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Folding model analysis of proton radioactivity of spherical proton emitters
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Half-lives of the decays of spherical nuclei away from the proton drip line by proton emissions are estimated
theoretically. The quantum mechanical tunneling probability is calculated within the WKB approximation.
Microscopic proton-nucleus interaction potentials are obtained by single folding the densities of the daughter
nuclei with M3Y effective interaction supplemented by a zero-range pseudopotential for exchange along with
the density dependence. Parameters of the density dependence are obtained from the nuclear matter calculations.
Spherical charge distributions are used for Coulomb interaction potentials. These calculations provide reasonable
estimates for the observed proton-radioactivity lifetimes of proton-rich nuclei for proton emissions from
26 ground and isomeric states of spherical proton emitters.
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The proton separation energies of nuclei lying in the domain
beyond the proton drip line are negative. Consequently these
proton-rich nuclei have positive Q values for proton emissions
with a natural tendency to shed off excess protons and are
spontaneous proton emitters. The phenomenon of proton
emission from nuclear ground states limits the possibilities of
the creation of more exotic proton rich nuclei that are usually
produced by fusion-evaporation nuclear reactions. Apart from
providing the limit to the proton dripline, the one proton
radioactivity may be used as a tool to obtain spectroscopic
information because the decaying proton is the unpaired proton
not filling its orbit. These decay rates are sensitive to the
O values and the orbital angular momenta that in turn help to
determine the orbital angular momenta of the emitted protons.

Because the observation of proton radioactivity is compar-
atively recent, only few theoretical attempts have been made
to study this exotic process [1—4]. In the energy domain of
radioactivity, proton can be considered as a point charge having
highest probability of being present in the parent nucleus. It has
the lowest Coulomb potential among all charged particles and
mass being smallest it suffers the highest centrifugal barrier,
enabling this process suitable to be dealt within WKB barrier
penetration model. In the existing theoretical models [1,2]
for proton radioactivity, Saxon-Woods-type potential has been
used for the nuclear interaction. In another recent work [4],
a unified fission model with proximity potential for nuclear
force has been used. In the present work, quantum me-
chanical tunneling probability is calculated within the WKB
approximation using microscopic proton-nucleus interaction
potentials. These potentials have been obtained by single
folding the densities of daughter nuclei with a realistic effective
interaction supplemented by a zero-range pseudopotential for
exchange along with density dependence. Calculations using
such potentials provide excellent estimates for lifetimes of the
exotic decay process of proton radioactivity.
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A well-defined effective nucleon-nucleon (NN) interaction
in the nuclear medium is important not only for different
structure models but also for the microscopic calculation of
the nucleon-nucleus and nucleus-nucleus potentials used in
the analysis of the nucleon and heavy-ion scattering. Effective
NN interaction can be best constructed from a sophisticated
G-matrix calculation. This interaction has been derived by
fitting its matrix elements in an oscillator basis to those
elements of the G matrix obtained with the Reid-Elliott soft-
core NN interaction [5]. The ranges of the M3Y forces were
chosen to ensure a long-range tail of the one-pion exchange
potential as well as a short-range repulsive part simulating the
exchange of heavier mesons. Such an effective NN interaction
has been shown to provide a more realistic shape of the
scattering potentials of the nucleon or heavy-ion optical
potentials obtained by folding in the density distribution
functions of two interacting nuclei with the effective NN
interaction [6].

The density-dependent M3Y (DDM3Y) effective NN in-
teraction has been used to determine the incompressibility
of infinite nuclear matter [7]. The equilibrium density of the
nuclear matter has been determined by minimizing the energy
per nucleon. The density-dependence parameters have been
extracted by reproducing the saturation energy per nucleon
and the saturation density of spin and isospin symmetric
cold infinite nuclear matter. Results of such calculations also
provide a reasonable value of nuclear incompressibility. In
nuclear matter calculations, the calculation of potential energy
per nucleon involves folding of interaction of one nucleon with
the rest of the nuclear matter. It is therefore used in the single
folding model description for nuclear matter calculations and
thus density-dependence parameters obtained from nuclear
matter calculations may be used as it is in describing nucleon-
nucleus interaction potentials where single folding model
comes into play. Such nucleon-nucleus interaction potentials
have been used successfully to the analysis of elastic and
inelastic scattering of protons [8].

In the present work we provide estimates for the proton
radioactivity lifetimes of the spherical proton emitters from
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the ground and the isomeric states using the same nucleon-
nucleus interaction potentials obtained microscopically by
single folding the daughter nuclei density distributions with
a realistic DDM3Y effective interaction whose density-
dependence parameters have been extracted from the nuclear
matter calculations.

Formalism. The microscopic nuclear potentials Vy (R) have
been obtained by single folding the density of the daughter
nucleus with the finite range realistic DDM3Y effective
interacion as

Vn(R) = /p(V)v[IV — R|ld%r, ey

where R and 7 are, respectively, the coordinates of the emitted
proton and a nucleon belonging to the residual daughter
nucleus with respect to its center. The density distribution
function p used for the daughter nucleus has been chosen to
be of the spherically symmetric form given by the following:

p(r) = po/{1 + exp[(r — c)/al}, @)
where
c=r,(1—n%a?/3r2), r,=1.13A]" and a = 0.54fm
3)

and the value of p is fixed by equating the volume integral of
the density distribution function to the mass number A, of the
residual daughter nucleus. The distance s between a nucleon
belonging to the residual daughter nucleus and the emitted
proton is given by the following:

s=IF - Rl 4)

whereas the interaction potential between any such two nucle-
ons v(s) appearing in Eq. (1) is given by the DDM3Y effective
interaction. The total interaction energy E(R) between the
proton and the residual daughter nucleus is equal to the sum of
the nuclear interaction energy, the Coulomb interaction energy,
and the centrifugal barrier. Thus

E(R) = Vy(R) + Vc(R) + %11 + 1/2rR*),  (5)

where u = M,M;/M, is the reduced mass, M,,, M, and M4
are the masses of the proton, the daughter nucleus, and the
parent nucleus respectively, all measured in units of MeV /c?.
Assuming spherical charge distribution (SCD) for the residual
daughter nucleus, the proton-nucleus Coulomb interaction
potential Vc(R) is given by the following:

Ve(R) = Z4e*/R for R>R.
= (Zae®/2R)[3 — (R/R)’] for R<R., (6)
where Z; is the atomic number of the daughter nucleus. The
touching radial separation R, between the proton and the
daughter nucleus is given by R. = c, + ¢4, where ¢, and

cq have been obtained using Eq. (3). The energetics allow
spontaneous emission of protons only if the released energy

Q=My—(M,+ My )

is a positive quantity, where M4, M,,, and M, are the atomic
masses of the parent nucleus, the emitted proton, and the
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residual daughter nucleus, respectively, expressed in the units
of energy.

In this work, the half-life of the parent nucleus decaying
via proton emission is calculated using the WKB barrier pen-
etration probability. The assault frequency v is obtained from
the zero point vibration energy E, = (1/2)hw = (1/2)hv. The
decay half-life T of the parent nucleus (A, Z) into a proton and
a daughter (A4, Z,) is given by the following:

T =[(hIn2)/(2E)][1 + exp(K)], ®)

where the action integral K within the WKB approximation is
given by the following:

Ry
K=Q/m) | {2ulER)-E,— Q}'*dR, (9

Rq

where R, and R, are the two turning points of the WKB action
integral determined from the following equation:

E(Ry) = Q+ E, = E(Ryp). 10)

From a fit to the experimental data on cluster emitters a law
given by Eqn. (5) of Ref. [9], which relates E, with Q, was
found. For the present calculations same law extended to
protons is used for the zero point vibration energies. The shell
effects of proton radioactivity is implicitly contained in the
zero point vibration energy because of its proportionality with
the Q value.

Calculations. The M3Y interaction is based on a realistic G
matrix. Because the G-matrix was constructed in an oscillator
representation, it is effectively an average over a range of
nuclear densities and therefore the M3Y has no explicit density
dependence. For the same reason there is also an average over
energy and the M3Y has no explicit energy dependence either.
The only energy-dependent effect that arises from its use is
a rather weak one contained in an approximate treatment
of single-nucleon knock-on exchange. The success of the
extensive analysis [6] indicates that these two averages are
adequate for the real part of the optical potential for heavy ions
at energies per nucleon of <20 MeV. However, it is important
to consider the density and energy dependence explicitly
for the analysis of a-particle scattering at higher energies
(>100MeV), where the effects of a nuclear rainbow are seen
and hence the scattering becomes sensitive to the potential
at small radii. Such cases were studied, introducing suitable
and semirealistic explicit density dependence [10,11] into the
M3Y interaction, which was then called the DDM3Y and was
very successful for interpreting consistently the high-energy
elastic « and heavy-ion scattering data. Present calculations
have been performed using v(s), inside the integral of Eq. (1)
for the single folding procedure, as the DDM3Y effective [8]
interaction given by the following:

(s, p, E) = t™Y(s, E)g(p, E), an

where tM3Y is the same M3Y interaction supplemented by a
zero-range pseudopotential is

e—4s —2.5s
MY —=7999- _ 2134
4s 2.5s

+ Joo(E)S(s), 12)
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TABLE I. Comparison between experimentally measured and theoretically calculated half-lives of spherical proton emitters. The asterisk
symbol (*) denotes the isomeric state. The experimental Q values, half-lives, and / values are taken from Ref. [4]. The results of the present
calculations have been compared with the experimental values and with the results of UFM estimates [4]. Experimental errors in Q [14] values
and corresponding errors in calculated half-lives are given within parentheses.

Parent Angular Released 1st turning 2nd turning 3rd turning Expt. Present calc. UFM
nuclei momentum Energy point (fm) point (fm) point (fm)
L(h) OMeV) R, R, =R, R; =R, log,, T(s) log,, T(s) log,, T(s)

1055h 2 0.491(15) 1.55 6.58 134.30 2.049 1.97(46) 2.085
45Tm 5 1.753(10) 3.49 6.40 56.27 —5.409 —5.14(6) —5.170
“4TTm 5 1.071(3) 3.51 6.40 88.65 0.591 0.98(4) 1.095
Y Tm* 2 1.139(5) 1.58 7.15 78.97 —3.444 —3.39(5) -3.199
0Ly 5 1.283(4) 3.50 6.44 78.23 —1.180 —0.58(4) —0.859
150y 2 1.317(15) 1.59 7.20 71.79 —4.523 —4.38(15) —4.556
BlLu 5 1.255(3) 3.51 6.49 78.41 —0.896 —0.67(3) —0.573
By 2 1.332(10) 1.59 7.22 69.63 —4.796 —4.88(9) —4.715
155Ta 5 1.791(10) 3.51 6.55 57.83 —4.921 —4.65(6) —4.637
156y 2 1.028(5) 1.61 7.23 94.18 —0.620 —0.38(7) —0.461
156 5 1.130(8) 3.52 6.53 90.30 0.949 1.66(10) 1.446
157Ta 0 0.947(7) 0.00 7.42 98.95 —-0.523 —0.43(11) —0.126
160Re 2 1.284(6) 1.62 7.30 77.67 —3.046 —3.00(6) —3.109
161Re 0 1.214(6) 0.00 7.48 79.33 —3.432 —3.46(7) —3.231
I61Re* 5 1.338(7) 3.52 6.63 77.47 —0.488 —0.60(7) —0.458
1641y 5 1.844(9) 3.54 6.68 59.97 —-3.959 —3.92(5) —4.193
1657 5 1.733(7) 3.52 6.69 62.35 —3.469 —=3.51(5) —3.428
1661¢ 2 1.168(8) 1.61 7.35 87.51 —0.824 —1.11(10) —1.160
166 5 1.340(8) 3.56 6.70 80.67 —0.076 0.21(8) 0.021
1671r 0 1.086(6) 0.00 7.54 91.08 —0.959 —1.27(8) —0.943
167+ 5 1.261(7) 3.53 6.72 83.82 0.875 0.69(8) 0.890
7L Au 0 1.469(17) 0.00 7.60 69.09 —4.770 —5.02(15) —4.794
171 Ay 5 1.718(6) 3.52 6.77 64.25 —2.654 —3.034) 2917
17771 0 1.180(20) 0.00 7.62 88.25 —1.174 —1.36(25) —0.993
77T 5 1.986(10) 3.53 6.89 57.43 —3.347 —4.49(6) —4.379
185Bj 0 1.624(16) 0.00 7.77 65.71 —4.229 —5.44(13) —5.184

where the zero-range pseudopotential representing the single-
nucleon exchange term is given by the following:

Joo(E) = —=276(1 — 0.005E/A,) (MeV fm®) (13)

where E and A, are the laboratory energy and projectile mass
number respectively. In the present case of proton radioactivity
it can be shown that E/A, = Om/u, where m and p are
the nucleonic mass and reduced mass of the p + A, system,
respectively, in units of MeV/c?. The density-dependent part
has been taken to be [11] the following:

glp, E) = C(1 — B(E)p*],

which takes care of the higher order exchange effects and
the Pauli blocking effects. Constants of this interaction C and
B when used in single folding model descriptions, can be
determined from the nuclear matter calculations [7] as 2.07
and 1.624 fm? respectively.

The two turning points of the action integral given by Eq. (9)
have been obtained by solving Eq. (10) using the microscopic
single folding potential given by Eq. (1) along with the
Coulomb potential given by Eq. (6) and the centrifugal barrier
described in Eq. (5). Then the WKB action integral between
these two turning points has been evaluated numerically using

(14)

Egs. (1), (5), (6), (7), and (5) of Ref. [9]. Finally the half-lives
have been obtained using Eq. (8).

Results and discussions. In this work, the same set of
experimental data of Ref. [4] for the proton decay half-lives
have been chosen for comparison with the present theoretical
calculations. Experimentally measured values of the released
energy Q [given by Eq.(7)], which is one of the crucial quantity
for quantitative prediction of decay half-lives, have been used
for the calculations. The proton emitters and the experimental
values for their logarithmic half-lives have been presented in
Table 1. The corresponding results of the present calculations
with microscopic potentials are also presented along with the
results of the modified preformed cluster model (PCM) called
the unified fission model (UFM) calculations [4]. The three
turning points R, R, = R,, and R3 = R;, obtained by solving
Eq. (10) have been listed in the Table I.

Experimentally measured and theoretically calculated half-
lives of spherical proton emitters have been provided in
Table I. Positions of the turning points are very sensitive to
the Coulomb barrier. Comparing the results for ground and
isomeric states of same proton emitters it can be observed that
the positions of the turning points are quite sensitive to the
centrifugal barriers. Results of the present calculations with
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TABLEII. Comparison between theoretically calculated half-lives of spherical proton emitters using the GOMP [15] and FMPL respectively.
The asterisk symbol (*) denotes the isomeric state. Experimental Q values and / values used are taken from Ref. [4]. Errors in calculated
half-lives arising out of experimental errors in Q [14] values are given within parentheses. The overall normalization constant C = 2.07 is
not included in FMPL listed below at the turnings points and they should be multiplied by C to obtain their values used in the calculations or

comparing them with the GOMP.

Parent Ist Nuclear  2nd Nuclear 3rd GOMP Ist Nuclear 2nd Nuclear 3rd FMPL
nuclei  turning GOMP turning GOMP turning turning FMPL turning  FMPL  turning
point (fm) at R; point (fm) at R, point (fm) point (fm) at R, point (fm) at R, point (fm)

R, MeV R,=R, MeV R;=R, log,,T(s) R, MeV R, = R, MeV Ry =R, log,,T(s)
1055h 1.72 —60.5 6.58 —13.2  134.30 1.97(45) 1.52 —36.1 6.61 —6.4 134.30 1.95(46)
15 Tm 3.89 -59.9 6.56 —27.4 56.27 —5.23(6) 343 —35.7 6.47 —13.5 56.27 —5.18(6)
4TTm 3.90 —60.5 6.60 —27.7 88.65 0.86(3) 341 —36.1 6.46 —14.0 88.65 0.94(4)
4 Tm* 1.77 —61.6 7.25 —14.2 78.97 —3.44(5) 1.54 —36.5 7.19 -7.1 7897 —-3.41(05)
150y 3.93 —60.4 6.64 —27.7 78.23 —0.70(4) 3.44 —35.9 6.51 —13.9 78.23  —0.63(4)
150y 1.78 —61.5 7.27 —14.7 71.79 —4.43(14) 1.55 —36.3 7.24 -7.0 71.79  —4.40(15)
By 391 —60.6 6.66 —27.7 78.41 —0.78(3) 3.44 —36.0 6.52 —13.9 7841 —0.70(3)
Sy 1.79 —61.6 7.29 —14.7 69.63 —4.93(9) 1.56 —36.5 7.25 -7.0 69.63 —4.9009)
155Ta 3.91 —60.5 6.75 —26.9 57.83 —4.77(6) 3.44 —-36.0 6.62 —13.5 57.83 —4.70(6)
156 1.81 —61.9 7.33 —15.2 94.18 —0.44(7) 1.57 -36.7 7.27 -17.5 94.18 —-0.41(7)
156T* 3.92 —60.9 6.73 —27.9 90.30 1.53(10)  3.45 —36.2 6.60 —14.0 90.30 1.61(10)
157Ta 0.00 —62.1 7.52 —12.5 98.95 —0.49(11)  0.00 —35.8 7.48 —6.0 98.95 —0.46(11)
160Re 1.79 —61.8 7.40 —15.1 77.67 —3.06(6) 1.59 —36.8 7.33 7.4 77.67 —3.02(6)
161Re 0.00 —62.0 7.58 —12.4 79.33 —3.52(7) 0.00 —35.8 7.51 —6.1 79.33 —3.48(7)
161Re* 3.93 —61.0 6.84 —27.1 77.47 —0.73(7) 3.45 —36.3 6.70 —13.6 7747  —0.64(7)
1641y 3.95 —60.8 6.88 -27.0 59.97 —4.06(5) 3.44 —36.2 6.74 —13.5 59.97 —-3.97(6)
165+ 3.93 —61.0 6.89 —27.1 62.35 —3.65(5) 3.45 —36.3 6.76 —13.5 62.35 —3.56(5)
1661y 1.81 —62.1 7.49 —15.1 87.51 —1.18(10) 1.57 —36.8 7.39 —7.6 87.51 —1.13(10)
1667+ 3.93 —61.3 6.91 —27.2 80.67 0.07(8) 345 —36.5 6.77 —13.6 80.67 0.16(8)
1671 0.00 —62.3 7.64 —12.8 91.08 —1.34(8) 0.00 —-36.0 7.57 —6.3 91.08 —1.30(8)
1671+ 3.94 —61.4 6.92 —27.3 83.82 0.55(8) 343 —36.7 6.79 —13.6 83.82 0.64(8)
171 Au 0.00 —62.2 7.70 —12.7 69.09 —5.08(15)  0.00 —35.9 7.63 —6.2 69.09 —5.04(15)
171 Ay 3.94 —61.3 7.01 —26.4 64.25 —3.18(4) 3.46 —36.5 6.87 —13.2 64.25 —3.09(5)
17771 0.00 —62.5 7.76 —13.2 88.25 —1.44(25) 0.00 —36.1 7.69 —6.4 88.25 —1.39(26)
177T]* 3.92 —61.5 7.10 —26.5 57.43 —4.63(6) 343 —36.8 6.96 —13.2 5743  —4.54(6)
185Bj 0.00 —62.7 7.88 —13.1 65.71 —5.52(13)  0.00 —36.3 7.81 —6.3 65.71 —=5.47(13)

DDM3Y have been found to predict the general trend of the
experimental data very well. The quantitative agreement with
experimental data is good. The discrepancy between the results
of present calculation and the experimental values for some
cases may be because of the uncertainty in the measurements
of the QO values to which the results are quite sensitive
because of its proportionality with the zero-point vibration
energies. The degree of reliability of the present estimates for
the proton decay lifetimes are equivalent to the very recent
UFM estimates. Changing the value of density-dependence
parameter 8 to 1.668 fm? [12], obtained from nuclear matter
calculations using saturation energy per nucleon obtained from
fitting the masses of Audi-Wapstra-Thibault [13] mass table,
causes insignificant changes in the second decimal places of
logarithmic half-lives in some cases.

For an interesting comparison, the entire calculations have
been redone with the recent global optical model potential
(GOMP) for protons [15]. The real central part of the GOMP
for protons using the lab energy E = Q for the proton decay
process in place of Vi (R) of Eq. (5) along with the centrifugal
and Coulomb potentials, with R, of Eq. (6) taken equal to

[r.AY’1, where r. = 1.198 + 0.697A,% + 12.994A,°" for

the Coulomb potential, have been used to evaluate the action
integral. Results of these calculations have been presented in
Table II.

The isovector or the symmetry component of the DDM3Y
folded potential V,%““e(R) [16] has been added to the isoscalar
part of the folded potential whose results have already
been presented in Table I. The nuclear potential Vy(R) of
Eq. (5), therefore, has been replaced by Vy(R) + V,%a“e(R)
[17], where

ylne(R) — / / [P = pry Tl pan()
— 02, ()i [IF2 — 71 + R)drid’ry, (15)

where the subscripts 1 and 2 denote the daughter and the
emitted nuclei respectively, whereas the subscripts n and
p denote neutron and proton densities, respectively. With
the simple assumption that p;, = (Z4;/As)p and py, =
[(Ag — Z4)/A4lp, and for the emitted particle being proton
P20(r2) — p2p(r2) = —pa(r2) = —8(r2), the Lane potential be-
comes V" (R) = —[(Aq — 2Za)/ Adl [ p()uill7 — R|1dr,
where v(s) = t%\’BY(s, E)g(p, E) and for the isovector part
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t{VBY [6] is given by the following:

e—4s e—2.5s
MY = — 14886—— — 1176
4s 2.5s
+228(1 — 0.0050 m/)8(s). (16)

The inclusion of this Lane potential causes insignificant
changes in the lifetimes as can be seen from Table II. Although
the lifetimes obtained using GOMP are rather close to that
using isoscalar folded potentials with isovector Lane potentials
(FMPL) but the GOMP and FMPL are quite different at the
first and second turning points, while at third turning points
only Coulomb potentials and centrifugal barriers are effective
and nuclear potentials are negligibly small.

Summary and conclusions. The half-lives for proton ra-
dioactivity have been analyzed with microscopic nuclear
potentials obtained by the single folding the DDM3Y effective
interaction whose energy dependence parameters have been

PHYSICAL REVIEW C 72, 051601(R) (2005)

obtained from nuclear matter calculations. This procedure of
obtaining nuclear interaction potentials are based on profound
theoretical basis. The results of the present calculations are
in good agreement over a wide range of experimental data.
The discrepancy between the results of present calculation
and the experimental values for some cases may be because
of the uncertainties in measurements of the Q values. It is
worthwhile to mention that using the realistic microscopic
nuclear interaction potentials, the results obtained for the pro-
ton radioactivity lifetimes are noteworthy and are comparable
to the best available theoretical calculations. It is therefore
observed that the DDM3Y effective interaction provides
unified descriptions of cluster radioactivity [18], scatterings
of o and heavy ions [11] when used in a double folding model,
and nuclear matter [7,12] and elastic and inelastic scattering
of protons [8] when used in a single folding model. We find
that it also provides reasonably good description of proton
radioactivity.
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