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Time-reversal-violating Schiff moment of 199Hg
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We calculate the Schiff moment of the nucleus 199Hg, created by πNN vertices that are odd under parity (P) and
time-reversal (T). Our approach, formulated in diagrammatic perturbation theory with important core-polarization
diagrams summed to all orders, gives a close approximation to the expectation value of the Schiff operator in
the odd-A Hartree-Fock-Bogoliubov ground state generated by a Skyrme interaction and a weak P- and T-odd
pion-exchange potential. To assess the uncertainty in the results, we carry out the calculation with several Skyrme
interactions, the quality of which we test by checking predictions for the isoscalar-E1 strength distribution in
208Pb, and estimate most of the important diagrams we omit.
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I. INTRODUCTION

The existence of a permanent1 electric dipole moment
(EDM) in leptons, neutrons, or neutral atoms is direct evidence
for time-reversal (T) violation. Because of the CPT theorem,
the search for EDMs can provide us valuable information
about sources of CP violation. Though a phase in the Cabibbo-
Kobayashi-Maskawa matrix is enough to account the level of
CP violation in kaon and B-meson decays, it cannot explain
the observed matter/antimatter asymmetry in the Universe.
Physics that can (and new physics at the weak scale more
generically) should produce EDMs not far from current upper
limits.

So far no EDMs have been observed, but experiments
are continually improving. Here we are interested in the
conclusions that can be drawn from the measured upper
limit [1] in 199Hg, a diamagnetic atom. The largest part of
its EDM most likely comes from T violation in the nucleus,
caused by a T-violating (and parity-violating) component
of the nucleon-nucleon interaction. The atomic EDM is
generated by the subsequent interaction of the nucleus with the
electrons.

That interaction is more subtle than one might think. If
the nucleus and electrons were nonrelativistic point-particles
interacting solely via electrostatic forces, the electrons would
rearrange in response to a nuclear EDM to cancel it essentially
exactly. Fortunately, as was shown by Schiff [2], the finite size
of the nucleus leads to a residual atomic EDM. It turns out,
however, that the relevant nuclear quantity is not the nuclear
EDM but rather the nuclear “Schiff moment”

S ≡ 〈�0|Sz|�0〉, (1)

which is the nuclear ground-state expectation value, in
the substate |�0〉 with angular momentum projection MJ

equal to the angular momentum J, of the z-component of
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1Permanent or static, rather than induced.

the “Schiff operator”

S = e

10

Z∑
p=1

(
r2
p − 5

3
〈r2〉ch

)
rp. (2)

Here e is the charge of the proton, 〈r2〉ch is the mean squared
radius of the nuclear charge distribution, and the sum is
restricted to protons.

For the Schiff moment to exist, P and T must be violated
by the nuclear Hamiltonian. We assume that whatever its
ultimate source, the T violation works its way into a meson-
mediated P- and T-violating NN interaction generated from
a Feynman graph containing a meson propagator, the usual
strong meson-NN strong vertex and a (much weaker) P- and
T-violating meson-NN vertex. The second vertex can take three
different forms in isospin space. References [4,5] showed that
short-range nuclear correlations and a fortuitous sign make
the contribution of ρ- and ω-exchange to the interaction small
compared to that of pion-exchange if the T-violating coupling
constants of the different mesons are all about the same, and
so we neglect everything but pion exchange. The most general
P- and T-odd NN potential then has the form (h̄ = c = 1) [3]

W (ra − rb) = − gm2
π

8πmN

{[
ḡ0(τ a · τ b) − ḡ1

2

(
τ z
a + τ z

b

)
+ ḡ2

(
3τ z

a τ z
b − τ a · τ b

) ]
(σ a − σ b) − ḡ1

2

× (
τ z
a − τ z

b

)
(σ a + σ b)

}
· (ra − rb)

× exp (−mπ |ra − rb|)
mπ |ra − rb|2

[
1 + 1

mπ |ra − rb|
]
,

(3)

where mπ is the mass of the pion, mN that of the nucleon,
τ z|p〉 = −|p〉, g ≡ 13.5 is the strong πNN coupling constant,
and the ḡi are the isoscalar (i = 0), isovector (i = 1), and
isotensor (i = 2) PT-odd πNN coupling constants. A word of
caution here: more than one sign convention for the ḡ’s is in
use. Our ḡ0 and ḡ1 are defined with a sign opposite to those
used by Flambaum et al. [6,7] and by Dmitriev et al. [8,9].

0556-2813/2005/72(4)/045503(9)/$23.00 045503-1 ©2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.72.045503


J. H. DE JESUS AND J. ENGEL PHYSICAL REVIEW C 72, 045503 (2005)

The goal of this paper is to calculate the dependence
of the Schiff moment of 199Hg on the T-violating πNN

couplings (we leave the dependence of these couplings on
fundamental sources of CP violation to others) so that models
of new physics can be quantitatively constrained. An accurate
calculation is not easy because the Schiff moment depends
on the interplay of the Schiff operator with complicated
spin- and space-dependent correlations induced by the two-
body interaction W. In the early calculation by Flambaum,
Khriplovich, and Sushkov almost two decades ago [6],
the correlations were taken to be admixtures of simple
one-particle one-hole excitations into a Slater determinant
produced by a one-body Woods-Saxon potential.

More recent work [8,9] made significant improvements
by treating the correlations in the RPA after generating an
approximately self-consistent one-body potential. However,
that work used only the relatively schematic Landau-Migdal
interaction (in addition to W ) in the RPA and mean-field
equations, and did not treat pairing self consistently. The
reliance on a single strong interaction makes it difficult to
analyze uncertainty. Such an analysis seems to be particularly
important in 199Hg, the system with the best experimental
limit on its EDM. The calculated Schiff moment of Refs. [8,9]
in that nucleus depends extremely weakly on the isoscalar
coefficient ḡ0, a result of coincidentally precise cancellations
among single-particle and collective excitations. They might
be less precise when other interactions are used.

Here we make several further improvements. Our mean
field, which we calculate in 198Hg before treating core
polarization by the valence nucleon, includes pairing and
is exactly self-consistent. Pairing changes the RPA to the
quasiparticle-RPA (QRPA), a continuum version of which we
use to obtain ground-state correlations. Most importantly, we
carry out the calculation with several sophisticated (though
still phenomenological) Skyrme NN interactions, the appro-
priateness of which we explore by examining their ability to
reproduce measured isoscalar-E1 strength (generated by the
isoscalar component of the Schiff operator) in 208Pb. The use
and calibration of more than one such force allows us to get a
handle on the uncertainty in our final results.

The rest of this paper is organized as follows: Section II
describes our approach and the Skyrme interactions we use,
and includes their predictions for strength distributions that
bear on the Schiff moment. Section III presents our results and
an analysis of their uncertainty, including a calculation in the
simpler nucleus 209Pb that allows us to check the size of effects
we omit in 199Hg. Section IV is a conclusion.

II. PROCEDURE FOR EVALUATING SCHIFF MOMENTS

A. Method

Our Schiff moment is a close approximation to the
expectation value of the Schiff operator in the completely self-
consistent one-quasiparticle ground state of 199Hg, constructed
from a two-body interaction that includes both a Skyrme
potential and the P- and T-violating potential W. It is an
approximation because we do not treat W in a completely
self-consistent way, causing an error that we estimate to be

small in the Sec. III. In addition, we do not actually carry out the
mean-field calculation in 199Hg itself. Instead, we start from the
HF+BCS ground-state of the even-even nucleus 198Hg and add
a neutron in the 2p1/2 level. We then treat the core-polarizing
effects of this neutron in the QRPA. A self-consistent core
with QRPA core polarization is completely equivalent to a
fully self-consistent odd-A calculation [10]. We omit one part
of the QRPA core polarization, again with an estimate showing
its contribution to be insignificant.

A good way to keep track of the two interactions and their
effects is to formulate the calculation (and corrections to it) as
a sum of Goldstone-like diagrams, following the shell-model
effective-operator formalism presented, e.g., in Ref. [11]. The
one difference between our diagrams and he usual “Brandow”
kind is that our fermion lines will represent BCS quasiparticles
rather than pure particles or holes. Our diagrams reduce to the
familiar kind in the absence of pairing.

We begin, following a spherical HF+BCS calculation
in 198Hg (in a 20-fm box with mixed volume and surface
pairing fixed as in Ref. [12]), by dividing the Hamiltonian
into unperturbed and residual parts. The unperturbed part,
expressed in the quasiparticle basis, is

H0 = T + V00 + V11, (4)

where T is the kinetic energy and V the Skyrme interaction,
with subscripts that refer to the numbers of quasiparticles the
operator creates and destroys. The residual piece2 is

Hres = W + V22 + V13 + V31 + V04 + V40. (5)

The interaction W can also be expanded in terms of quasi-
particle creation and annihilation operators; all the terms
are included in Hres, though W00 vanishes because W is a
pseudoscalar operator. The valence “model space” of effective-
operator theory is one-dimensional: a quasiparticle with u = 0
and v = 1 (i.e., a particle, since it is not part of a pair)
in the a ≡ (2p1/2,m = 1/2) level. The unperturbed ground
state |�a〉 is simply this one-quasiparticle state. Then the
expectation value of Sz, Eq. (1), in the full correlated ground
state |�a〉 ≡ |�0〉 is given by

〈�a|Sz|�a〉 = N−1〈�a|
[

1 + Hres

(
Q

εa − H0

)
+ · · ·

]
Sz

×
[

1 +
(

Q

εa − H0

)
Hres + · · ·

]
|�a〉. (6)

Here εa is the single-quasiparticle energy of the valence
nucleon, the operator Q projects onto all other single-
quasiparticle states, N is a normalization factor that, we
will argue later, is very close to one, and the dots represent
higher-order terms in Hres. To evaluate the expression, we
write Sz in the quasiparticle basis as Sz = S11 + S02 + S20

(S00 vanishes for the same reason as W00).
The zeroth-order contribution to the Schiff moment in

Eq. (6) vanishes because the Schiff operator cannot connect
two states with the same parity, and also because the Schiff
operator acts only on protons while the valence particle in
199Hg is a neutron. (There are no center-of-mass corrections

2The BCS transformation makes V02 and V20 zero.
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FIG. 1. First-order quasiparticle diagrams
contributing to the Schiff moment. Diagrams
(i), (ii), (iv), and (v) do not contribute if the
valence nucleon is a neutron, which is the case
in 199Hg. Diagram (vi) is the complex conjugate
of diagram (iii). Although our diagrams display
only direct matrix elements of two-body interac-
tions, we include the exchange matrix elements
as well.

to the effective charges [13].) The terms that are first order in
Hres do not include the strong interaction V because it has a
different parity from the Schiff operator. Thus the lowest order
contribution to the Schiff moment is

〈�a|Sz|�a〉first−order = 〈−|qa

[
W

(
Q

εa − H0

)
Sz

]
q†

a|−〉 + c.c.,

(7)

where q
†
a is the creation operator for a quasiparticle in the

valence level a and |−〉 is the no-quasiparticle BCS vacuum
describing the even-even core, so that |�a〉 is just q

†
a|−〉.

The contribution of Eq. (7) in an arbitrary nucleus can be
represented as the sum of the diagrams in Fig. 1, the rules
for which we give in the Appendix.3 (Although our diagrams
display only direct matrix elements of two-body interactions,
we include the exchange matrix elements as well.) In 199Hg,
because the valence particle is a neutron, only diagrams
(iii) and (vi) are nonzero. We can interpret diagram (iii)
as the Schiff operator exciting the core to create a virtual
three-quasiparticle state, which is then deexcited back to the
ground state when the valence neutron interacts with the core

3These rules are similar to the ordinary Brandow-Goldstone-
diagram rules but since fermion lines represent quasiparticles, their
number need not be conserved at each interaction. In addition, we
have only upward going lines because there are no quasiholes.

through W. This diagram and its partner (vi) are what was
evaluated by Flambaum et al. [6], though their mean field was
a simple Woods-Saxon potential, their W was a zero-range
approximation that did not include exchange terms, and they
neglected pairing.

Core polarization, implemented through a version of the
canonical-basis QRPA code reported in Ref. [14] (with residual
spurious center-of-mass motion removed following Ref. [15]),
can be represented by a subset of the higher-order diagrams.
Because W is so weak, we need only include it in first
order. The higher order terms in V that we include have the
effect of replacing the two-quasiparticle bubble in (iii) and
(vi) of Fig. 1 with chains of such bubbles (see Fig. 2), as
well adding diagrams in which the QRPA bubble chains are
excited through a strong interaction of the core with the valence
neutron. We therefore end up evaluating diagrams labeled A,
B1, and B2, in Fig. 3 (plus two more of type B in which
the interaction W is below the Schiff operator). The explicit
expression for diagram A, the first on the left in the figure, is

〈�a|Sz|�a〉diag−A = −
∑

λ

∑
k>l

∑
k′>l′

Zλ∗
kl

〈 − |Sz
02|kl

〉
×Zλ

k′l′ 〈ak′l′|W31|a〉E−1
λ . (8)

Here, Zλ
kl ≡ Xλ

kl + Yλ
kl represents the QRPA amplitudes (the

sum appears because the matrix elements of all our operators

a

a

a

a

· · ·

a

a

FIG. 2. Examples of diagrams contributing
to the collective response to the Schiff operator.
The sum of all these diagrams is represented in
Fig. 3(i). The broken line represents the action
of the Schiff operator (as in Fig. 1), the zig-zag
line represents the P- and T-violating interaction
(also as in Fig. 1), and the looped line represents
a generic Skyrme interaction.
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FIG. 3. QRPA diagrams contributing to the Schiff moment. The
filled bubble represents an infinite sum of quasiparticle bubbles,
including all the forward and backward amplitudes. The two
B diagrams have partners (not shown) in which W acts below Sz.

are real) and Eλ is the energy of the collective state λ in 198Hg.
The quasiparticle matrix elements 〈−|Sz

02|kl〉 and 〈akl|W31|a〉
are related to the usual particle matrix elements 〈k|Sz|l〉
and 〈ak|W |al〉 through the transformations discussed in the
Appendix. In the absence of QRPA correlations, the X and Y
amplitudes are 1 or 0, and Eq. (8) reduces to that associated
with diagrams (iii) and (vi) of Fig. 1.

Diagrams B1 and B2 of Fig. 3 have the explicit expressions

〈�a|Sz|�a〉diag−B1 = −2
∑

λ

∑
i

∑
k>l

∑
k′>l′

〈a|W11|i〉

×Zλ∗
kl 〈i|V13|akl〉Zλ

k′l′
〈
k′l′|Sz

20| − 〉
× (εa − εi)

−1E−1
λ , (9)

〈�a|Sz|�a〉diag−B2 = −2
∑

λ

∑
i

∑
k>l

∑
k′>l′

〈a|W11|i〉Zλ∗
kl

× 〈−|Sz
02|kl

〉
Zλ

k′l′ 〈ik′l′|V31|a〉(εa−εi)
−1

× (Eλ − εa + εi)
−1. (10)

The factor 2 accounts for diagrams not shown in Fig. 3 in which
W acts below the QRPA bubble, and the ε’s are quasiparticle
energies. The difference between Eqs. (9) and (10) is mainly
in the three-quasiparticle intermediate states.

A complete QRPA calculation that is first order in W would
also include versions of diagram A in which W trades places
with one of the V’s in the bubble sum. We do not evaluate such
diagrams but estimate their size (which we find to be small)
from calculations in the simpler nucleus 209Pb in the next
section. We also use that nucleus to examine other low-order
diagrams not included in the bubble sum of diagram A.

Why do we expect the QRPA subset of diagrams to be
sufficient? The reason is that they generally account for the col-
lectivity of virtual excitations in a reliable way when calculated
with Skyrme interactions. We illustrate this statement below
with some calculations of isoscalar-E1 strength in 208Pb.

B. Interactions

We carry out the calculation with five different Skyrme
interactions: our preferred interaction SkO′ [12,16] (preferred
for reasons discussed in Ref. [17]), and the older, commonly
used interactions SIII [18], SkM∗ [19], SLy4 [20], and SkP

[21]. To get some idea of how well they will work, we calculate
the strength distribution of the isoscalar-E1 operator

D0 =
Z∑

p=1

r2
prp +

N∑
n=1

r2
n rn. (11)

This operator is interesting because it is the isoscalar version
of the Schiff operator (the isoscalar version of the second
term in the Schiff operator acts only on the center of mass
and so does not appear in D0). The isoscalar-E1 strength,
measured, e.g., in 208Pb [22], seems to fall mainly into two
peaks. The high-energy peak, related to the compressibility
coefficient K∞, [22–28], is observed to lie between 19 and
23 MeV, depending on the experimental method used [22,23].
Recent interest has focused on a smaller but still substantial
low-energy peak around 12 MeV, which has been studied
theoretically in the RPA [25,26] as well as experimentally [22].

Figure 4 shows the predictions of several Skyrme interac-
tions in the RPA, with widths of 1 MeV introduced by hand
following Ref. [24], for the isoscalar-E1 strength distribution
in 208Pb. The figure also shows the locations of the measured
low- and high-energy peaks of Davis et al. [23] and of
Clark et al. [22]. Nearly all self-consistent RPA calculations,
including ours (except with SkP) over-predict the energy of
the larger peak by a few MeV [22,25]. SIII does a particularly
poor job. The predicted low-energy strength is closer to
experiment, though usually a little too low. Table I summarizes
the situation. Unfortunately, the data are not precise enough to
extract much more than the centroids of the two peaks. Since
the Schiff-strength distribution in 199Hg helps determine the
Schiff moment, it would clearly be useful to have better data,
either in that nucleus or a nearby one such as 208Pb.

The isovector-E1 strength distribution also bears on
the Schiff moment through the second term of the Schiff
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FIG. 4. (Color online) Isoscalar-E1 strength distributions for
208Pb predicted by the Skyrme interactions SkP, SkO′, and SIII in self-
consistent HF+RPA. The experimental bounds on the low-energy
(Ex1) and high-energy (Ex2) peaks are also shown (see Table I).
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TABLE I. Comparison between experimental and theoretical
results for the centroids of the low- and high-energy peaks in the
distribution of isoscalar E1 strength in 209Pb. The experimental
results are from Refs. [22] and [23]. (Reference [23] identifies
only the high-energy peak.) The theoretical distributions are from
self-consistent HF+RPA calculations with five different Skyrme
interactions.

Low (MeV) High (MeV)

SkM∗ 11.0 25.3
SkP 10.0 23.4
SIII 11.6 28.3
SLy4 11.4 26.4
SkO′ 10.3 24.8
Experiment [23] − 22.4 ± 0.5
Experiment [22] 12.2 ± 0.6 19.9 ± 0.8

operator, but it is well understood experimentally and generally
reproduced fairly well by Skyrme interactions.

III. RESULTS AND ESTIMATE OF UNCERTAINTY

A. Results with several forces

The Schiff moment can be written as

S = a0gḡ0 + a1gḡ1 + a2gḡ2, (12)

where ḡi are the P- and T-odd πNN coupling constants
and all the nuclear physics is summarized by the three
coefficients ai . We present our results for these coefficients by
showing the effects, in turn, of several improvements on early
calculations.

The first calculations of Schiff moments [6], as noted above,
correspond to our first-order diagrams (iii) and (vi) of Fig. 1
but with no pairing, with a simple Woods-Saxon potential in
place of a self-consistent mean field, and with the zero-range
limit of the direct part of W. The results of Ref. [6] are given
here in the first line of Table II.

When we repeat the calculation, evaluating diagrams (iii)
and (vi) with W approximated by its direct part in the zero-
range limit and with the mean field from the Skyrme interaction
SkO′ (so that the only differences in the calculations are the
one-body potential and BCS paring), we get the coefficients in
second line of the table.

The finite range of the potential reduces the ai from these
zero-range values by 30–40%, depending on the Skyrme inter-
action used. Exchange terms, when the range is finite, decrease

TABLE II. Calculated coefficients ai from Ref. [6] and with the
Skyrme interaction SkO′ in several limits (see text). The full result
is in the last line. The units are e fm3.

a0 a1 a2

Ref. [6] 0.087 0.087 0.174
Naive limit 0.095 0.095 0.190
Diagram A only 0.018 0.034 0.031
Full result 0.010 0.074 0.018

a0 by a few percent, have no effect on a1 and increase a2 by half
the amount they decrease a0.

The three coefficients in lines 1 and 2 of the table are
not independent; the isotensor coefficient is exactly two times
larger than the isovector and isoscalar coefficients. Because the
valence neutron must excite core protons to couple to the Schiff
operator through (iii) and (vi) of Fig. 1, only the neutron-proton
part of W contributes, and under the assumptions of no core
spin, no exchange terms, and zero-range, W reduces to

W contact
direct (rn − rp) = − 1

2m2
πmN

(gḡ0 + gḡ1 + 2gḡ2)

× σ n · ∇nδ(rn − rp), no core spin.

(13)

Thus, in the approach of Flambaum et al. [6], the Schiff
moment is a function of a single parameter, usually called
ηnp. Exchange terms add another independent parameter and
QRPA bubbles bring in a third. This last term arises because
the valence neutron, besides exciting a proton quasiparticle
pair in the core, can now excite neutron quasiparticle pairs
that annihilate and create proton pairs inside the bubble that
then couple to the Schiff operator (see Fig. 2). Thus, in our
complete calculation, particularly when the B diagrams are
included, the three coefficients ai are independent.

The collectivity of the core turns out to be very important.
As can be seen in the third line of Table II, when the single-
particle bubble in the calculation above is replaced by the
full QRPA bubble sum to give diagram A, all three ai shrink
substantially. The reason is that the Schiff strength is pushed
on average to higher energies, both in the low-lying and high-
lying analogs of the isoscalar-E1 distribution. (The high-lying
peak actually is replaced by two peaks, the higher of which
is at about 38 MeV. There is no peak corresponding to the
giant isovector-E1 resonance, as was shown in Ref. [29].)
The reduction is greater in the isoscalar and tensor channels—
a factor of 4 to 6 depending on the Skyrme interaction—
than in the isovector channel, where it is a factor of 2 to 3.
Figure 5 shows the integral of the contribution to diagram A
as a function of core-excitation energy (so that at large energy
the lines approach the value for the diagram) for a1, with and
without the bubble sum, for all five forces.

The reason for the difference in the size of the reduction
is that the ḡ0 and ḡ2 parts of the interaction affect protons
and neutrons in opposite ways (see, e.g., Eq. (9) of Ref. [17]),
causing a destructive interference, while the ḡ1 part affects
them in the same way. This difference is absent from the single-
quasiparticle picture because neutron excitations of the core
do not play a role there. Another way of saying the same
thing is that when the neutrons and protons are affected in the
same way, the second (dipole-like) term in the Schiff operator,
Eq. (2), contributes very little because the center of mass and
center of charge move together. In the other two channels the
contribution of the second term is similar in magnitude and
opposite in sign to that of the first term so that, as Fig. 6
shows, the net value is smaller.

The type-B diagrams (see Fig. 2) are important corrections
to diagram A. The effective weak isoscalar and isotensor
one-body potentials (i.e., the tadpole) contribute with opposite
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part of the diagram is given by the lines at large energy) in the
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FIG. 6. (Color online) Integrated contributions of the first
(dashed) and second (dotted) terms in the Schiff operator, together
with the total contribution (solid) to diagram A, as a function of
core-excitation energy with the SkO′ interaction. The top panel is for
the isovector coefficient a1 and the bottom for the isoscalar coeffi-
cient a0.

TABLE III. Full coefficients ai in 199Hg for the five different
Skyrme interactions used here. The units are e fm3.

a0 a1 a2

SkM∗ 0.009 0.070 0.022
SkP 0.002 0.065 0.011
SIII 0.010 0.057 0.025
SLy4 0.003 0.090 0.013
SkO′ 0.010 0.074 0.018

sign from that of the isovector potential; again, see Eq. (9)
of Ref. [17], which displays the direct part of the one-body
potential explicitly. The sign turns out to be opposite that of
diagram A in the isoscalar and isotensor channels, further
suppressing a0 and a2, and the same as diagram A in the
isovector channel, largely counteracting the suppression by
collectivity in that diagram. The net result for SkO′ is in the
last line of Table II; for the other forces the net results appear
in Table III. The isovector coefficient a1 ends up not much
different from the early estimate of Ref. [6] but the isoscalar
coefficient a0 is smaller by a factor of about 9 to 40 and the
isotensor coefficient a2 by a factor of about 7 to 16.

B. Uncertainty and final result

The several Skyrme interactions we use all give different
results, but the spread in numbers is about a factor of four in
the isoscalar channel, two in the isotensor channel, and much
less for the large isovector coefficient a1. It is possible that
all the interactions are systematically deficient, but we have
no evidence for that. In any event, the effective interaction is
not the only source of uncertainty. We have evaluated only a
subset of all diagrams, and although it is not obvious whether
all the rest should be evaluated with effective interactions that
are determined through Hartree-Fock- or RPA-based fits, there
are some that should certainly be included and we would like to
estimate their size.

The diagrams labeled C and D in Fig. 7 are the leading terms
in bubble chains that would result from including W in the
Hartree-Fock calculation (C) and in the QRPA calculation (D)
in 198Hg. We evaluated both sets in the simple nucleus 209Pb
(which has no pairing at the mean-field level), and found that

a

a

(i) diag–C

a

a

(ii) diag–D

a

a

(iii) diag–E

FIG. 7. Diagrams we did not include in our calculation in 199Hg
but the value of which we estimated through calculations in 209Pb
(and 199Hg in the case of diagram C). We have omitted the labels on
the interactions; they are the same as in the earlier figures.
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diagram C can be nearly as large as the type-B diagrams in the
isovector and isotensor channels. The same is true of diagram
D in the isotensor channel. In that nucleus, however, diagram
A is much larger than all the others and essentially determines
the ai . In 199Hg, we only evaluated diagram C, but found that
even though diagrams A and B can cancel there, they do so
the most in the isoscalar channel, where the diagrams C and D
are smallest. In the end diagram C never amounts to more than
10% of the sum of the A and B diagrams, and usually amounts
to much less. Including the higher order (QRPA) terms in the
bubble chain will only reduce the diagram-C contribution, so
we conclude that it can be neglected. We are not positive that
the same statement is true of diagram D, but unless it is much
larger in 199Hg than in 209Pb (none of the other diagrams are),
it can be neglected too.

The diagram labeled E represents a correction from outside
our framework that is of the same order as the terms we include.
We evaluated it in 209Pb; it is uniformly smaller than those of
type C and D. Unless the situation is very different in 199Hg,
it can be neglected as well. The fact that these extra diagrams
are all small is not terribly surprising; they all bring in extra
energy denominators and/or interrupt the collective bubble.

We have also not included the normalization factor N in
Eq. (6). When calculated to second order in 209Pb, it is about
1.05, independent of the Skyrme interaction used. Though
this factor could be larger in RPA order because of low-lying
phonons, most strength is pushed up by the RPA and we do
not anticipate a large increase. It is reasonable to assume these
statements are true in 199Hg as well.

At short distances the NN potential is strongly repulsive and
the associated short-range correlations should be taken into
account. Reference [4], however, reports that the correlations
reduce matrix elements of the effective one-body P- and
T-violating pion-exchange potential only by about 5%, and
in Ref. [30], which calculates the Schiff moment of 225Ra,
their effects are smaller than 10%. We are not missing much by
neglecting them, though we would be if we included a ρ-meson
exchange potential.

When all is said and done, the uncertainty is dominated
by our uncertainty in the effective interaction. Our preferred
interaction is SkO′, which (to repeat) gives the result

SSkO′
199Hg = 0.010gḡ0 + 0.074gḡ1 + 0.018gḡ2 [e fm3]. (14)

If instead we average the results from the five interactions, we
get

Save
199Hg = 0.007gḡ0 + 0.071gḡ1 + 0.018gḡ2 [e fm3]. (15)

The range of results in Table III is a measure of the uncertainty.
As noted in the introduction, Refs. [8,9] contain a similar

calculation. They report

S
Ref.[8]
199Hg = 0.0004gḡ0 + 0.055gḡ1 + 0.009gḡ2 [e fm3], (16)

the most striking aspect of which is the isoscalar coefficient a0;
it is more than an order of magnitude smaller than our preferred
value and five times smaller than the smallest coefficient
produced by any of our interactions. We see no fundamental
reason for such serious suppression, and suspect that the same
cancellation we observe is coincidentally more precise in the

single Hg calculation of Refs. [8,9]. The authors applied their
method to other nuclei, but did not find the same level of
suppression in any of them. Even the cancellation produced in
our calculations by SkP and SLy4 seems coincidentally severe.
Though it is possible that other realistic Skyrme interactions
would produce still smaller coefficients, we have a hard time
imagining it.

IV. CONCLUSIONS

Our goal has been a good calculation of the dependence
of the Schiff moment of 199Hg, the quantity that determines
the electric dipole moment of the corresponding atom, on
three P- and T-violating πNN coupling constants. The current
experimental limit on the dipole moment of the 199Hg atom,
|d| < 2.1 × 10−28e cm, together with the theoretical results
of Ref. [31], d = −2.8 × 10−17(S/e fm3) e cm, yields the
constraint |S| < 7.5 × 10−12e fm3. The ai calculated in this
paper then give a constraint on the three ḡi .4

In obtaining the ai we have included what we believe to
be most of the important physics, including a pion-exchange
P- and T-violating interaction, collective effects that are
known to renormalize strength distributions of Schiff-like
operators, pairing at the mean-field level, self-consistency, and
finally, several different Skyrme interactions. The last of these,
together with an examination of effects we omitted, allows us
to give the first real discussion of uncertainty for a calculation
in this experimentally important nucleus.

We conclude that while the isovector coefficient a1 is not
very different from the initial estimate of Ref. [6], the isoscalar
coefficient, which determines the limit one can set on the QCD
parameter θ̄ , is smaller by between about 9 and 40 (with the
former our preferred value) and the isotensor parameter a2 by a
factor between about 7 and 16 (with our preferred value about
10). The uncertainty in these numbers comes primarily from
our lack of knowledge about the effective interaction. There is
good reason to make better measurements of low-lying dipole
strength, particularly in the isoscalar channel. They would help
to unravel the details of nuclear structure that determine the
Schiff moment.
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of nucleon EDMs on the Schiff moment of 199Hg.
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APPENDIX A: RULES FOR QUASIPARTICLE DIAGRAMS
IN THE UNCOUPLED BASIS

There are some differences between our rules for quasipar-
ticle diagrams and the usual rules for particle-hole diagrams.
The main one is that one- and two-body operators are written in
a quasiparticle basis and do not conserve quasiparticle number,
leading to different expressions for matrix elements. An exam-
ple is the generic quasiparticle operator O20, which contains
two quasiparticle creation and no destruction operators. Its
matrix elements will be written 〈kl|O20|−〉, which means that
it creates two quasiparticle states |k〉|l〉 out of the quasiparticle
vacuum |−〉.

In what follows, “in” refers to lines with arrows pointing
toward the vertex and “out” to lines pointing away from it. A
diagram should be read from top to bottom, and from left to
right. The rules are then

(i) Each operator O11 contributes 〈out|O11|in〉;
(ii) Each operator O20 contributes 〈out, out′|O20|−〉; be-

cause the diagram is read from the left, the label “out”
is on the line that is further to the left;

(iii) Each operator O02 contributes 〈−|O02|in, in′〉;
(iv) Each operator O22 contributes 〈out, out′|O22|in, in′〉;
(v) Each operator O31 contributes 〈out, out′, out′′|O31|in〉;

(vi) Each operator O13 contributes 〈out|O13|in, in′, in′′〉;
(vii) Each operator O40 contributes 〈out, out′, out′′, out′′′|

O40|−〉;
(viii) Each operator O04 contributes 〈−|O04|in, in′, in′′, in′′′〉;

(ix) The diagram should be summed over all intermediate
states;

(x) Energy denominators are evaluated by operating with
(εa − H0)−1 between the action of every two operators
in the diagram, giving [εa + ∑

k εk]−1, where εk are
quasiparticle energies;

(xi) The phase for each diagram is (−)nl , where nl is the
number of closed loops;

(xii) A factor of 1/2 is included for each pair of lines that
start at the same vertex and end at the same vertex.

Folded diagrams with additional rules occur in general, but
we do not discuss them here.

APPENDIX B: MATRIX ELEMENTS OF QUASIPARTICLES
OPERATORS

We first summarize some important quantities involving
the quasiparticle creation and annihilation operators q† and q,
which are defined in terms of the usual particle operators a†

and a by {
qk = ukak − vkã

†
k

q
†
k = uka

†
k − vkãk

,

(B1){
q̃k = ukãk + vka

†
k

q̃
†
k = ukã

†
k + vkak

.

Here

q̃k ≡ q̃lkjkmk
= (−)lk+jk+mkqlkjk−mk

= (−)lk+jk+mkq−k. (B2)

From the anticommutation rules for a† and a, we derive
the following anticommutation rules for the quasiparticle
operators in Eq. (B1)

{qk, ql} = {q†
k , q

†
l } = {q̃k, q̃l} = {q̃†

k , q̃
†
l }

= {q̃k, ql} = {q̃†
k , q

†
l } = 0,

(B3)
{qk, q

†
l } = {q̃k, q̃

†
l } = δkl,

{q̃k, q
†
l } = (−)lk+jk+mkδ−kl .

Using definition (B1) and properties (B2) and (B3), one can
write a one-body operator in second quantization as

T =
∑
kl

Tkla
†
kal = T0 + T11 + T20 + T02, (B4)

where

T0 =
∑

k

v2
kTkk, (B5)

T11 =
∑
kl

Tkl

(
ukulq

†
kql − vkvlq̃

†
l q̃k

)
, (B6)

T20 =
∑
kl

Tklukvlq
†
k q̃

†
l , (B7)

T02 =
∑
kl

Tklulvkq̃kql. (B8)

Here, the subscripts indicate the number of quasiparticle
creation and annihilation operators involved. In the same way,
a two-body operator takes the form

V = −1

4

∑
klij

(Vklij − Vklji)a
†
ka

†
l aiaj = −1

4

∑
klij

V klij a
†
ka

†
l aiaj

= V0 + V11 + V20 + V02 + V22 + V31 + V13 + V40 + V04,

(B9)

where

V0 = 1

4

∑
kl

(
ukvkulvlPkPlV k−kl−l + 2v2

kv
2
l V klkl

)
, (B10)

V11 = 1

2

∑
kli

ukvluiviPiV kli−i(q
†
k q̃l + q̃

†
l qk)

+
∑
kli

v2
kV klki(uluiq

†
l qi − vlvi q̃

†
i q̃l), (B11)

V20 = 1

4

∑
kli

uiviPiV kli−i(ukulq
†
kq

†
l + vkvlq̃

†
l q̃

†
k )

+
∑
kli

ukv
2
l viV klilq

†
k q̃

†
i , (B12)

V22 = 1

4

∑
klij

V klij (ukuluiujq
†
kq

†
l qj qi + vkvlvivj q̃

†
j q̃

†
i q̃kq̃l)

+
∑
klij

ukvlujviV klij q
†
k q̃

†
i q̃lqj , (B13)
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V31 = 1

2

∑
klij

ukvlV klij (uiujq
†
i q

†
j q̃

†
l qk + vivjq

†
k q̃

†
j q̃

†
i q̃l),

(B14)

V40 = 1

4

∑
klij

ukulvivjV klij q
†
kq

†
l q̃

†
j q̃

†
i , (B15)

with Pk = (−)lk+jk+mk , Vba = (Vab)† and V abcd = Vabcd −
Vabdc.

The matrix elements of quasiparticle operators are related
to those of the usual one- and two-body operators. We show

how this works for the operator T20; the generalization to other
operators follows automatically. T20 adds two quasiparticles to
any state. From |ij 〉 = q

†
i q

†
j |−〉 and Eq. (B7), we write

〈ij |T20|−〉 =
∑
kl

Tklukvl〈−|qjqiq
†
k q̃

†
l |−〉. (B16)

Since

〈−|qjqiq
†
k q̃

†
l |−〉 = Pl[−δjkδ−li + δ−lj δik], (B17)

Eq. (B16) becomes

〈ij |T20|−〉 = −Piujvi〈j |T | − i〉 + Pjuivj 〈i|T | − j 〉. (B18)
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