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Pion-induced pion production in heavy-baryon chiral perturbation theory
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We study the reaction π + N → 2π + N within the framework of heavy-baryon chiral perturbation theory of
chiral order three. The reaction cross section from threshold up to pion laboratory kinetic energies of 400 MeV
is found to be in reasonable agreement with experimental data. A host of differential cross sections and angular
correlations are also calculated and are found to be in semiquantitative agreement with the data. We find that
contributions from amplitudes of chiral order three are large and play an essential role in reproducing the
experimental data. Unitarity corrections arising from the imaginary parts of the loop-level Feynman diagrams are
the only parameter-free predictions of the present calculations. It is found that the unitarity effects in some reaction
channels are sizable. Finally, we evaluate polarization observables (asymmetries) for the transverse polarization of
the proton target and find that the asymmetries are generally small (�0.4) for the reaction under consideration.
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I. INTRODUCTION

The reaction π + N → 2π + N is a well-known chiral
process and has been the subject of a number of exper-
imental [1–28] and theoretical investigations [29–38]. The
reaction is of interest in connection with various aspects of
chiral symmetry and its spontaneous breaking, including a
determination of ππ scattering amplitudes and the study of
nonlinear realizations of chiral symmetry.

Chiral perturbation theory (χPT) is the effective field theory
of strong interactions at low energies. Over the past two
decades, χPT has emerged as the appropriate framework for
studying low energy processes involving pions, nucleons, and
photons as external gauge fields. The mesonic sector of the
theory has enjoyed substantial success in describing a number
of important results. While being successful, the baryon sector
of the theory, known as baryon chiral perturbation theory
(BχPT), has posed some theoretical and phenomenological
challenges. The problematic feature of the original formulation
of BχPT [39,40] is that loop diagrams may contribute to
lower order calculations. As a result, the unique chiral power
counting scheme which is the essence of χPT formalism is
ruined. The problem can be circumvented by employing the
method of heavy baryon chiral perturbation theory (HBχPT)
[41]. There has been some suggestions with regard to the slow
convergence of HBχPT. More recently, manifestly Lorentz
covariant formulations of BχPT which embody consistent
power counting schemes have been introduced [42–46].
These formulations may also address the question of slow
convergence of the chiral series. An issue, however, has been
raised at the phenomenological level [47]. The majority of
calculations in the baryon sector of χPT have been performed
within the framework of HBχPT, and the method is still
being utilized in some recent calculations [48]. The HBχPT
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techniques are also currently used in the context of lattice
QCD [49]. There exists a number of comprehensive reviews
on the topic of χPT and its applications [50–52].

In this paper, we study the reaction π + N → 2π + N

within the framework of HBχPT of chiral order three, O(q3).
An extensive study of the same reaction in HBχPT of O(q3)
was undertaken in Refs. [34,38]. While the overall quantitative
agreement with experimental results are of similar quality
in the present and previous [34,38] calculations, there are
small differences between the two sets of results. We attribute
these differences, in part, to the slow convergence of HBχPT
series for the reaction under consideration. We will present a
simple example to demonstrate that, while using equivalent
Lagrangians, different truncation schemes at the Feynman
diagram level result in different quantitative values for some
observables. The slow convergence of HBχPT in the context of
a different reaction has also been discussed in Ref. [53]. In this
paper, we will also present the first calculation of polarization
observables (target asymmetries) for the reaction π + N →
2π + N in HBχPT. The asymmetries have been recently
measured at TRIUMF, and the data analysis is in progress [54].

This paper is organized as follows. An overview of the
formalism, along with the notation employed in the present
work, is given in Sec. II. Section III includes a description
of the calculations and the results obtained for the reaction
cross sections, differential cross sections, angular correlations,
asymmetries, threshold amplitudes, and the threshold unitarity
effects. An example illustrating consequences of different
truncation schemes in HBχPT is discussed in Sec. IV. The
summary and conclusions are presented in Sec. V.

II. FORMALISM

There are comprehensive reviews on HBχPT in the
literature [50–52]. In this section, we will briefly specify our
notation along with the procedure employed. The essential idea
in HBχPT is that, by performing a heavy-field transformation,
the nucleon mass is shifted from the propagator to the
denominator of relevant interaction vertices in the effective
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chiral Lagrangian. The resulting Lagrangian is generally
referred to as the HBχPT Lagrangian.

The heavy-field transformation can be written as

Nv(x) = eiMvµxµ

P +
v ψ(x), (1)

P +
v = 1

2 (1 + v/), v2 = 1, (2)

where vµ is a time-like velocity four-vector, P +
v is a projection

operator, M is the nucleon mass, ψ is the nucleon’s Dirac field,
and Nv is the velocity-dependent heavy-field representing
a nucleon in HBχPT. The building blocks of the HBχPT
Lagrangian have well defined chiral transformation properties.
In the absence of external fields and in the isospin symmetric
limit, the relevant quantities are

χ = (mu + md )B0 = m2
π , χ± = u†χu† ± uχ †u, (3)

uµ = i(u†∂µu − u∂µu†), ∇µ = ∂µ + �µ,
(4)

�µ = 1
2 (u†∂µu + u∂µu†),

where U = u2 is an SU(2) valued matrix containing the pion
isotriplet field for which we employ the representation

U = eiτ ·π/F , (5)

where F is the pion decay constant and π(x) denotes the pion
isotriplet field. Also appearing in the formalism is the so-called
spin operator, given by

Sµ = i

2
γ5σ

µνvν. (6)

A. The Lagrangian

The most general chiral-invariant effective Lagrangian for
the πN system is given by

Leff = Lπ + LπN , (7)

Lπ = L(2)
π + L(4)

π + . . . , (8)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + . . . , (9)

where the superscripts denote the chiral order. In the absence of
external fields and in the isospin symmetric limit, the mesonic
Lagrangians read [39]

L(2)
π = F 2

4
〈(uµuµ)〉 + 1

2
m2

πF 2〈U 〉, (10)

L(4)
π = 1

16
{4l1〈uµuµ〉2 + 4l2〈uµuν〉2 + l3〈χ+〉2

+ 2l4(〈χ+〉〈uµuµ〉 + 2〈χ2
−〉)}, (11)

where 〈· · ·〉 denotes a trace in the SU(2) isospace, and the
scale-independent LECs in the loop-level Lagrangian L(4)

π are
defined as

l̄i = 32π2

γi

li − 2 ln
mπ

µ

{
1

d − 4
− 1

2
[ln(4π ) + 1 + �′(1)]

}
,

(i = 1, 2, 3, 4) (12)

with (γ1, γ2, γ3, γ4) = (1/3, 2/3,−1/2, 2). In the absence of
external fields and in the isospin symmetric limit, the πN

Lagrangians can be written as [55]

L(1)
πN = N̄v(iv · ∇ + gAS · u)Nv, (13)

L(2)
πN = N̄v

{
− 1

2M
(∇2 + igA{u · v, S · ∇}) + a1

M
〈u · u〉

+ a2

M
〈(u · v)2〉 + m2

πa3

M
〈U + U †〉

+ ia5

M
εµναβvαSβuµuν

}
Nv. (14)

The chiral Lagrangian of O(q3) can be written as the sum

L(3)
πN = L(3),Fixed

πN + L(3),CT
πN , (15)

where L(3),Fixed
πN involves the fixed coefficients from πN

Lagrangians of chiral orders one and two, whereas the counter-
term Lagrangian L(3),CT

πN is required for renormalization and
involves new LECs. These Lagrangian pieces are of the form
[55,56]

L(3),Fixed
πN = gA

8M2
N̄v [∇µ, [∇µ, S · u]]Nv

+ 1

2M2
N̄v

{
−

(
a5 − 1 − 3g2

A

8

)
uµuνε

µναβSβ∇α

+ gA

2
S · ∇u · ∇ +

(
a2 + 5g2

A

8

)
〈iuµu · v〉∇µ

− g2
A

8
{v · u, uµ}εµναβvαSβ∇ν + h.c.

}
Nv, (16)

L(3),CT
πN = 1

(4πF )2
N̄v

(
23∑
i=1

biOi

)
Nv. (17)

The scale-independent LECs in L(3),CT
πN are defined as

b̃i = bi − βi

{
1

d − 4
− 1

2

[
ln(4π ) + 1 + �′(1)

] + ln
mπ

µ

}
.

(18)

The pertinent pieces of the Lagrangian L(3),CT
πN contributing to

the reaction π + N → 2π + N are listed in Table I .1

B. Transition amplitudes and Feynman graphs

Consider the π + N → 2π + N reaction

πa(q) + N (pi) −→ πb(q1) + πc(q2) + N ′(pf ), (19)

where the superscripts a, b, and c are the pion isospin indices in
the physical basis (+, 0,−), and N and N ′ are the initial-state
and final-state nucleons, respectively. In HBχPT, pi = Mv +
li and pf = Mv + lf , where l denotes the residual nucleon
momentum, M is the nucleon mass, and M � l · v.

1The counterterm Lagrangian L(3),CT
πN of Ref. [55] contains 24 terms.

However, it has been shown that the operator O4 in L(3),CT
πN has a

fixed coefficient a2/M [56]. Thus, the number of independent terms
in L(3),CT

πN is 23. In this paper, we have moved the operator O4 of
Ref. [55] from L(3),CT

πN to L(3),Fixed
πN .
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TABLE I. Counterterms of O(q3) and their β-functions pertinent
to the reaction π + N → 2π + N .

i Oi βi

1 i[uµ, [v · ∇, uµ]] −g4
A

/
6

2 i[uµ, [∇µ, v · u]] − (
1 + 5g2

A

) /
12

3 i[v · u, [v · ∇, v · u]]
(
3 + g4

A

) /
6

5 ivλε
λµνρ〈uµuνuρ〉 0

6 [χ−, v · u]
(
1 + 5g2

A

) /
24

11 S · u〈u · u〉 gA

(
1 + 5g2

A + 4g4
A

) /
2

12 uµSν〈uµuν〉 gA

(
3 − 9g2

A + 4g4
A

) /
6

13 S · u〈(v · u)2〉 −gA

(
2 + g2

A + 2g4
A

)
14 v · uSµ〈uµv · u〉 (

3g3
A + 2g5

A

)
3

15 εµνρσ vρSσ 〈[v · ∇, uµ]uν〉 g4
A

/
3

16 εµνρσ vρSσ 〈uµ[∇ν, v · u]〉 0
17 S · u〈χ+〉 (

gA + 2g3
A

) /
2

19 iSµ[∇µ, χ−] 0

The transition amplitude for the reaction π + N → 2π +
N can be written as

Tfi = Afi〈N |τλ|N ′〉, (20)

Afi = ū
(αf )
v (lf )Au(αi )

v (li), (21)

where u(α)
v denotes the heavy baryon spinor. We find that the

amplitude A can be decomposed as

A = SµAµ + iεαβµνv
αqβq

µ

1 qν
2 B, (22)

Aµ = A0q
µ + A1q

µ

1 + A2q
µ

2 , (23)

where Ai (i = 0, 1, 2) and B are invariant functions of
external momenta. The amplitudes Ai and B are obtained by
adding terms of appropriate structure from all the diagrams
contributing to the process under consideration. To a given
chiral order, the transition amplitude Tfi receives contributions
from all possible connected Feynman diagrams up to that
order. The topologically distinct diagrams of up to O(q3)
contributing to the reaction π + N → 2π + N are shown in
Fig. 1. The self-energy graphs are not shown.

The transition amplitude Tfi can be written as a sum of the
amplitudes of well-defined chiral order. Up to O(q3) one has
Tfi = ∑3

i=1 T
(i)

fi , where the superscript (i) denotes the chiral

order. The amplitudes T (i)
fi of order O(qi) receive contributions

from the following diagrams:

(i) The O(q) graphs are the trees constructed with L(1)
πN and

L(2)
π .

(ii) The O(q2) graphs are the trees constructed with
L(1)

πN ,L(2)
πN and L(2)

π .
(iii) The O(q3) graphs include three types of contributions:

(a) the trees constructed with L(1)
πN ,L(2)

πN ,L(3)
πN ,L(2)

π , and
L(4)

π ;
(b) the loop diagrams with vertices from L(1)

πN and L(2)
π ;

(c) the tree diagrams of O(q) multiplied by appropriate
powers of nucleon and pion renormalization con-
stants ZN [57] and Zπ [58] to arrive at diagrams of
O(q3).

FIG. 1. Topologically distinct graphs contributing to the reaction
π + N → 2π + N up to O(q3).

As a necessary check of our calculations, it was verified that
the sum of the diagrams of O(q3) are free of ultraviolet
divergences.

We find that loop integrals fall into the following two
categories:

(i) Analytically solvable integrals involving only two pion
propagators, as well as integrals involving one pion and
arbitrary number of nucleon propagators;

(ii) Numerically solvable integrals involving at least one
nucleon and two pion propagators.

Had it not been for the second type of integrals, the entire
transition amplitude would have been expressed in closed
analytical form. The explicit expressions for the one-particle
irreducible Feynman diagrams, as well as the relevant loop
integrals, are somewhat unwieldy. These expressions are
available in Ref. [59].

III. CALCULATIONS AND RESULTS

The methodology of calculations in HBχPT is well docu-
mented [50,52]. There is a proliferation of LECs beyond O(q2)
in HBχPT. In general, only a subset of LECs contribute to a
given reaction. The numerical values of the LECs originating
from L(1)

πN ,L(2)
πN ,L(2)

π ,L(4)
π , and contributing to the reaction

under consideration are listed in Tables II, III, and IV.

TABLE II. LECs contributing to amplitudes
of O(q) or higher in HBχPT [58].

Fπ (MeV) gA

92.4 ± 0.3 1.2601 ± 0.0025
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TABLE III. LECs contributing to amplitudes of O(q2) or higher
in HBχPT [53].

a1 a2 a3 a5

−2.60 ± 0.03 1.40 ± 0.05 −1.00 ± 0.06 3.30 ± 0.05

In addition, for the reaction π + N → 2π + N , there are
13 LECs originating from L(3)

πN corresponding to different
terms listed in Table I. Five relevant combinations containing
seven LECs were previously determined in connection with
the elastic πN scattering and the Goldberger-Treiman discrep-
ancy. These are listed in Table V. The remaining six LECs of
O(q3), b̃5, b̃11, b̃12, b̃13, b̃14, b̃17, need to be determined. We
emphasize that we treat the previously determined LECs as
fixed, and will attempt to determine only the unknown LECs
by fitting the experimental data. There are a variety of total and
differential cross sections available for the reaction π + N →
2π + N . We include the total [1–25] and double differential
[26,27] cross section data with Tπ � 250 MeV in the fitting
procedure. The kinematic range was chosen to coincide with
the previous work on the same reaction for comparison
[38]. Once the LECs are determined, our predictions include
total cross sections with Tπ � 250 MeV, invariant differential
cross sections, angular correlation functions, and polarization
observables. As a fitting strategy, it was initially assumed that
LECs of O(q3) should be constrained to a natural size of 10 in
dimensionless units. This condition proved to be too restrictive.
The constraint was then relaxed and the unknown LECs were
allowed to vary over a wider range. It was found that different
sets of LECs can reproduce the data with a similar quality of fit,
so far as χ2/dof is concerned. To facilitate the selection of a
set of LECs, the renormalization group fixed-point analysis of
the LECs proposed in Ref. [60] was employed. In this method,
one obtains an estimate of the ratios of the LECs which have
nonvanishing beta functions. As a result, one can arrive at
relations between the known and unknown LECs. This leads
to estimates for the LECs b̃11, b̃12, b̃13, b̃14, b̃17. The LEC b̃5,
having a vanishing beta function, cannot be estimated in this
method. It is worth mentioning that, with our representation of
the pion field (5), the LEC b̃5 contributes only to the reaction
channels involving a single neutral pion in the final state.
The above-mentioned estimates of the unknown LECs with
allowance for a broad range of variations were then inputted
in the fitting routine. It was found that a creative use of initial
estimates results in a faster convergence of the fitting routine.
The set of LECs employed in present calculations are listed in
Table VI.

TABLE IV. LECs originating from the mesonic Lagrangian of
chiral order O(q4) contributing to amplitudes of O(q3) or higher in
HBχPT [39].

l̄1 l̄2 l̄3 l̄4

−2.3 ± 3.7 6.0 ± 1.3 2.9 ± 2.4 4.3 ± 0.9

TABLE V. The dimensionless LECs originating from the meson-
baryon Lagrangian of chiral order O(q3) contributing to amplitudes
of O(q3) or higher in HBχPT [53].

b̃1 + b̃2 b̃3 b̃6 b̃15 − b̃16 b̃19

2.4 ± 0.3 −2.8 ± 0.6 1.4 ± 0.3 −6.1 ± 0.4 −2.4 ± 0.2

A. Total cross section

Our results for the reaction cross section in the low energy
region (Tπ � 250 MeV, fitting region) and in the broader
kinematic range of up to Tπ = 400 MeV are shown in Figs. 2
and 3, respectively. The prominent features of the results may
be summarized as follows. As one moves away from the
reaction threshold, the leading order calculations [calculations
of O(q)] significantly underestimate the data. Contributions
from terms of O(q2) are generally small, whereas contributions
of O(q3) are large and result in a much improved agreement
with experimental data. As expected, the relative contributions
of nonleading terms increase with energy. One may also note
that for an effective theory that is expected to work in the
threshold region the overall agreement between theory and
experiment at higher energies seems reasonable.

B. Differential cross section

As described above, the available low-energy double
differential cross section data, d2σ/d�dT [26,27], and the
reaction cross section data were used to determine the unknown
LECs of O(q3). Two samples of fitted results for d2σ/d�dT

for different kinematic conditions are shown in Fig. 4. The
quality of fit to the remaining d2σ/d�dT data is similar to
what is shown in Fig. 4.

The subsequent theoretical results presented in this section
can be regarded as predictions rather than fits. The sample
calculations for invariant differential cross sections, dσ/dsππ

and dσ/dtππ , are shown in Figs. 5 and 6. The sample results
for the angular correlation function W (θπ , φπ ) are shown in
Fig. 7.

The common feature of the differential cross section cal-
culations presented in this work is that contributions of O(q3)
are large. Furthermore, to the extent that the experimental data
is reproduced these contributions are essential.

C. Threshold amplitudes

HBχPT provides a systematic chiral expansion of S-matrix
elements for single nucleon processes. Although the expansion
is carried out in a special reference frame characterized by a
time-like unit four-vector vµ, it has been pointed out [61]
that the physical observables are independent of the choice
of the frame due to the Lorentz invariance of the underlying
meson-baryon Lagrangian.

The analysis of experimental data is often carried out in
terms of the Lorentz-invariant form factors and amplitudes.
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TABLE VI. LECs of chiral order O(q3) determined in this work by using the fitting procedure described in the text. The χ2/dof of the fit
is 3.4.

b̃5 b̃11 b̃12 b̃13 b̃14 b̃17

2.6 ± 3.3 −25.1 ± 6.2 −10.2 ± 4.7 22.3 ± 5.7 −8.4 ± 2.7 −5.3 ± 1.1

Therefore, it is desirable to express the invariant am-
plitudes in terms of the frame-dependent quantities of
HBχPT. The key step in finding relationships between the
two sets of amplitudes is the introduction of a matching

condition. Following Ref. [61], we write the matching
condition as

ū(pf ) �u(pi) = ūv(pf ) �̂uv(pi), (24)

180 200 220 240

 Tπ (MeV)

0

50

100

150

σ 
(µ

b)

π − +  p  --->  π +  +  π − + n

180 200 220 240

Tπ (MeV)

0

10

20

30

σ 
(µ

b)

π + +  p  --->  π +  +  π 0 + p

180 200 220 240

Tπ (MeV)

0

10

20
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40

σ 
(µ

b)

π + +  p  --->  π +  +  π + + n

180 200 220 240

Tπ (MeV)

0

10

20

30

σ 
(µ

b)

π − +  p  --->  π −  +  π 0 + p

180 200 220 240

Tπ (MeV)

0

50

100

150

σ 
(µ

b)

π − +  p  --->  π 0  +  π 0 + n

FIG. 2. Fits to total reaction cross sections in the low energy domain, Tπ � 250 MeV. The dotted curve, the dashed curve, and the solid
curve represent, respectively, the calculations of O(q),O(q2), and O(q3). Experimental data are taken from Refs. [1–25].
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FIG. 3. Predictions for reaction cross sections up to Tπ = 400 MeV. For notation see Fig. 2. Experimental data are taken from Refs. [1–25].

where u and uv denote the Dirac and the heavy baryon spinors,
respectively, and � and �̂ are operators acting on appropriate
spinors. The relation between the spinors u and uv is given by

u(p) = p/ + M

E + M
uv(p). (25)

The matching condition (24) holds in any reference frame
due to the Lorentz invariance of the formalism. A particularly
convenient choice for practical calculations is the initial
nucleon rest frame (INRF) defined as [61]

pi = Mv, pf = pi + Q = Mv + Q. (26)

For the reaction, we set Q = q − q1 − q2. Using Eq. (25)
and after some straightforward calculations, we find that the
matching condition (24) in the INRF results in the translation
Table VII, with C = 1 − Q2/4M2.

The HBχPT amplitude for the reaction π + N → 2π + N

(19) is given by Eq. (20), with the explicit tensor structures
[Eqs. (22) and (23)]. The relativistic amplitude for the same
reaction is parametrized as [31,32]

Tfi = ū(pf )γ5[f1 + f2 �q1 + f3 �q2 + f4 �q1 �q2]u(pi). (27)

Use of Table VII, along with the matching condition (24),
results in the following relations between the relativistic and
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TABLE VII. Translation table of � and �̂ for the π + N → 2π +
N reaction.

� �̂

1 1

γ5
(q − q1 − q2) · S

MC

γ5 q/1

1

MC
{−S · q1(2MC + v · q1) − S · q2v · q1 + S · qv · q1}

γ5 q/2

1

MC
{−S · q1v · q2 − S · q2(2MC + v · q2) + S · qv · q2}

γ5 q/1 q/2

1

MC

{
−S · q1

(
2Mv · q2 + q · q2 − m2

π

)
+ S · q2

(
2Mv · q1 + q · q1 − m2

π − 2q1 · q2

)
+ S · qq1 · q2 + i

2
εµναβvαqβq

µ

1 qν
2

}

heavy-baryon structures:

f1 = M

(
1 − t

4M2

)
(A0 − 2Bq1 · q2) + 1

2
(A0 + A1)v · q1

+ 1

2
(A0 + A2)v · q2 + [v · q1q · q2 − v · q2q · q1

+ v · (q2 − q1)
(
m2

π + q1 · q2
)]

B, (28)

f2 = − 1
2 (A0 + A1) − [

2Mv · q2 + q2 · (q − q1) − m2
π

]
B,

(29)

f3 = − 1
2 (A0 + A2) + [

2Mv · q1 + q1 · (q − q2) − m2
π

]
B,

(30)

f4 = 2M

(
1 − t

4M2

)
B. (31)

It is important to note that these relations are valid to all orders
in perturbation theory. In this work, however, the HBχPT
amplitudes are calculated only up to order O(q3). If we use
the threshold kinematics along with the explicit form of the
Dirac spinor, Eq. (27) becomes

Tfi = 1

2M
χ (αf )† [ − f1 + mπ (f2 + f3) − m2

πf4
]
σ · qχ (αi )

≡ aχ (αf )† σ · qχ (αi ), (32)

TABLE VIII. Calculated values of D1 and D2.

O(q) O(q2) O(q3)

D1(fm3) 2.50 2.14 1.90 ± 0.33
D2(fm3) − 7.70 − 6.96 −11.44 ± 2.11

where

a = 1

2M

[
mπ (f2 + f3) − f1 − m2

πf4
]
. (33)

The quantity a is commonly referred to as the threshold
amplitude. Let a0 and a+, represent the amplitudes for the
reactions π−p → π0π0n and π+p → π+π+n, respectively.
It is shown that near the reaction threshold, where only S
and P partial waves make significant contributions, the isospin
decomposition of the threshold amplitudes yields

a0 = 2

3

1√
5
a3,2 +

√
2

3
a1,0, and a+ = 2√

5
a3,2, (34)

where a2I,Iπ denote the amplitude for a reaction channel having
a total isospin I and the di-pion isospin Iπ . The information
about the ππ interaction in a well defined isospin channel
is contained in the isospin amplitudes [62,63]. The relations
between a2I,Iπ and the threshold isospin amplitudes D1 and
D2 introduced in Ref. [34] are given as

D1 = 1√
10

a3,2 = 1

2
√

2
a+, (35)

D2 = −2

3

a3,2

√
10

− 1

3
a1,0 = − 1√

2
a0. (36)

In brief, our calculations include the following steps. We
first compute the HBχPT amplitudes A0, A1, A2, and B.
Substitution of these amplitudes into Eqs. (28)–(31) yields
the invariant amplitudes f1, f2, f3, and f4. Finally, we use
Eq. (33) to obtain the threshold reaction amplitudes a0 and a+
from a knowledge of f1, f2, f3, and f4. Our numerical results
for D1 and D2 up to chiral order O(q3) are listed in Table VIII.
A notable feature of these results is the large contribution of
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FIG. 4. Sample fits to double differential cross section data. For legends see Fig. 2. Experimental data from Refs. [26,27].
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FIG. 5. Sample predictions for the differential cross section dσ/dsππ . Here, sππ is the square of the invariant dipion mass in the final state
measured in units of µ2 = 4m2

π . For legend see Fig. 2. Data are from Refs. [23,24].

the nonleading terms to the amplitude D2. A comparison of
our results with the experimental data and with the results of
previous theoretical works is presented in Table IX. Our results
should be compared with HBχPT calculations of Ref. [34]
which are in very good agreement with the data. We believe
that the difference between the two sets of calculations is
partially due to different truncation schemes employed at the
amplitude level (as discussed in Sec. IV), and partially due to
using different values of LECs of O(q3). Finally, we note that
the calculations in Ref. [31], while not fully consistent with
the power counting scheme of chiral perturbation theory, yield
results which are in reasonable agreement with experimental
data.

D. Unitarity Effects

Unitarity of the S-matrix requires that, in general, the
S-matrix elements be complex. In a perturbative evaluation
of the S-matrix, the tree diagrams are purely real, whereas
the loop diagrams are generally complex. Therefore, the
imaginary part of the scattering amplitude for a given process
originates entirely from the loop diagrams. In HBχPT, the loop
diagrams first set in at order O(q3). The loop diagrams of order
O(q3) involve vertices from the lowest order Lagrangians
L(1)

πN and L(2)
π with accurately determined LECs: gA and Fπ .

Hence, the imaginary parts of the amplitudes of O(q3) can
be viewed as parameter-free predictions of our calculations.
Our calculated values of the threshold invariant amplitudes
are listed in Table X. We find that the imaginary parts of

TABLE IX. Values of D1 and D2.

Experiment Present work Theory Theory
[65] [34] [31]

D1(fm3) 2.26 ± 0.12 1.90 ± 0.33 2.65 ± 0.24 1.87
D2(fm3) −9.05 ± 0.36 −11.44 ± 2.11 −9.06 ± 1.05 −10.58

the amplitudes are generally non-negligible, and in certain
instances are comparable with the real parts.

It is desirable to compare the parameter-free predictions of
our loop-level calculations with the previous work in HBχPT
for the reaction under consideration. That information is not
available in the literature. For completeness sake, however,
we make a few remarks about the tree-level calculations in
Ref. [31]. As mentioned before, the calculation of Ref. [31]
is not fully consistent with the chiral power counting scheme.
There, the imaginary parts of the amplitudes are generated
entirely by the width of the intermediate-state nucleon res-
onances. The findings of Ref. [31] may be summarized by
saying that the imaginary parts of the amplitudes are sizable
and play a significant role in providing a reasonable fit to the
various observables considered.

E. Polarization observables

There are at least two motives for studying polarization
observables for the reaction π + N → 2π + N . First, accurate
extraction of threshold amplitudes from experimental data
requires disentanglement of different spin structures in the
reaction amplitude. The unpolarized cross section measure-
ments have limitations in this regard [36]. Furthermore, one
may expect that the amplitude-selective nature of polarization
observables may provide additional constraints for determi-
nation of the LECs of the theory. A theoretical investigation
of the polarization observables based on phenomenological
scattering amplitudes for the reaction π + N → 2π + N was
carried out in Ref. [36]. Our calculations are performed in
HBχPT. For the polarized target, the square modulus of the
transition amplitude summed over appropriate nucleon spin
degrees of freedom in the initial and final states can be written
as

|Tfi|2 =
∑
αi ,αf

∣∣ū(αf )
v (pf )�v(n)Au(αi )

v (pi)
∣∣2

, (37)
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TABLE X. Numerical values of f1, f2, f3, and f4 at threshold.

Channel O(qn) f1/m2
π f2/m3

π f3/m3
π f4/m4

π

π− + p → π 0 + π 0 + n O(q) −44.30 3.90 3.90 0
O(q2) −39.51 3.81 3.81 0
O(q3) −38.69 + i 47.88 3.20 − i5.22 3.20 − i5.22 0

π+ + p → π+ + π+ + n O(q) 30.75 −1.44 1.44 0
O(q2) 25.36 −1.71 1.71 0
O(q3) −23.71 − i3.89 1.67 + i0.03 1.67 + i0.03 0

where A is given by Eq. (22), u(α)
v denotes a heavy baryon

spinor with a polarization label α,�v(n) is a spin projection
operator

�v(n) = 1 + 2Sv · n

2
, (38)

with nµ a unit space-like polarization four-vector, and Sv

the spin operator given by Eq. (6). In the target rest frame,
nµ = (0, n), and �v reduces to (1 + σ · n)/2. Using explicit
expressions for T given by Eqs. (22) and (23), straightforward
calculation results in the following expression for the square
modulus of the transition amplitude:

|Tfi|2 = C(pi)C(pf ) ×
(

+1

4
[|A · v|2 − |A|2]

+ εαβµνεabcdv
αvaqβqbq

µ

1 qc
1q

ν
2 qd

2 |B|2

+ εαβµν

(
vαqβq

µ

1 qν
2 Im[(n · A)∗B] − vαqβq

µ

1 qν
2 (v · n)

×Im[(v · A)∗B] + i

4
vαnβAµ(Aν)∗

))
, (39)

where C(p) ≡ (v · p + M/2M) = 1 on the mass shell. The
first two line in Eq. (39) correspond to the unpolarized target,
whereas the remaining two lines represent contributions due
to the target polarization. As one might expect, polarization
effects are manifested as the interference between real and
imaginary parts of the transition amplitude. In HBχPT the

imaginary part of an amplitude originates entirely from loop
diagrams. Therefore, one obtains nonvanishing results for
polarization observables only at O(q3) and beyond. Following
Ref. [36], we define an asymmetry as

Axy(φz) ≡ σ (φz) − σ (−φz)

σ (φz) + σ (−φz)
, (40)

where x, y, z are three (not necessarily orthogonal) vectors.
The angle φz is the azimuthal angle of z in a plane which
contains y and is orthogonal to xy-plane. A comprehensive list
of asymmetries for the reaction π + N → 2π + N is given
in Ref. [36], wherein it was predicted that, for the transverse
polarization of the target all but two observables, An,p(φq) and
An,q(φp), are small. Here, n is the unit polarization vector for
the target proton, q is the momentum of the incoming pion
beam, and p is the momentum of the final-state nucleon.2

Our calculations in HBχPT show that all asymmetries are
small (i.e., Axy(φz) � 0.4). Our result for the observable
An,p(φq) is shown in Fig. 8. While the qualitative trend of
our calculation is same as that reported in Ref. [36], our
quantitative prediction is smaller by a factor of 2 to 3 over
the angular range considered. Furthermore, we find that our
results are not sensitive to moderate changes in the values
of LECs. Polarization measurements for the reaction under
consideration have been recently performed at TRIUMF. The
analysis of experimental data is in progress [54].

2The two observables are connected by a symmetry relation.
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FIG. 6. Sample predictions for the differential cross section dσ/dtππ . Here, tππ is the invariant t-channel momentum transfer squared for
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π . For legend see Fig. 2. Data are from Refs. [23,24].
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FIG. 7. Sample predictions for the angular correlation function at different kinematic domains. For legend see Fig. 2. Data are from
Ref. [28].

IV. A COMPARISON BETWEEN TRUNCATION SCHEMES

Our calculations and those of Refs. [34,38] are carried out
in HBχPT of O(q3). There are, however, some quantitative
differences between the two sets of results which can be
understood as follows. Let us first consider the threshold
amplitudes D1 and D2. Consider the tree-level pion pole dia-
gram of O(q) contributing to the reaction π−(q) + p(pi) →
π0(q1) + π0(q2) + n(pf ) where the pion and the pion-nucleon
vertices are taken, respectively, from L(2)

π and L(1)
πN . The pion

propagator has chiral order −2. Therefore, according to the
standard counting rules, we regard the diagram as having
chiral order one (1 = 2 + 1 − 2). In our notation, after a brief
calculation, the center-of-mass threshold transition amplitude
for the above mentioned diagram takes on the form

Tfi = −
√

2

12

( gA

F 3

) (
4q0 + 5mπ

q0 − mπ

)
× ūv(pf )(S · q)uv(pi)) ≡ O(q), (41)

Here, q0 is the total energy of the incoming pion at the reaction
threshold and is given by

q0 = 5m2
π + 4mπmN

2(2mπ + mN )
. (42)

Now, one may further expand Eq. (41) in powers of
(mπ/mN ) ≡ O(q) to obtain

Tfi = −
√

2

(
13

12

) ( gA

F 3

)
ūv(S · q)uv −

√
2

(
27

24

) ( gA

F 3

)

×
(

mπ

mN

)
ūv(S · q)uv −

√
2

12

( gA

F 3

)
O

(
�

m2
π

m2
N

)

× ūv(S · q)uv = O(q) + O(q2) + O(�q3)
O(q)=

−
√

2

(
13

12

)( gA

F 3

)
ūv(S · q)uv. (43)

We regard Eq. (41) as an amplitude of O(q), whereas in
Refs. [33,34] the additional expansion in mπ/mN is carried
out and Eq. (43) is defined as an amplitude of O(q). We
have verified that when all the pertinent diagrams up to
O(q3) are taken into account and expansion in mπ/mN is
carried out, our analytical results for the threshold amplitudes
D1 and D2 coincides with those given in Refs. [33,34].3 In
general, however, once a diagram is identified as having a

3Note that the expansion of D1 and D2 up to O((mπ/mN )2)
corresponds to chiral expansion of O(q3). This is because according
to the counting scheme of Refs. [33,34] terms of O(q) in D1 and D2

are of zeroth order in mπ/mN .
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FIG. 8. Theoretical prediction for the asymmetry parameter
Anp(φq ). For additional details see the text.

fixed chiral order, we do not further expand the corresponding
amplitude to generate a chiral series of higher order. As
for the numerical values of D1 and D2, there are additional
sources of difference between our results and those of Ref.
[34]. In Ref. [34] the relevant LECs of O(q2) were fixed
such that they are consistent with the low energy theorem
for pion-nucleon scattering at O(mπ/mN ). Furthermore, in
Ref. [34] the resonance saturation method was employed to
estimate the values of LECs of O(q3). In the present work
the LECs of O(q2) are taken from Ref. [53] where they are
determined by fitting the low energy pion-nucleon scattering
data. As for the unknown LECs of O(q3), in the present
work they are fixed by fitting the low energy total and double
differential cross section data as discussed in Sec. III.

Let us now consider various types of cross sections above
the reaction threshold. In Ref. [38], in contrast with Ref. [34],
the additional expansion of amplitudes in mπ/mN is not
carried out. As such, our results should formally coincide with
those reported in Ref. [38]. Beyond the threshold there is a
substantial increase in the number of Feynman diagrams, and
in addition, a number of loop integrations cannot be performed
analytically. Furthermore, the phase space calculations for
different observables are performed numerically. As such, a
comparison between our results and those of Ref. [38] cannot
be made at an analytical level. We ascribe the small quantitative
difference between the two sets of results predominantly to
using different values of LECs, with the numerical aspects of
various integrations accounting for the remaining difference.

V. SUMMARY AND CONCLUSIONS

We divide our conclusions into two broad categories of
comparison between theory and experiment, and theoretical
issues. Let us consider each category in turn.

A. Comparison with experiment

(i) The reaction cross sections are in reasonable agreement
with experimental data with better results at lower

energies. This is to be expected, given that HBχPT is
a low energy theory, and that the unknown LECs are
fitted to the low energy data.

(ii) The double differential cross sections d2σ/d�dT in-
cluded in the fitting procedure are reproduced well. The
remaining differential cross-sections, dσ/ds and dσ/dt ,
and angular correlations, W (θ, φ), which can be regarded
as parameter-free results of the present calculations, are
reproduced semiquantitatively.

(iii) Our results for threshold amplitudes D1 and D2 are in
fair, but not impressive, agreement with data.

(iv) Our predictions for polarization observables (asymme-
tries) are generally small (�0.4). If in the final experi-
mental analysis the asymmetries turn out to be indeed
small, then a precise extraction of ππ -scattering lengths
from π + N → 2π + N reactions may prove difficult.

B. Theoretical issues

(i) In general, physical observables calculated in this work
receive sizable contributions from amplitudes of O(q3).
These contributions are essential for quantitative agree-
ment with the data. The large amplitudes of O(q3)
originate from a number of loop graphs, and also from
graphs involving large LECs of O(q3). It should be
emphasized that some LECs of O(q3) determined in this
work are larger than their expected natural size.

(ii) We have explicitly calculated the unitarity effects for two
reaction channels π− + p → π0 + π0 + n and π+ +
p → π+ + π+ + n at the reaction threshold. The unitar-
ity effects appear to be sizable. The unitarity corrections
are essentially parameter-free in that they only involve
precisely determined LECs of O(1).

(iii) There is a large overlap between present work and those
reported in Refs. [34,38]. The results and conclusions
are in broad agreement. There are, however, small
quantitative differences between the two sets of results.
So far as threshold amplitudes D1 and D2 are concerned,
the quantitative differences between our results and those
of Ref. [34] are fully understood. The differences are due
to different truncation schemes employed as well as using
different values for LECs of O(q2) and of O(q3). Let us
now consider the results above the reaction threshold. To
facilitate a comparison between the two sets of results
we have used the same fitting criteria for the LECs of
O(q3) as those employed in Ref. [38]. We have arrived at
somewhat different values for the LECs. Because of the
numerical aspects of the calculations above the reaction
threshold, a direct analytical comparison between the
two sets of results is not possible. We attribute the
small differences above the reaction threshold almost
entirely to using different values for LECs of O(q3).
Approximations inherent in numerical algorithms for
performing phase space integrations also contribute a
small amount to the difference in the results.

Chiral perturbation theory is the effective low energy
theory of QCD. As such, the short distance dynamics of
QCD are encoded in the LECs of chiral perturbation theory.
For the energy scales under consideration, the values of the
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LECs of the theory can be understood semiquantitatively
in terms of “heavy” hadronic degrees of freedom such as
low-lying mesonic and baryonic resonances [66]. The sizable
contributions at O(q3) may suggest that certain aspects of short
distance physics (heavy degrees of freedom), not explicitly
taken into account in the chiral Lagrangian but implicitly in-
cluded in the LECs, play an important role in the reaction under
study at O(q3). If the essence of the short distance physics for
the reaction under consideration is captured at O(q3), it is then
conceivable that beyond O(q3) the chiral series may become
well behaved. That is, contributions of O(q4) or higher may
become noticeably suppressed compared to those of O(q3).
This conjecture can be explicitly verified only if calculations of
O(q4) are performed. It is worth mentioning that the complete
one-loop analysis in HBχPT requires a calculation of O(q4).
A different, but equally illuminating, approach is to include

the low-lying resonances as dynamical degrees of freedom in
the formalism and explore their consequences. The small-scale
expansion is an example of this approach [67].

We conclude by stating that HBχPT, in its standard
form, appears to be a slowly converging series for the
reaction π + N → 2π + N . The reaction π + N → 2π +
N is an important source of information about ππ scat-
tering. As such, it is perhaps worthwhile to study this
reaction in alternative formulations of BχPT, in order to
further explore the convergence properties of the chiral
series [45,46,68–70].
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