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Polarized neutron β-decay: Proton asymmetry and recoil-order currents
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We present an analytic, recoil-order calculation of the proton asymmetry from polarized neutron β-decay. The
differential decay rate in terms of electron energy and proton direction follows, parametrized in terms of the most
general Lorentz-invariant hadron current coupled to a left-handed lepton current. Implications for experimental
efforts to measure recoil-order currents are discussed.

DOI: 10.1103/PhysRevC.72.045501 PACS number(s): 24.80.+y, 23.40.Bw, 11.40.−q

It is possible to calculate the decay distributions of the
proton, electron, and antineutrino from a polarized, free
neutron due to the weak interaction with great precision within
the framework of the standard model. In the case of neutron
decay, electromagnetic effects are relatively small. Conse-
quently, precision measurements of the decay distributions
from polarized neutrons are good candidates in the search for
new physics. Measurements of the correlations from polarized
free neutrons in conjunction with the neutron lifetime, τn,
have been used to study the overall coupling constant, GF , the
ratio of the axial vector to vector couplings, to put limits on
possible right-handed currents, and to probe for time reversal
invariance-violating effects [1]. Given the neutron lifetime,
τn ∝ [|Vud|2G2

F (1 + 3λ2)]−1, it is also possible to extract the
quark-mixing matrix element |Vud| from measurements of τn

and λ, where λ is the ratio of axial vector to vector coupling in
the hadron current. The value of |Vud| has important implica-
tions for the unitarity of the CKM matrix in conjunction with
|Vus| and |Vub| via the constraint |Vud|2 + |Vus|2 + |Vub|2 = 1.
There are ongoing efforts to improve significantly on these
measurements [2–6].

The purpose of this paper is to present an anlytical
formula for the proton asymmetry from polarized neutron
decay including recoil-order effects. It is useful to expand
the neutron’s differential decay rate in terms of the electron’s
maximum energy divided by the neutron mass. We refer
to this small, dimensionless quantity as R for recoil, R ≡
max(Ee/mn) ≈ .001. Both kinematic effects and terms in
the interaction current proportional to the momentum transfer
contribute at O(R). Taking these effects into account will play
a role not only in searching for new physics but in extracting the
standard-model form factors from combined measurements.

Excellent reviews on the effects of recoil-order corrections
in beta decay already exist [7–9], so here we give a brief intro-
duction. A common expression for the decay rate [10] is
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(2π )5
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(1)

in which E0 is the maximum electron energy, −→pe and −→pν are
the momenta of the electron and neutrino, and Ee and Eν are
the energies of the electron and neutrino.

−→
P is the neutron’s

polarization. As can be seen from the equation a determines
the e − ν correlation, A the beta asymmetry, B the neutrino
asymmetry, and D is a T-odd term. The coefficients a,A,B,
and D depend on the form of the interaction. Within the
standard model and ignoring recoil-order effects and radiative
corrections,

a = 1 − λ2

1 + 3λ2
, A = 2λ(1 − λ)

1 + 3λ2
, and B = 2λ(1 + λ)

1 + 3λ2
.

(2)

To first order (O(R)), the neutrino exhibits a large asymmetry
(B ≈ 0.98) and the electron exhibits a small asymmetry (A ≈
−0.1, see Fig. 1).

Because the neutron is a composite object the weak current
contains terms in addition to those found for point-like
particles and the most general possible (Lorentz invariant)
V-A hadron current can be written with six dimensionless
constants (form factors), three vector (fi), and three axial
vector (gi). Parametrizing these currents in terms of the
momentum transfer leads to a matrix element of the form

M = GF√
2
〈p|Jµ(q2)|−→n 〉 × e(pe)γµ(1 − γ5)ν(pν), (3)

in which

〈p(p′)|Jµ|n(p,
−→
s )〉

= p(p′)
[
f1γ

µ − i
f2

mn

σµνqν + f3

mn

qµ − g1γ
µγ5

+ i
g2

mn

σµνγ5qν − g3

mn

γ5q
µ
]
n(p,

−→
s ). (4)

Here qµ = pµ − p′µ is the momentum transfer, which is equal
to the difference between the neutron (pµ) and proton (p′µ)
momenta. mn and

−→
s are the neutron’s mass and spin. Because

the mass of the neutron is of order 1 GeV, while the momentum
transfer in its decay is ≈1 MeV the recoil-order effects are of
order 0.1%. All the vector (fi) form factors are related to the
isovector electromagnetic form factors of the nucleon via the
conservation of the vector current (CVC) hypothesis [11,12]:

f1 = 1

f2 = µp − µn

2
(5)

f3 = 0.
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FIG. 1. (Color online) The beta asymmetry, with f2 set to its CVC
hypothesis value and all other recoil-order hadron couplings set to
zero. The beta asymmetry is dominated by the overall factor β = pe

Ee
.

Both the terms with f3 and g2 are called second class currents
(SCC) [13]. Within the standard model and assuming isospin
to be an exact symmetry f3 and g2 should be zero, but due to the
difference in the quark wave functions within the neutron and
proton one expects [14,15] g2/g1 in the range ≈ 0.01−0.05.
Presently the best value of g2 comes from an experiment in
the A = 12 system [16], which found 2g2/g1 = −.15 ± .12 ±
.05(theory). The pseudoscalar term g3 only results in smaller
terms that do not contribute to O(R2).

Measurements of neutron decay have a distinct advantage
over experiments with composite nuclei in terms of systematic
uncertainties, since one need not account for the effects of
the many-body nuclear system. In a composite nucleus, the
observables used to search for second-class currents include
contributions from first-class currents. In order to disentangle
the effects of these two types of couplings, it is necessary to
measure both β+ and β− decays from mirror nuclei. It is also
necessary to calculate and compensate for the two separate
nuclear transition matrix elements to the daughter nucleus to
use the data from the mirror nuclei. The neutron is simply
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FIG. 2. (Color online) The proton asymmetry, with f2 set to its
CVC hypothesis value and all other recoil-order hadron couplings set
to zero. 
p is equal to the observable 2(Np+ − Np−)/(Np+ + Np−).
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FIG. 3. (Color online) Possible changes in the proton asymmetry.
The solid line is the change in 
p from f2 set to the value predicted
by the CVC hypothesis to f2 = 0. The dashed line is the change in

p from λ equal to the world average [1] to λ set to the world average
plus its uncertainty, λ + �λ.

three quarks in a bound state. Precision measurements of the
parity-breaking beta and proton asymmetries with respect to
the neutron spin could provide better tests of the recoil-order
terms within the weak interaction hadron current. To this end,
we present a calcuation of the proton asymmetry.

Much work has been done on recoil-order effects in
the weak interaction. Recoil-order calculations of the lepton
asymmetry were performed by Harrington [8] for the polarized
weak hadron decays of the neutron, �−,
, and . A very
general treatment within “effective field theory” covering
various asymmetries and correlations of both composite nuclei
and hadrons was published by Holstein [9]. Recently, Gardner
and Zhang [17] gave results specialized to the neutron for the
β-asymmetry and eν correlation. Glück and Toth [18] numeri-
cally calculated asymmetries, including the recoil asymmetry.
Notably missing from all this work is an analytic calculation
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FIG. 4. (Color online) The possible changes in the beta asym-
metry. The solid line is the change in 
e from f2 set to the value
predicted by the CVC hypothesis to f2 = 0. The dashed line is the
change in 
e from λ equal to the world average to λ set to the world
average plus its uncertainty, λ + �λ.
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FIG. 5. (Color online) The ratio 
p/
e, which is independent of
the neutron’s polarization, with f2 set to its CVC hypothesis value
and all other recoil-order hadron couplings set to zero. The plot
excludes the lowest energies because the ratio diverges as Ee → me

and 
e → 0.

of the recoil asymmetry. We performed an analytic calculation
of the recoil asymmetry for completeness, maximum insight
into possible systematic errors, and to get access to as many
analysis tools as possible for neutron β-decay. It is experimen-
tally possible to measure both the electron and the proton
from neutron β-decay. Several experimental collaborations
[2–4,19,20], are making precision measurements of A and
the recoil asymmetry; hopefully calculations of the recoil
asymmetry will prove useful in subsequent analyses.

In the process of evaluating the proton asymmetry, it was
natural to reevaluate the hadronic matrix element. We found
differences with previous calculations that are listed under
Ref. [8]. Evaluation of the matrix element in the rest frame of
the neutron leads to a general expression of the form

M = C1 + −→
P · (C2

−→pe + C3
−→pν + C4(−→pe × −→pν )), (6)
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FIG. 6. (Color online) Changes in the ratio 
p/
e. The solid line
is the change in the ratio from f2 set the value predicted by the CVC
hypothesis to f2 = 0. The dashed line is the change in the ratio from
λ equal to the world average to λ set to the world average plus its
uncertainty, λ + �λ.

in which each Ci is a function of the four-momenta pe, pp,
and pν . We performed recoil-order calculations of a and
A, obtaining agreement with the results of Gardner and
Zhang [17]. Experimentally, current values of these parame-
ters are λ = −1.2695 ± .0029, a = −0.103 ± .004, and A =
−0.1173 ± .0013 [1].

The desired new observable is the decay rate in terms of
electron energy and proton angle, or d2�

dEed(cos θp) . The easiest

way to calculate this is to first integrate over d3−→pν , then
d(cos θep). In order to obtain the asymmetry term C3 as a
function of −→pp instead of −→pν , simply substitute −→pν = −−→pe −−→pp. With the limits cos(θep) = ±1, conservation of energy and
momentum give three limiting equations,

|−→pν | = Eν = (mn − Ee − Ep) = |−→pe | + |−→pp|,
|−→pe | − |−→pp|, and

|−→pp| − |−→pe |. (7)

The first two provide lower limits of the integral over proton
momentum for low and high electron energies, respectively,
and the last is an upper limit for all electron energies. The first
of the two lower limits applies when −→pe is smaller than −→pν ,
which is equivalent to Ee < Ec

e , where Ec
e is the solution to−→pe = −→pν . The second lower limit applies when −→pe is larger

than −→pν , or when Ee > Ec
e . These limits reflect the fact that in

the neutron’s rest frame at very low electron energies, the recoil
momentum must oppose the neutrino momentum; similarly at
high electron energies, the recoil momentum must oppose the
electron’s momentum.

It is simplest to express the result in terms of the dimen-
sionless recoil variables. To this end, we define

R ≡ E0

mn

= m2
n + m2

e − m2
p

2m2
n

≈ .0014,

x ≡ Ee

E0
= Ee/(Rmn),

ε ≡
(

me

mn

)2

≈ 3 · 10−7, and (8)

β ≡ pe

Ee

,

xc ≡ Ec
e

E0
= mn

[
(mn− mp)2 + m2

e

]
(mn−mp)

[
(mn− mp) (mn + mp) + m2

e

] ≈ 0.578

and the limits for the integral over proton momentum become

pp/mn ≡ y

y− = R(1 − x)

1 − Rx(1 + β)
− βRx(x < xc)

(9)

y− = βRx − R(1 − x)

1 − Rx(1 + β)
(x > xc)

y+ = βRx + R(1 − x)

1 − Rx(1 − β)
(upper limit ∀x).

Two integrals are necessary to obtain the proton asymmetry,
one for the portion dominated by the neutrino (Ee small) and

045501-3



S. K. L. SJUE PHYSICAL REVIEW C 72, 045501 (2005)

one for the portion dominated by the electron. The results
for the proton asymmetry follow (see Appendix), with all
recoil-order terms included. See Fig. 2 for a plot of the proton
asymmetry. All plots are of the observable


 = 2(N+ − N−)/(N+ + N−), (10)

where N+ is the number of the given particle emitted in
the hemisphere defined by a positive dot product with the
direction of the neutron’s polarization, and N− is the number
in the opposing hemisphere. 
 is 1 if the given particle
is always emitted along the parent’s polarization, 0 if the
particle is emitted isotropically, and -1 if all emissions oppose
the parent’s polarization. Note that the value of the proton
asymmetry ranges from −
ν at Ee = me to −
e at Ee = E0.

The proton asymmetry follows, omitting a factor of |f1|2
so that f1 is normalized to 1. The equations appear as if
all form factors are real for the sake of brevity. To obtain
the more general complex expressions, first separate all
possible factors of λ2 and replace with |λ|2. All remaining
expressions involve only two form factors. Take the real
part of the product of one form factor and the complex
conjugate of the other, e.g., f2f3 → Re(f2f

∗
3 ). (The only

possible exception is a single factor of λ, which would imply
Re(f1g

∗
1 ).)

d2�

dEed(cosθp)
= 2|GF |2

(2π)3
(mnR)4βx2(1 − x)2[1 +Ap cosθp],

(11)

Ap = − 2λ

3(1 − x)2 (1 + 3λ2)
× [3λ(1 − x)2 + 3(1 − x)2 + β2x((2 − 3x) + λ(−2 + x))]

+R
2

3(1 − x)2(1 + 3λ2)2
× {

λ
[
3(1 − x)3(λ3 − λ2 − λ + 1) + β2x

(
λ3

(−5 + 3x − 4x2 − 4β2x + 19
5 β2x2

)

+ λ2
(
9 − 11x + 4x2 − 11

5 β2x2
) + λ

(−3 + 5x − 4x2 + 4β2x − 27
5 β2x2

) + (−1 + 3x − 4x2 + 3
5β2x2

))]
+f2λ

[
3λ2(1−x)2(x + 2)+3λ(1−x)2(3x −4)+6λ(1−x)3 +β2x(λ2(1−2x)(10x − 7) + λ(7 − 8x + 2x2) − 6(1 − x)2)

+β4x2 (
λ2 (−8 + 53

5 x
) + λ(6 − 11x) + (

2 − 4
5x

))] + 2f 2
2 λ[λ(−3(1 − x)3 + β2(1 − x)(3 − 4x + 2x2)

+β4(1 − x)(x − 2) − 3(1 − x)3 + β2(1 − x)(3 − 8x + 6x2) + β4x(1 − x)(2 − 3x)] + 2f2f3λ
2[−3(1 − x)3

+β2(1 − x)(3 − 4x + 2x2) + β4x(1 − x)(x − 2)] + f3λ[3λx(1 − x)2 + x(1 − x)2 + β2x(λ(−3 + 4x − 2x2)

+ (−3 + 8x − 6x2)) + β4x2(λ(2 − x)) + (−2 + 3x)] + g2
[
2λ3(3(1 − x)3 + β2x(1 − 2x)(1 − x) − β4x2(2 − x))

+ λ2(3(x − 4)(1 − x)2 + β2x(1 − 10x + 12x2)) + β4x2
(
4 − 27

5 x
) + 3λ(3(1 − x)2 − β2x(2 − x))

+ (
3x(1 − x)2 + β2x(1 − 2x) + 1

5β4x3
)]} + O(R2)

(
Ee < Ec

e

)
, (12)

Ap = 2λ

3βx2(1 + 3λ2)
× [−λ(1 − x2) + (1 − 3x)(1 − x) + 3β2x2(λ − 1)] − R

2λ

15βx2(1 + 3λ2)2
× {(1 − x)(2x2 + 21x − 13)

+ 15β2x2(1 − 2x)+λ[−(1 − x)(3 − 41x + 28x2)+5β2x(2x + 1)(2 − 3x) − 30β4x3]+λ2[−(1 − x)(39 − 103x+34x2)

+ 5β2x2(1 − 10x)] + λ3[31 − 28x − 7x2 + 4x3 + 5β2x(−2 + 3x − 10x2) + 30β4x3] + f2λ[−3(1 − x)2(3x + 2)

+5β2x(1 + 4x − 8x2) − 15β4x3] + 10f 2
2 λ[(3x − 1)(1 − x)2 + λ(x + 1)(1 − x)2 + β2(1 − x)(1 − 4x + 6x2 − λ(1 + 2x2))

+ 3β4x2(1 − x)(1 − λ)] + 10f2f3λ[(1 − x)2((3x − 1) + λ(x + 1) + β2(1 − x)((1 − 4x + 6x2) − λ(2x2 + 1))

+ 3β4x2λ(1 − x)(1 − λ)] + 5xf3λ[−(1 − x)(3x − 1) + λ(x2 − 1) + β2((−1 + 4x − 6x2) + λ(1 + 2x2)) + 3β4x2(1 − λ)]

+ g2[−2(1 − x)(3x2 + 4x − 2) + 10λ(x2 − 1) + 5λ2x(x2 − 1) − 10λ3(x + 1)(1 − x)2 + 10β2x(−x + x2 + 3λx

+ λ2(1 − x + 9x2) + λ3(1 − x)(2x − 1)) + 15β4x3λ(1 − λ)]} + O(R2)
(
Ee > Ec

e

)
. (13)

The proton asymmetry could be used to measure f2

and check its agreement with the CVC hypothesis. The
absolute magnitude of the f2 contribution to 
p (Fig. 3) is
approximately twice as large as the f2 contribution to 
e, the
beta asymmetry (Fig. 4). The overall magnitude of the proton
asymmetry is much larger, but the f2 contribution results in a
shift of 1.896 keV in the electron energy at which 
p crosses
zero, which could be detected with sufficient precision. The

proton distribution is isotropic at a higher electron energy if
f2 = 0.

SCC effects would be much harder to observe. Based on
the current limit, g2 could only contribute to 
p at 5% of the
level at which f2 does. To extract g2 from a measurement of

p would require accuracy better than one part in 10000.

Incomplete knowledge of the polarization of the neutron
could be a dominant systematic effect in experiments to
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measure decay asymmetries [20], so it is useful to consider
a quantity that is independent of the polarization. The ratio

p/
e is independent of the neutron’s polarization. Figure 5
shows the ratio 
p/
e. 
p/
e also shows sensitivity to the
values of f2 and λ. Figure 6 shows the change in 
p/
e,
which is at the 1% level. So not only is the ratio of the
asymmetries independent of the neutron’s polarization, it is
also more sensitive to variations in the parameters λ and f2

than either 
p or 
e alone.
In summary, we presented an analytical expression for

the proton asymmetry from polarized neutron decay and

used it in conjunction with a similar expression for the
beta asymmetry to highlight advantages of a combined
measurement.
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