1R we get B0
d = 33 MeV.
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FIG. 5. Eigenphase shifts for the OPE potential as a function of the c.m. np momentum in the triplet 3S1-3D1 channel compared to the
Nijmegen results [40]. The regular scattering wave functions are orthogonal to the regular deuteron bound state wave functions constructed
from the OPE with γ = 0.231605 fm−1,m = 138.03 MeV and gπNN = 13.1083.

where ĵl(x) = xjl(x) and ŷl(x) = xyl(x) are the reduced
spherical Bessel functions and δ1 and δ2 are the eigenphases
in the 3S1 and 3D1 channels, and ε is the mixing angle E1.
Again, the general solution at short distances is given by the
general Eq. (14), where the constants CA,CR , and ϕ are now
different since we have a zero energy state and depend whether
we have an α or β state, so we have the short distance con-
stants, CA,α(k), CR,α(k), ϕα(k), and CA,β(k), CR,β(k), ϕβ(k),
respectively. This implies certain correlations between δ1, δ2,
and ε.

For a regular self-adjoint potential the orthogonality of
bound and scattering states comes out automatically. We look
now for the consequences of demanding this property in the
singular OPE potential. Using the standard manipulations to
prove orthogonality between states of different energy we
get the following relation between α and β states and the
bound deuteron state (which we denote by a subscript γ in this
section):

0 = (γ 2 + k2)
∫ ∞

0
dr[uγ (r)uk(r) + wγ (r)wk(r)]

= [u′
γ uk − uγ u′

k + w′
γ wk − wγ w′

k]|∞0 . (37)

Using the short distance solution, Eq. (14), we get

CA,i(k)CA(γ ) sin[ϕ(γ ) − ϕi(k)] = 0, i = α, β (38)

which yields

ϕ(γ ) = ϕα(k) = ϕβ(k). (39)

Thus, the short distance phases ϕα(k) and ϕβ(k) of the 3S1-3D1

channel wave functions in the OPE potential at short distances
are all determined by deuteron properties. This means, in
particular that the low energy parameters and scattering phase
shifts are uniquely determined by the deuteron binding energy
and the OPE potential parameters.6

6This property does not hold for other triplet channels with higher
partial waves, because there are no bound states in those channels.
Nevertheless, it is also true that there is only one independent
parameter. This means in practice that one can use one scattering

The previous argument can also be implemented if we have
a short distance cut-off at r = a, the orthogonality relation of
Eq. (37) transforms into the condition

u′
γ (a)uk,i(a) + w′

γ (a)wk,i(a) = uγ (a)u′
k,i(a) + wγ (a)w′

k,i(a),

(40)

i = α, β. (41)

Thus, if we impose the same condition on both solutions,
Eq. (41) cannot be satisfied unless they are related at the
boundary. For instance for the condition BC6 of Eqs. (15),
we get the two relations

u′
k,i(a) =

√
2w′

k,i(a), i = α, β (42)

The orthogonality relation corresponding to boundary condi-
tions of the form of Eq. (42) implies then the orthogonality
constraint

w′
k,i(a)

uk,i(a)
√

2 + wk,i(a)
= w′

γ (a)

uγ (a)
√

2 + wγ (a)
(43)

which is the analog finite cut-off condition of Eq. (39).
The remaining conditions in Eqs. (15) generate analogous
orthogonality constraints.

The results for the 3S1-3D1 channel phase shifts using these
conditions are presented in Fig. 5. The description is rather
satisfactory and it seems to work, as one might expect, up to
the vicinity of the c.m. momentum which magnitude coincides
with the two pion exchange left cut k = i m.

B. Low energy parameters

In the low energy limit one has

δ1 → −α0k,

δ2 → −α2k
5, (44)

ε → α02

α0
k2

length out of the three to predict the phase shifts also in other partial
waves.
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FIG. 6. The dependence of the 3S1-3D1 scattering lengths α0, α02 and α2 on the deuteron wave number γ (in fm−1). The point represents
the experimental values or potential model estimates [37,39].

so that the zero energy the wave functions behave asymptoti-
cally

u0,α(r) → 1 − r

α0
,

w0,α(r) → 3α02

α0r2
,

(45)
u0,β(r) → r

α0
,

w0,β(r) = 3α2

α02r2
− r3

15α02
.

Using these zero energy solutions one can determine the
effective range. The 3S1 effective range parameter is given
by

r0 = 2
∫ ∞

0

[(
1 − r

α0

)2

− uα(r)2 − wα(r)2

]
dr. (46)

In the zero energy case, the vanishing of the diverging
exponentials at the origin imposes a condition on the α and β

states which generate a correlation between α0, α02, and α2.
Using the superposition principle of boundary conditions we
may write the solutions in such a way that

u0,α(r) = u1(r) − 1

α0
u2(r) + 3α02

α0
u3(r),

w0,α(r) = w1(r) − 1

α0
w2(r) + 3α02

α0
w3(r),

uβ(r) = 1

α0
u2(r) + 3α2

α02
u3(r) − 1

15α02
u4(r),

wβ(r) = 1

α0
w2(r) + 3α2

α02
w3(r) − 1

15α02
w4(r),

where the functions u1,2,3,4 and w1,2,3,4 are independent on
α0, α02, and α2 and fulfill suitable boundary conditions. As a
consequence we get a linear correlation between 1/α0, α02/α0

and also a linear correlation between α2/α02 and 1/α02. This
means in turn that according to the OPE potential both α02 and
α2 depends linearly with α0. Numerically we get the following

correlations,

α02 = 0.963571370240α0 − 3.467616391389,
(47)

α2 = 3.467616391389
α02

α0
+ 5.080264230656.

These relations are cut-off independent and unique con-
sequences of the OPE potential. On the other hand, the
orthogonality between the bound state and the scattering state
yields

α0 = 1.037805911852 α02 + 3.598712446758, (α)

α02 = 0.288382561043 α0 α2 − 1.465059639612 α0 (β).

(48)

The provided high accuracy is indeed needed. The four
equations, Eqs. (47) and (48), overdetermine the values of
the three scattering lengths and could be solved in triplets
yielding four different solutions. Actually, there are only
two independent solutions which differences are compatible
within our numerical uncertainties. The scattering lengths and
effective range are presented in Table I and compared to
their perturbative value (see Appendix A) and to the high
quality Nijmegen potential models [35].7 As we see, the
agreement with the high quality potentials is at the few percent
level. Perturbation theory does not account for most of the
contribution to the effective range since the orthogonality
constraints preclude a short distance contribution to r0 and also
to the deuteron matter radius rm. This means in practice that
the counterterm named C2 in Refs. [16,38] must vanish (see
Appendix A for a detailed discussion). The dependence of the
scattering lengths α0, α02 and α2 on the deuteron wavenumber
γ can be seen in Fig. 6, where γ dependent generalizations of
the correlations, Eqs. (47) and (49) hold.

The phase shifts look very similar to previous work [26]
using an energy expansion of a square well potential as a
counterterm and adjusting the depth of the two lowest orders

7The values of α0 and r0 have been determined in Ref. [39], whereas
α02 and α2 have been determined by us in Ref. [37]. See also Ref. [41]
for a extensive determination in all partial waves.
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to reproduce the 3S1 scattering length α0 and effective range r0

as independent parameters or our variable phase approach with
non-trivial initial conditions in Ref. [37] where the full coupled
channel S-matrix was tailored to reproduce the effective range
expansion to any order treating all parameters as independent.
Roughly speaking, both approaches could be mapped to
an energy dependent boundary condition with no a priori
orthogonality constraints.8 The fact that the orthogonality
constrained boundary condition generates the bulk of the low
energy threshold parameters with only one parameter naturally
explains the similarity between the present phase shifts and
those in previous works [26] and suggests that there is perhaps
no need to make the short distance boundary condition energy
dependent if the short distance cut-off is removed.

VI. SHORT DISTANCE SOLUTIONS AND
DETERMINATION OF THE COEFFICIENTS

In this section we determine the coefficients of the OPE
deuteron wave functions appearing at short distances in
Eq. (11). In particular, we compute the energy independent and
OPE potential parameters independent short distance phase ϕ.
Let us remind that any choice of ϕ corresponds to a different
choice of short distance physics; given ϕ and the OPE potential
all deuteron and scattering properties are uniquely determined.
However, the leading asymptotic form cannot directly be used
to match the numerical solution obtained by integrating in the
large distance solution. On the one hand, if we use cut-off
approaches to determine the regular solution, there are short
distance cut-off effects when the distance gets close to the
cut-off radius. On the other hand, the fact that the diverging
exponential dominates over the converging one provides too
weak a signal for the corresponding coefficient. To remedy
the situation we improve on the short distance solution to
provide a reliable approximation at larger distances (∼1 fm)
where the diverging exponential is less dominant, and look
for plateaus in the matching radius. It turns out (see below)
that one should go at eight order in this expansion for a robust
determination of the short distance coefficients. Actually, one
can then directly match the short distance improved wave
functions to the numerical solution without no reference to
cutoffs. We will try the two methods and see that they yield to
compatible results for the short distance coefficients.

In the limit r → 0 the solutions to the coupled equations
can be written in an expansion of the form9

u(r) = u0

( r

R

)a1

ea0

√
R
r f (r),

(49)
w(r) = w0

( r

R

)a2

ea0

√
R
r g(r)

8The main difference in this regard has to do with the multi-valuation
problem of the potential counter-term in Ref. [26] typical of inverse
scattering problems. The approach of Ref. [37] does not have this
problem.

9This expansion looks similar to a coupled channel WKB expansion
although here the mode conversion problem does not show up.

with

f (r) =
∞∑

n=0

An

( r

R

)n/2
,

(50)

g(r) =
∞∑

n=0

Bn

( r

R

)n/2
.

At leading order we get the equations

u0a
2
0 + 16

√
2w0 = 0,

(51)
16

√
2u0 + (

a2
0 − 16

)
w0 = 0

which have the four nontrivial solutions,

(1A), a0 = −4i, w0 = u0√
2
, (52)

(2A), a0 = +4i, w0 = u0√
2
, (53)

(2R), a0 = −4
√

2, w0 = −
√

2u0, (54)

(1R), a0 = +4
√

2, w0 = −
√

2u0. (55)

The next to leading order equation becomes compatible
only if

a1 = a2 = 3/4. (56)

For any solution in Eq. (52) we may then solve for the
remaining coefficients. One peculiar feature of this expansion
is that if one wants to determine the solution to a given order,
one has to compute the coefficients at a higher order. The
reason is that strictly speaking a truncation of the expansion
involves also nondiagonal elements, and one has the freedom to
choose between solving u or w to a given accuracy. The explicit
result to eight order is presented in Appendix B. The general
short distance solution is written as a linear combination of the
four independent solutions,

u(r) = 1√
3

( r

R

)3/4 [ − C1Rf1R(r)e+4
√

2
√

R
r

−C2Rf2R(r)e−4
√

2
√

R
r +

√
2C1Af1A(r)e−4i

√
R
r

+
√

2C2Af2A(r)e4i
√

R
r

]
,

(57)

w(r) = 1√
3

( r

R

)3/4 [√
2C1Rg1R(r)e+4

√
2
√

R
r

+
√

2C2Rg2R(r)e−4
√

2
√

R
r + C1Ag1A(r)e−4i

√
R
r

+C2Ag2A(r)e4i
√

R
r

]
.

This expansion converges rather fast for each solution up to
distances of about r ∼ 0.6 − 0.9 fm. That is about what one
needs, since that is sufficiently far above the cut-off radius
a ∼ 0.1 fm. Matching u,w, u′, and w′ at some point in this
region we get a linear relation between C1R, C2R, C1A,C2A,
and η. Actually, we find that the signal of the converging
exponential is about hundred to thousand times that of the
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diverging exponential in the range between 0.6 and 1 fm.10

Matching directly the integrated in solution to the short
distance solution with a vanishing coefficient of the diverging
exponential C1R = 0, we get at the scale 0.7 fm < r < 0.9 fm

C2R = −0.47(1), η = 0.0263333(1)
(58)

C̄1A = 0.1327(3), C̄2A = 0.2277(5).

We can instead determine η = 0.0263332 from the boundary
condition BC6 in Eq. (15) at r = 0.2 fm and deduce the
remaining constants yielding

|C1R| < 10−7, C2R = −0.47(1)
(59)

C̄1A = 0.1327(3), C̄2A = 0.2277(5).

The errors have been estimated by varying the matching point
in the region 0.7 fm < r < 0.9 fm. Note that although the
coefficient of the diverging exponential C1R is six orders of
magnitude larger than the one of the converging exponential,
the solution through the matching condition is about eight
orders of magnitude smaller (may even change sign). So that
the result provides a sizable signal for the converging expo-
nential. With these values we show in Fig. 7 the short distance
wave functions compared to the integrated in numerical ones
when the matching is undertaken at r = 0.8 fm. To improve
on the short distance side we have taken C1R = 0. The error
in the region 0.7 fm < r < 0.9 fm never exceeds a 0.01%. We
have checked that setting the constant C2R = 0 introduces
a larger deviation from the numerical solution as compared
to the computed value in the region above 1 fm. Finally, the
corresponding short distance angle reads

ϕ = − tan−1 C̄2A

C̄1A

= −59.7(1)o. (60)

The discussion in this section explicitly shows that contrary
to the findings in Ref. [11] the coefficient of the converging
exponential does not vanish.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have reanalyzed the OPE potential in the
triplet 3S1-3D1 channel both for bound and scattering states.

10For instance at r = 0.8 fm we get

u = 1.9683 − 59.4526η

= 1.14054C̄1A − 52.3866 C1R + 1.09959C̄2A − 0.00169556 C2R,

w = −4.00531 + 159.28η

= −0.667631C̄1A − 551.52C1R + 1.67549C̄2A + 0.0177228C2R

u′ = −6.84126 + 287.992η

= −1.34949C̄1a + 273.671C1R + 4.02872C̄2A − 0.00925419C2R

w′ = 16.2726 − 607.14η

= −0.667631C̄1A − 551.52C1R + 1.67549C̄2A + 0.0177228 C2R

where the l.h.s. corresponds to the numerical solution and the r.h.s. to
the short distance approximation, and the barred coefficients C̄1A =
(C1A + C2A)/2 and C̄2A = (−C1A + C2A)/2 i have been introduced.
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FIG. 7. The short distance expansion for the deuteron wave
functions matched to the numerical solution at a distance about
r = 1 fm. We take C1A = 0.1328, C2A = 0.2277, C2R = −0.46, and
C1R = 0. The numerical solutions are normalized by taking AS = 1.

Rather than modeling the interaction below some finite short
distance we have adopted the viewpoint of taking the potential
seriously down to the origin. This must be carefully done
and in a way as to get rid of any short distance ambiguities. In
addition, this procedure proves crucial to be able to disentangle
the OPE contribution from other contributions, like TPE and
higher, electromagnetic effects and relativistic corrections to
deuteron and NN scattering observables.

The OPE coupled channel potential is singular at short
distances and additional conditions need to be specified on the
wave functions at the origin. Actually, the singular eigenpo-
tentials at short distances are attractive and repulsive and while
in the attractive case a mixed boundary condition specifies the
corresponding short distance eigenfunction, in the repulsive
case one must impose a standard homogeneous boundary
condition. This only leaves one free parameter, which we have
chosen to be the deuteron binding energy and which cannot be
determined from the OPE potential. All remaining deuteron
observables come out for free. For the scattering states in the
3S1-3D1 channel, we have demanded orthogonality constraints
between all states of different energy. This condition is actually
an additional requirement for singular potentials, since the
orthogonality relation carries information on the peculiar short
distance behavior of the wave functions, and is not necessarily
satisfied. The most obvious example where orthogonality
constraints are violated corresponds to energy dependent
potentials and energy dependent boundary conditions in coor-
dinate space. A less trivial but significant example is the case of
dimensional regularization in the PDS scheme as a perturbative
analysis in coordinate space of both bound and scattering states
reveals. The power of the orthogonality constraints for singular
potentials is that all scattering properties are then predicted
from the OPE potential parameters and the deuteron binding
energy.

In our analysis it turns out that the short distance form of
all wave functions is characterized by some short distance
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constants. We have clarified the role played by the expo-
nentially suppressed regular solution by determining its non-
vanishing value numerically using short distance expansions to
high order, to explore the region below 0.1 fm, not accessible
to standard numerical integration methods. Another relevant
constant is given by a short distance phase ϕ which plays
the role of a fundamental dimensionless constant in the OPE
problem. It does not depend on the energy nor on the OPE
parameters, but it is related to the form of the OPE potential
in the chiral limit. The closeness of this phase to π/3 is
mysterious and suggestive and requires further investigation.

It is remarkable that indeed the bulk of the experimental
results both for the bound state as well the scattering
observables are accounted for at the 2–3% level by the
OPE potential taken from zero to infinity. We interpret this
success as a confirmation on the validity of our choice of
regular solutions and the use of orthogonality constraints. The
discrepancies can legitimately be attributed to other effects
such as TPE, electromagnetic and relativistic corrections.
Many of the methods and results obtained in this paper can be
generalized in a straightforward manner to take these effects
into account and to the study of higher partial waves without
any substantial modifications. In particular, the number of
independent constants in a given channel depends on the short
distance behavior of the long range potential. The bonus of
such a program would be the complete elimination of short
distance ambiguities in the study of the NN interaction with
known long distance forces as determined by chiral symmetry.
In our view this an indispensable prerequisite to asses the
relevance of chiral symmetry in nuclear physics in a model
independent way. The systematic study of these effects will be
reported elsewhere [24,25].
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APPENDIX A: PERTURBATIVE SOLUTIONS

1. Bound state

In this appendix we solve the coupled deuteron equations,
Eq. (2) in standard perturbation theory for the fixed negative
energy bound state. A somewhat related approach looking
for the equivalence with the PDS scheme of Ref. [38] in
the one-channel positive energy case can be looked up in
Ref. [42]. The problem of orthogonality was not discussed. The
requirement of normalizability of the deuteron state requires
the D wave component to vanish. Thus, at lowest order we
have the normalizable solutions

u(0)
γ (r) = e−γ r ,

(A1)
w(0)

γ (r) = 0.

At first order we have to solve the equations

−u(1)′′
γ (r) + γ 2u(1)

γ (r) = −Us(r)e−γ r ,
(A2)

−w(1)′′
γ (r) +

[
6

r2
+ γ 2

]
w(1)

γ (r) = −Usd (r)e−γ r .

Using the regular and irregular solutions at the origin

ureg(r) = 2
sinh(γ r)

γ r
,

wreg(r) = 2

(
1 + 3

(γ r)2

)
sinh(γ r) − 6

γ r
cosh(γ r),

uirreg(r) = e−γ r , (A3)

wirreg(r) = e−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
, (A4)

we get

u(1)
γ (r) =

∫ ∞

0
Gs(r, r

′)Us(r
′)e−γ r ′

dr ′, (A5)

w(1)
γ (r) =

∫ ∞

0
Gd (r, r ′)Usd (r ′)e−γ r ′

dr ′, (A6)

where Gs and Gd are the corresponding Green functions.
Explicit calculation yields

u(1)
γ (r) = e−γ r m2 R �(0,mr + 2 rγ ) − �(0,mr)

3 γ
− 2 m2 REi(−mr − 2 rγ ) sinh(rγ )

3 γ
, (A7)

w(1)
γ (r) = e−rγ

(
1 + 3

r2 γ 2
+ 3

rγ

) [
m2 R(3 m2 − 4 γ 2) �(0,mr + 2 rγ ) − �(0,mr)

6
√

2 γ 3

+
R

(
−6 m3 γ + 6 m2 γ 2 + 4 γ 4 + (3 m4 − 4 m2 γ 2) log

(
1 + 2 γ

m

))
6
√

2γ 3

+ e−mr−2 rγ R(6 + 6 mr + m2 r2 − m3 r3 + 4 rγ + 4 mr2 γ + 2 m2 r3 γ )

2
√

2 r4 γ 3

− R e−mr (6 + 6 mr + m2 r2 − m3 r3 − 8 rγ − 8 mr2 γ + 4 r2 γ 2 + 4 mr3 γ 2)

2
√

2 r4γ 3

]

+
(

2

(
1 + 3

γ 2r2

)
sinh(γ r) − 6

γ r
cosh(γ r)

)
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×
[

e−mr−2 rγ R(6 + 6 mr + m2 r2 − m3 r3 + 4 rγ + 4 mr2 γ + 2 m2 r3 γ )

2
√

2r4 γ 3

− m2 R(3 m2 − 4 γ 2)Ei(−mr − 2 rγ )

6
√

2 γ 3

]
, (A8)

where �(0, z) and Ei(z) are the standard incomplete Gamma
function and the exponential integral function, respectively,

�(0, z) =
∫ ∞

z

dt
e−t

t
, (A9)

Ei(z) = −P

∫ ∞

−z

dt
e−t

t
. (A10)

At asymptotically large distances we have

u(1)
γ (r) → cperte

−γ r , (A11)

w(1)
γ (r) → ηperte

−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
, (A12)

where

cpert =
∫ ∞

0
Us(r)ureg(r)e−γ rdr, (A13)

ηpert =
∫ ∞

0
Usd (r)wreg(r)e−γ rdr. (A14)

Explicit calculation yields

cpert = Rm2

3γ
log

(
1 + 2γ

m

)
, (A15)

ηPert = R

6
√

2mγ 3

[
4γ 4 + 6m2γ 2 − 6m3γ

+ (3m4 − 4m2γ 2) log

(
1 + 2γ

m

) ]

= 32
√

2R

45m
γ 2 − 2

√
2Rγ 3

3m2
+ · · · . (A16)

The numerical value we get is ηpert = 0.0510 almost twice the
exact OPE result. Taking this perturbative value for η we show
in Fig. 8 the perturbative deuteron wave functions as compared
to the exact ones.

Unfortunately, if one wants to improve on this first order
calculation going to second order perturbation theory there is a
problem since the behavior of the perturbative wave functions
at short distances is given by

u(1)
γ (r) = −Rm2

3γ
log

(
1 + 2γ

m

)
+ · · · , (A17)

w(1)
γ (r) =

√
2R

r
− 2

3

√
2Rγ + · · · (A18)

making the wave function non-normalizable, unlike the exact
regular wave function. This divergence at short distances

actually precludes going to higher orders in perturbation
theory.

The normalization at first order is given by

1

A2
S

=
∫ ∞

0

(
e−2γ r + 2u(1)

γ (r)e−γ r
)

(A19)

and hence

AS√
2γ

= 1 − 2Rm2

3(m + 2γ )
+ Rm2

3γ
log

(
1 + 2γ

m

)

= 1 − 2Rγ

3
− 16Rγ 2

9m
+ · · · . (A20)

The deuteron matter radius is given by

r2
m, pert = 1

4
A2

S

∫ ∞

0
r2

(
e−2γ r + 2u(1)

γ (r)e−γ r
)

(A21)

and hence to first order one has

r2
m, pert = 1

8γ 2
+ m2R(3m + 10γ )

18γ (m + 2γ )3
+ · · · (A22)

yielding in the weak binding regime

√
8γ rm, pert = 1 + 2Rγ

3
− 16Rγ 2

9m
+ · · · . (A23)

Finally, the quadrupole moment at first order is given by

Qpert =
√

2

10

∫ ∞

0
r2w(1)

γ (r)e−γ rdr. (A24)
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FIG. 8. Perturbative deuteron wave functions compared to the
exact ones as a function of the distance (in fm). The exact ones are
normalized by taking AS = 1.
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The integral can be evaluated to give

Qpert = 8R(4m2 + 9γm + 6γ 2)

45(m + 2γ )3

= 32R

45m
− 8Rγ

3m2
+ 128Rγ 2

15m3
+ · · · (A25)

yielding Qpert = 0.4555 fm2.
Our perturbative expressions for AS, rm, and Q coincide

with those of Kaplan, Savage, and Wise [16] provided one
takes in their expression for rm the renormalization scale in
the PDS scheme to be µ = γ , instead of taking µ = m as
they do or else taking the C2 counterterm identically equal to
zero. Actually, the C2 counterterm can be mapped into a short
distance contribution to the effective range parameter r0 in the
3S1 channel. The value of η was not given in that reference
but can be deduced from the off-diagonal scattering amplitude
in the 3S1-3D1 channel given in their previous work [38] by
evaluating the residue at the deuteron pole. The result also
agrees with the calculation presented here.

2. Low energy parameters

To check the identification C2 = 0 further let us compute
the S-wave effective range r0. For our purposes it is sufficient
to analyze the zero energy scattering state. The lowest order
solution is given by an α state

u
(0)
0,α(r) =

(
1 − r

α0

)
(A26)

w
(0)
0,α(r) = 0.

At zeroth order in the OPE coupling the orthogonality
constraint yields

0 =
∫ ∞

0
u

(0)
0,α(r)u(0)

γ (r) dr

= 1

γ 2

[
− 1

α0
+ γ

]
(A27)

which yields the scattering length to lowest order,

α
(0)
0 = 1

γ
. (A28)

At first order we use the regular solution ureg(r) = r and the
irregular solution uirreg(r) = (1 − r/α0) and get similarly to
the bound state case the first order correction to the α state,

u
(1)
0,α(r) = 2R

3α0
e−mr (1 − α0 m) − 2 m2 r R

3
Ei(−mr)

w
(1)
0,α(r) = e−m r R

15
√

2 α0 m2 r2

× (120 − 64 α0 m + 120 m r − 34 α0 m2 r

+ 40 m2 r2 − 2 α0 m3 r2 + α0 m4 r3 − α0 m5 r4)

+ R (−120 + 64 α0 m + α0 m6 r5 �(0,m r))

15
√

2 α0 m2 r2
.

(A29)

Note that asymptotically the first order correction to the S-
wave vanishes exponentially and hence cannot contribute to
the scattering length. On the other hand, the orthogonality
relation to first order reads

0 =
∫ ∞

0
dr

[
u(0)

γ u
(0)
0,α + u(1)

γ u
(0)
0,α + u(1)

γ u
(0)
0,α

]
(A30)

and after computing the integrals one gets

0 = − 1

α0
+ γ + R

3α0γ

[
m2(1 + α0γ ) log

(
1 + 2γ

m

)

− 2γ (m − γ + α0mγ )

]
. (A31)

Solving perturbatively for α0 we get at first order

α0,pert = 1

γ
− 2m2R

3γ 2

[
γ (γ − 2m)

m2
+ log

(
1 + 2γ

m

)]
+ · · · .
(A32)

Numerically one gets α0,pert = (4.3177 + 0.2912 + · · ·) fm to
be compared with the full OPE result α0 = 5.34 and the
experimental value α0 = 5.42 fm. The E1 scattering length
α02 can be read off from the D-wave, using the asymptotic
condition in Eq. (45)

α02 = 4
√

2R(15 − 8α0m)

45m2

= 4
√

2R(15γ − 8m)

45γm2
(A33)

in the second line we have substituted the perturbative
relation α0 = 1/γ + O(R). Note the linear correlation α02 =
1.5499α0 − 4.1530 to be compared with the exact OPE
relation in Eq. (47). The numerical value one gets for the first
and second lines taking the experimental values of α0 = 5.42
and γ are α02 = 4.24 fm3 and α02 = 2.53 fm3, respectively,
to be compared with the experimental α02 = 1.64 fm3. In the
weak binding limit one obtains

γ α0,pert = 1 + 2Rγ

3
− 16Rγ 2

9m
+ · · · . (A34)

In this limit we have the perturbative linear correlation between
the scattering length and the deuteron matter radius

rm = α0

2
√

2
+ O(γ 3, R2) (A35)

which yields the value rm = 1.92 for the experimental scat-
tering length α0 = 5.42 fm . The linear correlation was estab-
lished empirically with realistic potentials in Refs. [43,44].

To first order the effective range in the 3S1 eigenchannel is
given by

r0 = −4
∫ ∞

0
dr u

(0)
0,α(r)u(1)

0,α(r) (A36)

yielding

r0,pert = 4R(3m2 − 8γm + 6γ 2)

9m2

= 1.4369 − 5.4789γ + 5.8758γ 2

= 0.4831 fm, (A37)
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M. PAVÓN VALDERRAMA AND E. RUIZ ARRIOLA PHYSICAL REVIEW C 72, 054002 (2005)

a result much smaller than the full OPE result (1.64 fm ) and the
experimental number (1.75 fm ). Again, our result corresponds
to a theory where the short distance contribution to the effective
range vanishes, i.e., C2 = 0. A nonvanishing value of C2 was
needed to fit the experimental values of both the matter radius
and the effective range. Our calculation shows that the scheme
developed in Refs. [16] and [38] does not fulfill perturbatively
the orthogonality constraints.

APPENDIX B: SHORT DISTANCE EXPANSION

For the f (r) function we get (we use x = r/R)

f1A = 1 − 35 i

32

√
x − 1811 x

6144
+ 2441 i

65536
x

3
2 − 34805 x2

8388608

+ x3

(
9873675

17179869184
+ m2R2

36
− m3R3

32
− 3 R2 γ 2

64

)

+ x
7
2

(
193405905 i

549755813888
+ 353 i

24192
m2R2 − 709 i

92160
m3R3

+ i

28
m4 R4 − 709 i

61440
R2 γ 2

)

+ x
5
2

(−333725 i

268435456
− i

15
m3 R3 − i

10
R2 γ 2

)
, (B1)

f2A = f ∗
1A, (B2)

f2R = 1 + 67
√

x

32
√

2
+ 7763 x

12288
+

(
8873

131072
√

2
− m2 R2

3
√

2

)
x

3
2

+
(
− 105845

33554432
− 55 m2 R2

192

)
x2 +

(
881405

1073741824
√

2

− 10807 m2 R2

184320
√

2
+ m3 R3

15
√

2
+ R2 γ 2

10
√

2

)
x

5
2

+
(

− 23360715

137438953472
− 332899 m2 R2

11796480

+ 47 m3 R3

960
+ m4 R4

36
+ 47 R2 γ 2

640

)
x3

+
(

419268465

4398046511104
√

2
+ 30559591 m2 R2

31708938240
√

2

+ 2141 m3 R3

1290240
√

2
+ 229 m4 R4

8064
√

2
+ 2141 R2 γ 2

860160
√

2

)
x

7
2

f1R = f2R (x → e2πix), (B3)

and for the g(r) function one has

g1A = 1 − 35 i

32

√
x − 4883 x

6144
+ 82075 i

196608
x

3
2 + 1245195 x2

8388608

+
(−5136285 i

268435456
− i

15
m3 R3 − i

10
R2 γ 2

)
x

5
2

+
(

42237195

17179869184
− m2 R2

18
− m3 R3

32
− 3 R2 γ 2

64

)
x3

+
(

494999505 i

549755813888
− 65 i

12096
m2 R2 + 2363 i

92160
m3 R3

+ i

28
m4 R4 + 2363 i

61440
R2 γ 2

)
x

7
2 + O(x4) (B4)

g2A = g∗
1A (B5)

g2R = 1 + 67
√

x

32
√

2
+ 13907 x

12288
+

(
307195

393216
√

2
− m2 R2

3
√

2

)
x

3
2

+
(

5075595

33554432
− 55 m2 R2

192

)
x2 +

(
19661565

1073741824
√

2

− 41527 m2 R2

184320
√

2
+ m3 R3

15
√

2
+ R2 γ 2

10
√

2

)
x

5
2

+
(

− 143137995

137438953472
− 128033 m2 R2

3932160
+ 47 m3 R3

960

+ m4 R4

36
+ 47 R2 γ 2

640

)
x3 +

(
1476620145

4398046511104
√

2

− 45736601 m2 R2

31708938240
√

2
+ 45149 m3 R3

1290240
√

2
+ 229 m4 R4

8064
√

2

+ 45149 R2 γ 2

860160
√

2

)
x

7
2 + O(x4)

g1R = g2R (x → e2πix). (B6)

APPENDIX C: LOCAL DIAGONALIZATION AND
PERTURBATIVE MIXING

One of the puzzles one encounters in the description of the
deuteron with the OPE potential is that while the dimensionless
D/S ratio parameter is rather small at long distances w/u →
η = 0.0256, it actually comes from a strong mixing at short
distances where w/u → 1/

√
2 ∼ 0.707. Actually, the analog

question for scattering states is that there seems to be a natural
hierarchy for the phase shifts in the 3S1-3D1 channel, namely,
δ3S1 � δ3D1 � ε1 even though the threshold behavior of the
D-wave is more suppressed than that of the mixing angle. The
question is whether one can think of an expansion in terms
of the η parameter. There are two obvious situations where
the mixing does not occur. One is the absence of tensor force.
In the OPE potential that would also eliminate the D-wave.
Another situation is dropping the mixing terms in the OPE
potential, which is questionable since they are actually larger
than the diagonal terms. It is possible, however, to write the
equations in a form that the mixing is manifestly small at all
distances. To this end we make a local rotation of the deuteron
wave functions(

u(r)

w(r)

)
=

(
cos θ (r) sin θ (r)

−sin θ (r) cos θ (r)

)(
uA(r)

uR(r)

)
(C1)
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FIG. 9. (Left) Reduced eigenpotentials (in
fm−2) UA(r) and UR(r) as a function of the
distance r (in fm). (Right) Local mixing angle
θ (r) as a function of the distance r (in fm).

in such a way as to diagonalize the potential we have(
Us Usd

Usd Ud + 6
r2

)

=
(

cos θ sin θ

−sin θ cos θ

)(
UA 0

0 UR

) (
cos θ sin θ

−sin θ cos θ

)
. (C2)

The deuteron equations for the OPE potentials read after
the local rotation

−u′′
A(r) + [UA(r) + θ ′(r)2]uA(r) + γ 2uA(r)

= [2θ ′(r)u′
R(r) + θ ′′(r)uR(r)],

(C3)
−u′′

R(r) + [UR(r) + θ ′(r)2]uR(r) + γ 2uR(r)

= −[2θ ′(r)u′
A(r) + θ ′′(r)uA(r)].

In the coupled channel space these equations can be
visualized as a particle with spin in the presence of a gauge
potential θ ′(r). At long distances we have the expansions

θ = 2
√

2R

9r
e−mr (m2r2 + 3mr + 3) + · · · , (C4)

UA = −2m2R

3r
e−mr + · · · , (C5)

UR = 6

r2
+ 2R

3r3
(m2r2 + 6mr + 6)e−mr + · · · , (C6)

whereas at short distances we have the behavior

θ = cos−1

√
2

3
− r

3
√

2R
+ r2

18
√

2R2

− (18m2R2 − 5)r3

324
√

2R3
+ · · · (C7)

UA = −4R

r3
+ 2

r2
− 2

3rR
+ · · · (C8)

UR = 8R

r3
+ 4

r2
+ 2 − 6m2R2

3Rr
+ · · · . (C9)

Note that in the locally rotated basis the mixing is related to the
derivative of the mixing angle, θ ′ which is small at all distances
(see Fig. 9). Actually, at asymptotically large distances we have

uA(r) → u(r) uR(r) → w(r). (C10)

If we neglect the mixing term in Eq. (C3) the equations
decouple and, actually, there is no nontrivial solution for the
repulsive eigenchannel, since the energy is fixed arbitrarily.
Hence in the absence of mixing we have uR = 0. At this level
of approximation we then get

u(r) = cos θ (r)uA(r), (C11)

w(r) = sin θ (r)uA(r). (C12)

In Fig. 10 we show the solutions of the decoupled equations
compared to the exact ones. As we see, the difference in the
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roth order compared to the exact ones. They
correspond to take η = 0.
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TABLE III. Deuteron properties for the OPE potential. We use the nonrelativistic relation γ = √
2µnpB with B = 2.224575(9). We

compare the η-expansion at leading order (LO), with standard perturbation theory at next to leading order (NLO) and the exact OPE result.

γ (fm−1) η AS(fm−1/2) rm(fm) Qd (fm2) PD

OPE-η (LO) Input 0 0.8752 1.9423 0.1321 6%
OPE-pert (NLO) Input 0.051 0.7373 1.6429 0.4555 0
OPE-exact Input 0.02633 0.8681(1) 1.9351(5) 0.2762(1) 7.88(1)%
NijmII Input 0.0253(2) 0.8845(8) 1.968(1) 0.271(1) 5.67(4)%
Exp. (nonrel.) 0.231605 0.0256(4) 0.8846(9) 1.971(6) 0.2859(3) 5.67(4)%

wave functions and hence the D/S mixing is indeed small.
Note that this is not the same as to neglect the tensor force. The
results for the deuteron observables are presented in Table III.
As we see, the quality of the zeroth η approximation is rather
good.

Actually, we can check a posteriori that the mixing is indeed
small for the zeroth order solutions. The inhomogeneous term
at short distances behaves as

2θ ′(r)u′
A(r) → − 2

3
√

2R2

( r

R

)−3/4

×CA sin(4
√

R/r + α) (C13)

which compared to the remaining terms in Eq. (C3) can indeed
be considered small. Under these circumstances, the mixing
can then be included perturbatively, yielding

uR(r) =
∫ ∞

0
dr ′GR(r, r ′)[2θ ′(r ′)u′

A(r ′)

+ θ ′′(r ′)uA(r ′)] (C14)

with GR(r, r ′) the Green function of the homogeneous equa-
tion in the repulsive eigenchannel,

GR(r, r ′) = wreg(r)wirreg(r ′)θ (r ′ − r)

+wreg(r ′)wirreg(r)θ (r − r ′) (C15)

with Wronskian equal to unity and wreg(r) and wirreg(r)
the regular solution and irregular solutions at the origin,
respectively. Asymptotically one has,

wreg(r) → C
( r

R

)3/4
e−4

√
2
√

R/r (r → 0)

wreg(r) → e+γ r

(
1 − 3

γ r
+ 3

(γ r)2

)
(r → ∞)

(C16)

wirreg(r) → C
( r

R

)3/4
e+4

√
2
√

R/r (r → 0)

wirreg(r) → e−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
(r → ∞).

To get in practice the coefficient C we start with C = 1 at
short distances and build the ratio to the asymptotic form at a
sufficiently large distance. With these conditions the solution
uR(r) at large distances behaves as

uR(r) → ηe−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
(r → ∞) (C17)

with

η =
∫ ∞

0
drwreg(r)[2θ ′(r)u′

A(r) + θ ′′(r)uA(r)]. (C18)

At short distances we get, from Eq. (C14) and using the
asymptotic forms of Eqs. (C16) and (C8), the result

uR(r) → CCA

( r

R

)7/4
cos(4

√
R/r + α) (C19)

in agreement with the leading short distance behavior of the
full solution for the combination u(r) − √

2w(r) (see Sec. VI).
The perturbative value for the asymptotic D/S ratio we
get is

ηpert = 0.0261 (C20)

quite close to the OPE exact one, ηOPE = 0.0263.

APPENDIX D: LONG DISTANCE SOLUTIONS

As a complement to the perturbative treatment of
Appendix A we analyze the bound solutions at long distances.
The asymptotic deuteron wave functions for the OPE potential
can be written in the form

u(r) = e−γ r

[∑
k

Fk(r)e−kmr

]
, (D1)
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FIG. 11. The long distance expansion for the deuteron wave
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of the numerical solutions.
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w(r) = ηe−γ r

(
1 + 3

γ r
+ 3

(γ r)2

) [∑
k

Gk(r)e−kmr

]
. (D2)

The first order solution can be evaluated analytically, yielding

F1(r) = R e−mr (m2 r2 − 2(1 + r γ ) − 2 mr(1 + r γ )) η√
2 r3γ 2

+ m2 R (3
√

2m2 η + γ 2 (4 − 4
√

2 η))Ei(−mr)

12 γ 3

+ e2 rγ m2 R (−3
√

2 m2 η + 4 γ 2 (−1 + √
2 η))Ei(−mr − 2 rγ )

12 γ
(D3)

G1(r) = m2 R (−4 γ 2 (
√

2 − 2 η) + 3 m2 (
√

2 − η))Ei(−mr)

12 γ 3 η

+ Re−mr (3 m3 r (
√

2 − η) + m2 rγ (−3 + rγ ) (
√

2 − η) + 2 γ 2(1 + mr) (2 η + rγ (−√
2 + η)))

2 rγ 2 (3 + 3 rγ + r2 γ 2) η

+ e2 rγ m2 R (3 − 3 rγ + r2 γ 2)(4 γ 2 (
√

2 − 2 η) − 3 m2 (
√

2 − η))Ei(−mr − 2 rγ )

12 γ 3(3 + 3 rγ + r2 γ 2) η
. (D4)

The second order can also be evaluated but the expression
is too long to be presented here. In Fig. 11 we present
the first order solutions compared to the exact ones. The
perturbative solutions of Appendix A are obtained from
the requirement that the S-wave u, becomes normalizable
when extended down to the origin. This can only happen

in the D/S asymptotic ratio, η takes the value given by
Eq. (A16). This illustrates the fact that perturbation theory
can always be applied at long distances but fails at short
distances.

Note that here one treats the coupling constant R and the
mixing parameter η as independent variables.
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