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Electron scattering on two-neutron halo nuclei with full inclusion of final state interactions
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A theory for electron scattering from Borromean two-neutron halo nuclei with full inclusion of final state
interactions is developed. The halo nucleus is described as a three-body system (core + n + n). Nuclear
wave functions for bound state and low-lying three-body continuum excitations are calculated by the method
of hyperspherical harmonics. The model is applied to explore electron scattering on 6He leading to nuclear
excitations near the three-body breakup threshold.
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I. INTRODUCTION

One of the most interesting questions in the physics of
radioactive beams is that of the structure of halo nuclei at the
limits of nuclear existence. In Borromean two-neutron halo
nuclei, such as 6He and 11Li, the nature of the three-body
continuum is most intriguing. The concentration of transition
strength, experimentally observed in these nuclei at low
excitation energies, may contain three-body resonances or
new kinds of collective motion, such as a soft dipole mode
corresponding to oscillations of the core against the halo
neutrons. The continuum is usually explored via responses
induced by transitions from the ground state to the continuum.
A possible way to study the continuum properties is to explore
nuclear reactions under conditions where one-step transitions
dominate. This is, however, still a rather comprehensive task,
because of the intertwining of the ground state and continuum
structures, influenced by reaction mechanisms.

Because of the unstable nature of halo nuclei, their
experimental studies have so far been performed with reactions
involving collisions in inverse kinematics. The theoretical
analysis of such reactions involves strong nucleon-nucleon
interactions. The strength and complicated character of strong
interactions bring ambiguities in disentangling the reaction
mechanism and the nuclear structure. In spite of a considerable
amount of nuclear structure information on halo nuclei
extracted from collisions with other nuclei, cleaner ways for
studying aspects of their structures are greatly needed.

Electron scattering is one of the most powerful and proved
methods for nuclear structure investigation. The electromag-
netic interaction of an electron with nuclear charges and
currents is well known and weak. Thus, in principle, the
reaction mechanism can be disentangled from the nuclear
structure effects. Since the charge of light halo nuclei re-
sides in only a few protons, multiple scattering effects for
ultrarelativistic electrons used in nuclear structure studies can
safely be neglected, and the interactions can be well described
by one-photon exchange terms. At the present moment there
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is no ready installation for performing electron scattering
experiments on unstable nuclei. Electron-nucleus collider
experiments are planned, however, for future installations at
RIKEN and GSI. The first measurements will be done for the
processes with the largest cross sections, elastic and inclusive
inelastic electron scattering.

Two articles concerning the theoretical calculations of
electron scattering from two-neutron halo nuclei have already
been published [1,2]. The model developed there is based on
the assumption that the total energy and momentum transfer is
absorbed by one of the nuclear constituents (participant) only,
which is knocked out from the halo system, having the other
two mutually interacting fragments as a pair of spectators.
The final state interaction between the participant and the
spectators is neglected in the model. This participant-spectator
picture is reasonable for kinematic regions where quasi-elastic
processes dominate. But the characteristic features of the
Borromean halo structure are most strongly revealed at other
kinematical conditions: at low-energy nuclear excitations just
above the three-body breakup threshold. Here the fragments
have low relative kinetic energies and correspondingly low
relative velocities. They have enough time for mutual inter-
actions, and the participant-spectator model is not justified
anymore: all fragments are active in the reaction process. The
correct physical description demands an inclusion of final
state interactions (FSIs) in full scale, i.e. between all three
constituents.

Our aim in this article is to develop a model for description
of electron scattering processes leading to low-energy exci-
tations of Borromean two-neutron halo nuclei, taking final
state interactions between the fragments fully into account.
The key elements include a consistent treatment of three-body
features of the halo structure not only in bound states but also
in continuum. The model is suitable for describing processes
of the breakup into three fragments at small momentum
and energy transfers and is applied to the case of electron
scattering on the 6He nucleus, which serves as a test-bench
example for two-neutron halo systems. Note that a similar
model for electron scattering on three nucleon nuclei (3H,
3He) with full inclusion of FSIs in momentum space was
developed in Refs. [3,4] some years ago. These works strongly
underline the importance of full FSI inclusion for breakup
processes.
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II. ELECTRON SCATTERING FORMALISM.

A. General consideration

We consider a reaction process in which an electron
with energy εi and momentum h̄ki hits a nucleus with
mass Mi and scatters with final energy εf and momentum
h̄kf . The initial ki = (εi/h̄c, ki), final kf = (εf /h̄c, kf ) and
transferred q = ki − kf = (ω/c, q) four-dimensional wave
vectors characterize the reaction. A derivation of electron
scattering cross sections can be found in many reviews and
monographs (see, for example, Refs. [5–7]). To justify the
definitions of our nuclear matrix elements and approximations
involved, we briefly give some intermediate steps on the way
to final formulas.

Because of the weakness of the electromagnetic interaction,
the one-photon exchange approximation between the electron
and the nuclear system is very accurate for ultrarelativistic
electron scattering from light nuclei. Within this approxima-
tion the electron cross section averaged over the initial and
summed over the final spin projections can be written as
follows [5,8]:

dσ = dεf d�f σM

∑
λλ′

lλλ′(−1)λ+λ′
Nλλ′ , (1)

where summation is over photon helicities λ = 0, ±1 and σM

is the Mott cross section that describes electron scattering on
a pointlike nucleus. In Eq. (1), lλλ′ is the well-known lepton
tensor [8], while the hadron tensor Nλλ′ , corresponding to
breakup into three fragments with momenta h̄k1, h̄k2, and h̄kc

for the halo neutrons and core, has the form

Nλλ′ = (2π )6

h̄c

∑
NλN

∗
λ′δ

4(q + Pi − Pf )dk1dk2dkc, (2)

where Nλ = ε
µ
λ 〈�f , Pf |Jµ(0)|�i, Pi〉 denotes the nuclear

matrix element of the electromagnetic current Jµ(0) between
the initial and final nuclear states with total four-momenta
h̄Pi and h̄Pf , respectively. ε

µ
λ are polarization vectors of the

virtual photon with photon helicities λ. In the hadron tensor
Nλλ′ [Eq. (2)] the sum with the overbar includes averaging
over initial target spin projections and summation over final
ones for all fragments.

It is convenient to choose the coordinate system such that
the ẑ axis is parallel to the transferred momentum ẑ ‖ q and
where the vector k = ki + kf lies entirely in the scattering
(x̂, ẑ)-plane. The Jacobi momenta, h̄kx, h̄ky , and h̄Pf , used to
characterize the motion of the fragments in the final nuclear
state, are defined by the relations

kx = µx

mn

(k1 − k2) , µx = mn

2
,

ky = µy

mn

(
kc

Ac

− k1 + k2

2

)
, µy = 2Ac

A
mn, (3)

Pf = k1 + k2 + kc,

where µx,y are reduced masses, mn is the nucleon mass,
and A and Ac = A − 2 are the number of nucleons in the
nucleus and core, respectively. Phase space volume transforms
as dk1dk2dkc = dkxdkydPf . Vectors q ‖ ẑ and ky define the
core ejectile plane, which relative to the scattering plane is

tilted by the angle ϕ. If we choose a neutron as ejectile, a
corresponding Jacobian coordinate system [9] should be used.

At this point we need to define more precisely our
assumptions on nuclear structure. Our interest lies in studies
of characteristic features of halo nuclei. Halo peculiarities are
especially sensitive to the processes leading to the low-energy
continuum excitations at small momentum transfers. Then the
nonrelativistic Schrödinger equation is used for nuclear wave
function calculations, and a nonrelativistic treatment of the
current operator is applied. In addition, at small momentum
transfers, which we are interested in here, the contributions
from convection and magnetization currents can be neglected
in comparison with the Coulomb interaction. This means that
the contribution from the charge term N00 in Eq. (1) dominates
in inelastic scattering at such kinematical conditions, and only
it is treated explicitly and kept in cross-section calculations
below. The respective lepton tensor is l00 = Q2/|q|2, where
the square of the virtual photon wave vector Q2 = q2 − ω2/c2

appears. Then it can be shown [8] that the longitudinal part of
nuclear current is given by

N0 = h̄W

Mic

Q

|q|
1

(2π )3
ρch

f i(q), (4)

where h̄cW is the invariant mass of the final nuclear system
and the calculation of the charge transition density ρch

f i(q) is
performed with wave functions in the nuclear c.m. frame [10]:

ρch
f i(q) =

∫
dr′

1 . . . dr′
Aδ


 1

A

∑
j=1,A

r′
j


 ψ

(−)∗
f (r′

1, . . . , r′
A)

×
∑

j=1,Z

eı(q·r′
j )ψi(r′

1, . . . , r′
A), (5)

where Z is the number of protons and ψ
(−)
f (r′

1, . . . , r′
A)

corresponds to a continuum state with ingoing wave
boundary conditions. The nuclear wave functions ψi,f depend
on internal coordinates r′

j defined in the nuclear c.m. frame
(
∑

j=1,A r′
j = 0).

B. Electron scattering within a three-body model of a
Borromean halo nucleus

Here we specialize the general formalism presented above
to the case of two-neutron Borromean halo nuclei. The
basic dynamics can be characterized as a coexistence of two
subsystems: one that consists of core nucleons and the other
of halo neutrons moving relative to the core center of mass.
With good accuracy the wave functions ψi,f can be written as
a product of two functions

ψi,f (r′
1, . . . , r′

A) = ϕc(ξ 1, . . . , ξAc
)ψi,f (x, y). (6)

The function ϕc(ξ 1, . . . , ξAc
) describes the internal struc-

ture of the core, while functions ψi,f (x, y) describe the relative
motion of halo neutrons around the core c.m. In Eq. (6) the
coordinate ξ j denotes the position of a core nucleon relative
the core c.m., x is the relative distance between halo neutrons,
and y is the distance between the core and the center of mass
of the two halo neutrons. Figure 1 shows the corresponding
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FIG. 1. Spatial coordinates in the nuclear c.m. frame.

coordinate system. The three-body continuum energy Eκ

above the three-body threshold is a sum of kinetic energies
of relative motion of fragments, Eκ = εx + εy = h̄2k2

x/2µx +
h̄2k2

y/2µy . Neglect of explicit considerations for internal core
degrees of freedom is the main approximation in Eq. (6).
These effects are treated approximately through the effective
nucleon-core interaction. Such factorization is a starting point
for application of three-body models to description of halo
structure [9,11–18]. Few-body models avoid the complicated
and still partly open questions concerning the development of
nuclear clustering and instead calculate halo wave functions
ψi,f (x, y) directly. Within such models, extended for an
approximate treatment of the Pauli principle, it is possible
to give a consistent description of the main properties of both
the ground state and the low-energy continuum wave functions
of halo nuclei.

Applying factorization (6) and the coordinate transforma-
tion

dr′
1 . . . dr′

Aδ


1

A

∑
j=1,A

r′
j


 = dx dyδ

×

 1

Ac

∑
j=1,Ac

ξ j


 dξ 1 . . . dξAc

,

the charge transition density (5) can be written in product form
as

ρch
f i(q) = ρcm

f i (q)ρch
c (q) (7)

where ρch
c (q) is the core charge density and where ρcm

f i (q)
describes the core c.m. motion,

ρcm
f i (q) =

∫
dx dy ψ

(−)∗
f (x, y)eıβ(q·y)ψi(x, y)

ρch
c (q) =

∫
dξ 1 . . . dξAc

δ


 1

Ac

∑
j=1,Ac

ξ j




×
∑

j=1,Z

eı(q·ξ j )|ϕc(ξ 1, . . . , ξAc
)|2, (8)

where β = 2/A. Relative momenta of fragments and neutron
spin projections on a quantization axis (we assume the
core spin to be zero) are used to characterize uniquely

the final continuum state ψ
(−)∗
f (x, y) ≡ ψ (−)∗

m1,m2
(kx, ky ; x, y),

while the initial nuclear total angular momentum Ji and its
projection Mi are sufficient for the ground state identification,
ψi(x, y) ≡ ψJiMi

(x, y). For finding the bound and continuum
states in the three-body structure model we use the method
of hyperspherical harmonics [9]. In this method, the 6He
continuum wave function has the decomposition

ψ (−)∗
m1,m2

(kx, ky ; x, y) =
∑

γ Jf Mf MLf
MSf

ı−Kf

×
(

1

2
m1

1

2
m2|Sf MSf

)
× (

Lf MLf
Sf MSf

|Jf Mf

)
× [Ylx (̂kx) ⊗ Yly (̂ky)]Lf MLf

×ψ
lx,ly
Kf

(θκ )ψ∗
γ,Jf Mf

(κ, x, y), (9)

where γ = {lx, ly, Lf , Sf ,Kf } is an abbreviation for a set of
quantum numbers, which characterizes the relative motion of
the three fragments in 6He. ψ

lx,ly
Kf

(θκ ) is the hyperangular part
of the hyperharmonic,

ψ
lx,ly
Kf

(θκ ) = N
lxly
Kf

(sin θκ )lx (cos θκ )ly

×P
lx+1/2,ly+1/2
(Kf −lx−ly )/2 (cos 2θκ ), (10)

where P
α,β
n are Jacobi polynomials and N

lx ly
Kf

is a normalization

factor. The hyperangle θκ is defined as cos2 θκ = εy/Eκ .
The continuum wave function ψγ,Jf Mf

(κ, x, y) depends on
the Jacobian space coordinates (x, y) shown in Fig. 1, the
quantum numbers γ , the total angular momentum Jf and its
projection Mf , and the continuum energy Eκ , expressed by
the hypermomentum κ =

√
2mnEκ/h̄

2

ψγ,Jf Mf
(κ, x, y) = 1

(κρ)5/2

∑
γ ′

χ
Jf

γ,γ ′(κ, ρ)

×ψ
l′x ,l

′
y

K ′
f

(θρ)[Yl′x (x̂) ⊗ Yl′y (ŷ)]L′ML′

×(L′ML′S ′MS ′ |Jf Mf )|χS ′MS′ 〉, (11)

tan θρ =
√

µx |x|√
µy |y| ,

ρ =
√

µx |x|2 + µy |y|2
mn

,

where |χS ′MS′ 〉 is a coupled spin function for the two halo neu-

trons. The hyperradial wave function χ
Jf

γ,γ ′ (κ, ρ) is a solution
of a set of the coupled K-harmonic equations. The ground
state wave function ψJiMi

(x, y) has a similar decomposition to
ψγ,Jf Mf

(κ, x, y)[Eq. (11)] but now with κ =
√

2mn|EB |/h̄2,
with separation energy |EB |. The necessary details on how
to solve a system of K-harmonic equations and on how to
choose the nucleon-nucleon and nucleon-core potentials of
the three-body bound and continuum wave functions can be
found in Ref. [9]. By using the decompositions given above,
a core transition density, which is a reduced matrix element
between initial and final nuclear states and describes the system
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response to a zero-range perturbation and also describes its
Fourier image, can be calculated [15,18]:

ρl0l
γ Jf ,Ji

(κ, r) = 〈ψγ,Jf
(κ)‖δ(r − r ′

c)

r2
c

Yl(ŷ)‖ψJi
〉,

ρl0l
γ Jf ,Ji

(κ, q) =
∫ ∞

0
dr r2jl(qr)ρl0l

γ Jf ,Ji
(κ, r), (12)

where r′
c = βy is the core c.m. radius. The quantum numbers

l, s, and j in the transition density ρ
lsj

γ Jf ,Ji
correspond to the

orbital, spin, and total angular-momentum transfers, respec-
tively. Since the α-particle core has zero spin and the core is
not destroyed in the reaction, only excitations of natural parity
states (l = j) in 6He with the spin transfer s = 0 are possible.
Transition densities of halo neutrons do not appear explicitly
in the expressions below because we take into account only
the Coulomb interaction of electrons with the charge of the
core constituent.

Choosing the energy Eκ as an independent variable instead
of the electron energy εf , the hadron tensor N00 in (2) can be
integrated,∫

dεf N00 = dk̂x dk̂y dεy dEκ fR2

(
µxµy

h̄4

)3/2

×√
εy(Eκ − εy)

Q2

|q|2
(h̄W )2

(Mic)2
W00.

Here the recoil factor fR is given by

fR =
[

1 + εf

Mic2

(
1 − |ki | cos θ

|kf |
)]−1

, (13)

and the final electron energy εf is defined by energy conser-
vation. The factor

√
εy(Eκ − εy) is the phase space accessible

to decay into fragments. The nuclear structure function W00 is
given by

W00 = [ρch
c (q)]2

Ĵ 2
i

∑
m1m2Mi

|〈ψ (−)
m1m2

(kx, ky)|eıβ(q·y)|ψJiMi
〉|2,

(14)

where Ĵ = √
2J + 1. Using decomposition (9) and definition

(12) and performing summations over spin projections, the
structure function can be written as

W00 = 1

Ĵ 2
i

∑
δ

√
4π

L̂

([
YLx

(̂kx) ⊗ YLy
(̂ky)

]
L

· YL(q̂)
)

× (−1)Ji+Sf +Lf +Jf +J ′
f +l′x+l′y ıl−l′+K ′

f −Kf

×ψ
lx,ly
Kf

(θκ )ψ
l′x ,l

′
y

K ′
f

(θκ )l̂ l̂x l̂yL̂f Ĵf l̂′ l̂′x l̂
′
yL̂

′
f Ĵ ′

f

× (lx0l′x0|Lx0)(ly0l′y0|Ly0)(l0l′0|L0)

×
{

Lf L′
f L

J ′
f Jf Sf

}{
Jf J ′

f L

l′ l Ji

}


l′y l′x L′
f

ly lx Lf

Ly Lx L




× ρl0l
γ Jf ,Ji

(κ, q)ρl′0l′∗
γ ′J ′

f ,Ji
(κ, q)(ρch

c [q)]2. (15)

Here the index δ includes all quantum numbers and intermedi-
ate summation indices. Since we averaged over fragment spin

projections, the interference between motions with different
values of the total spin Sf of the two neutrons is lost, and
excitations with different Sf give independent contributions to
cross sections. The function W00 contains all information about
the nuclear structure, energy, and angular correlations of the
fragments. The exclusive cross section of electron scattering,
leading to the low-energy excitations of 6He, is now equal to

d8σ

dk̂f dk̂xdk̂ydEκdεy

= fRσM2

(
µxµy

h̄4

)3/2 √
εy(Eκ − εy)

× Q4

|q|4
(h̄W )2

(Mic)2
W00. (16)

This cross section contains the most complete information
that can be extracted from a reaction that is a breakup into
three fragments with unpolarized electrons at small transferred
momenta. Cross section (16) depends, however, on too many
variables to offer a meaningful analysis of the important
correlations. It is more instructive to integrate out most of
the independent variables and analyze various inclusive cross
sections, and thus clarify the underlying dynamics. So, many
different energy and angular correlations can be singled out
that contain valuable information about the nuclear structure
of halo nuclei.

A variety of the different motion modes connected with
relative momenta kx and ky are characterized by some subset
of quantum numbers and coexist in the final system. The
modes interfere with one another and give a coherent con-
tribution to the exclusive cross sections (16). Integration over
momentum destroys the interference, and the corresponding
motion modes add independent contributions to cross sections.
Therefore different cross sections are sensitive to different
correlations, and simultaneous descriptions of all of them
within the framework of one model give a thorough test of
the underlying dynamics and model assumptions of nuclear
structure and reaction mechanisms. Detecting electrons, we
know the momentum q that is transferred to the nucleus and the
energy Eκ . If, in addition, the core momentum kc is measured,
we also know the relative momentum ky and the absolute
value |kx |. The corresponding cross section is obtained by
integration over the unobserved direction k̂x :∫

dk̂xW00 = 1

Ĵ 2
i

∑
δ′

(−1)L+Ji+Sf +Jf +J ′
f +lx

× ıl−l′+K ′
f −Kf ψ

lx,ly
Kf

(θκ )ψ
lx,l

′
y

K ′
f

(θκ )PL(q̂ · k̂y)

× l̂ l̂y L̂f Ĵf l̂′ l̂′yL̂
′
f Ĵ ′

f (ly0l′y0|L0)(l0l′0|L0)

×
{

Lf L′
f L

J ′
f Jf Sf

}{
Jf J ′

f L

l′ l Ji

}{
ly l′y L

L′
f Lf lx

}

× ρl0l
γ Jf ,Ji

(κ, q)ρl′0l′∗
γ ′J ′

f ,Ji
(κ, q)

[
ρch

c (q)
]2

, (17)

where δ′ = (L, Sf , lx, l, Jf , Lf , ly,Kf , l′, J ′
f , L′

f , l′y,K
′
f ).

This integration destroys the angular correlation of the
kx motion, so modes with different values of the angular
orbital moment lx give independent contributions to nuclear
excitations. Distribution (17) depends on the angle between
the transferred momentum q̂ and the direction k̂y of the core
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fragment decay. The integration over k̂y destroys all angular
correlations in the fragment motion∫

dk̂xdk̂yW00 = 4π

Ĵ 2
i

∑
δ′′

ıK
′
f −Kf ψ

lx,ly
Kf

(θκ )ψ
lx,ly

K ′
f

(θκ )ρl0l
γ Jf ,Ji

× (κ, q)ρl0l∗
γ ′Jf ,Ji

(κ, q)
[
ρch

c (q)
]2

,

where δ′′ = (l, Jf , Sf , Lf , lx, ly,Kf ,K ′
f ), but still keeps the

information about energy correlations, i.e., how the excita-
tion energy is distributed between the fragments. Using the
orthonormality condition of hyperharmonics,∫ Eκ

0
dεy

√
εy(Eκ − εy) ψ

lx,ly
Kf

(θκ )ψ
lx,ly

K ′
f

(θκ ) = 2E2
κδKf K ′

f
,

the integration over all possible fragment energies εy at fixed
excitation energy Eκ can be performed. Then the inclusive
cross section for electron inelastic scattering can be obtained

d3σ

dk̂f dEκ

= fRσM

(
µxµy

h̄4

)3/2

4E2
κ

Q4

|q|4
(h̄W )2

(Mic)2

× 4π

Ĵ 2
i

∑
lJf γ

∣∣ρl0l
γ Jf ,Ji

(κ, q)
∣∣2[

ρch
c (q)

]2
. (18)

For the low excitation energy E∗ (= Eκ + |EB |) considered
here, the factor h̄W/Mic = 1 + E∗/Mic

2 
 1.

III. RESULTS

A. Elastic scattering

The elastic electron scattering cross section on a Borromean
halo nucleus can be written in the following form

dσ

dk̂f

= f ′
RσM

Q4

q4
Z2|Fch(q)|2,

|Fch(q)|2 = 1

Z2

4π

Ĵ 2
i

∑
l

∣∣ρl0l
Ji

(q)
∣∣2[

ρch
c (q)

]2
, (19)

f ′
R =

(
1 + 2εi

Mic2
sin2 θ

2

)−1

,

where ρl0l
Ji

(q) is a density describing the core c.m. motion in the
ground state, defined by Eq. (12) but with the ground state wave
function ψJi

used on the left-hand side of the matrix element
instead of ψγ,Jf

(κ). Since the spin of the 6He ground state is
equal to zero, only the value zero of the transferred orbital
momentum l is allowed in Eqs. (19). From Eqs. (19) follows
that the charge form factor Fch(q) of the halo nucleus within
the cluster model is proportional to the product of the core
charge form factor ρch

c (q) and the density ρl0l
Ji

(q) for motion of
the core c.m. in momentum space. Note that in article [1] one
could get the impression that the charge form factor Fch(q) is
identical to the core charge form factor ρch

c (q), which would
be wrong.

In our recent article [19] we presented calculations of the
6He charge form factor within the three-body model and made
comparisons with the experimentally known 4He form factor
and also to the small momentum behavior defined by the r.m.s.
charge radius of 6He, Fch(q) 
 1 − 〈r2

ch〉q2/6. The charge

(b)

(a)

FIG. 2. (a) Charge form factors and (b) matter densities. The
curves are described in the text.

radius,
√
〈r2

ch〉 = 2.054 ± 0.014 fm, was measured recently by
the method of laser spectroscopy in [21]. Figure 2 (a) shows the
various charge form factors. The phenomenological Woods-
Saxon fit to the charge form factor of 4He [20], extracted from
the experimental data (black squares) on electron scattering is
shown by the dashed curve. The calculated density

√
4πρl0l

Ji
(q)

for the c.m. motion of the 4He core inside the 6He nucleus is
given by the dashed-dotted curve. The corresponding product
charge form factor of 6He is presented by the solid curve, while
the small momentum approximation using the experimental
value of the charge radius is shown by a dotted curve. The
charge radius defines the behavior of the charge form factor
for momentum q � 0.5 fm−1. At larger momenta the finer
details of the charge density become important. Comparison of
measurements (they will be possible at the future installations
at RIKEN and GSI) with theoretical calculations may probe
our halo picture. Within the cluster model the charge form
factor is completely defined by the product of internal core
form factor and that for core c.m. motion. Thus deviations of
experimental data from calculations may indicate a changing
of core properties inside the nucleus (core polarization) due to
interactions with halo neutrons. The position of the 6He charge
form factor minimum must, according to the cluster model,
coincide with the position of the minimum for 4He. Checking
this prediction will test the reliability of cluster models at high
momentum, but this will be a difficult experimental task that
requires measurements for transferred momenta larger then
3 fm−1.

The behavior of different matter densities in coordinate
space is shown in Fig. 2(b). Here, the matter density of 4He
(double charge density of pointlike protons), extracted from
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(c)

(b)

(a)

FIG. 3. Inclusive inelastic electron scattering on 6He for εi =
500 MeV and various scattering angles. (a) The solid curve is the
total (dipole) cross section. The dashed and dotted-dashed curves
are contributions to the dipole excitation from modes with orbital
momenta lx = 0, ly = 1, spin Sf = 0, hypermoments Kf = 1, 3,
respectively. (b), (c) The solid, dashed, dotted-dashed, and thin solid
curves are the total, dipole, quadrupole, and monopole cross sections,
respectively.

the experimentally known charge density [20], is given by the
dashed-dotted curve. The corresponding core density obtained
by folding with the motion of the core c.m. is shown by the
dashed curve. The matter density of 6He, which in addition
to the core includes contribution from the halo neutrons, is
presented by the solid curve. This figure demonstrates the
important role of the core c.m. motion in creating a smoother
density behavior.

B. Inelastic scattering

As an example of inclusive electron scattering, we consider
an electron collision with 6He at an initial energy εi =
500 MeV, which will become available at GSI. Figure 3 shows
the calculated spectra of low-energy excitations for a few scat-
tering angles θ corresponding to transferred momenta |q| <

80 (MeV/c). The absolute cross sections depend strongly on
the momentum transfer |q| and decrease rapidly with increas-
ing electron scattering angle θ . The multipole composition
of excitation spectra depends on properties of the Coulomb
interaction and the nuclear structure. In the multipole de-
composition of the Coulomb interaction the monopole term
decreases most slowly with the distance between the electron
and the nuclear center of mass, and then follow terms
with higher angular momenta, dipole, quadrupole, and so

on. At small momentum transfer a reaction amplitude gets
its main contribution from large distances, where, however,
the monopole excitations are strongly suppressed by the
orthogonality of the ground and continuum halo states. As
a result the dipole excitations dominate at the low excitation
energies for small |q| [Fig. 3(a)]. For dipole excitations there
are two main decay channels having the highest matching with
the ground state. The first is the p3/2 ground state of 5He, for
which the internal part of the wave function is amplified in
the compact region by strongly overlapping with the ground
state of 6He. It is also kinematically favorable that the second
neutron is in a s1/2 state with zero centrifugal barrier. This
channel has the simplest representation in a Jacobi system
rotated relative to the one we use here. The second channel,
due to dipole transition from the 6He ground state (with a
85% component lx = 0, ly = 0), is the singlet neutron-neutron
s-wave virtual state (lx = 0) with relative orbital angular
momentum ly = 1 between the two halo neutrons and the core.
Therefore components with lx = 0, ly = 1 and hypermoments
Kf �1 will dominate the dipole transition. These modes, giving
the main contributions to excitations with hypermoments
Kf = 1, 3, are shown by the dashed and dotted-dashed curves
in Fig. 3(a).

In Figs. 3(b) and 3(c) the solid, dashed, dotted-dashed,
and thin solid curves are the total, dipole, quadrupole, and
monopole excitations of 6He, respectively. With increasing
momentum transfer the well-known three-body 2+ resonance
at E∗ = 1.8 MeV appears [Fig. 3(b)] and soon becomes a
pronounced feature [Fig. 3(c)] in the low-energy spectrum. If
part of the FSI is neglected in the calculations, two effects
happen.

Firstly the orthogonality of the ground and continuum
states is lost, and the monopole excitations dominate the
spectrum near the breakup threshold, a physically wrong result
for electromagnetic processes. Secondly the 2+ resonance
disappears from the spectrum. Thus the final state interactions
are an essential part of the reaction dynamics of the low-energy
excitations. The concentration of the dipole transition strength
near threshold does not mean that dipole excitations have a
collective nature and represent a resonance. As seen from
Figs. 3(a)–3(c), the energy position and the shape of the
dipole excitations show a strong dependence on transferred
momentum, while for a genuine three-body resonance, like
the 2+ at E∗ = 1.8 MeV, the peak position is fixed. To
further clarify the true nature of the observed 1− peak, more
complicated energy correlations of the fragments must be
studied.

C. Coincidence cross sections

We now turn to breakup cross sections where the
α particle is detected in coincidence with the scattered electron.
Then the energy and angle of the α particle characterize
the cross section in addition to electron degrees of freedom.
Note that in the nuclear rest frame (Pf = 0) h̄ky is equal
to the α-particle momentum. Since we consider processes
with small momentum and energy transfers for which the
Coulomb interaction dominates, the coincidence cross section
does not depend on the angle ϕ, the orientation of the ejectile
plane relative to the scattering plane. As seen from Eq. (17),
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(c)

(b)

(a)

FIG. 4. Coincidence cross sections d3σ/d�f dEα for electron
scattering on 6He at εi = 500 MeV and various angles. The solid,
dashed, dotted-dashed, and thin solid curves are the total, dipole,
quadrupole, and monopole cross sections, respectively.

in addition to the electron variables, the reaction dynamics
depends on the relative angle between the momenta h̄ky and
h̄q and the α-particle energy (=εy/3 in the rest frame).

To further reduce the number of independent variables, we
consider distributions over the relative energy Eα−(nn) (=εy)
between the α particle and the c.m. of the halo neutron
pair, d3σ/d�f dEα−(nn), which is obtained by integrating the
exclusive cross sections over the α-particle direction k̂y and
over the total nuclear excitation energy E∗ from the breakup
threshold up to 6 MeV. Figure 4 shows these cross sections
for a few electron scattering angles. The solid, dashed, dotted-
dashed, and thin solid curves give the total, dipole, quadrupole,
and monopole contributions, respectively. Dipole excitations
dominate the spectra. The dipole shape changes with increas-
ing transferred momentum q, in particular, the position of the
maximum is shifted to larger energies with increasing q. Such
changes are evidence that the dipole excitations are not a real
resonance. The α-particle contributions from monopole and
quadrupole excitations become noticeable at larger transferred
momenta. They have different shapes. The quadrupole is
defined by breakup of the well-known 2+ resonance and has a
very specific shape. The α’s from monopole excitations have
a significant part at small energies. To better demonstrate the
decay properties of multipole excitations, Fig. 5 shows contour
plots of cross sections for separate multipolarities as function
of the relative energies Enn (=εx) and Eα−(nn). The decay
patterns of the energy correlations are distinctly different for
the different multipole excitations. For quadrupole excitation
the decays are stretched along a straight line, which is a

FIG. 5. Contour plots of electron cross sections for separate
multipole excitations for scattering angle θ = 20◦ as function of the
relative energy between the two halo neutrons Enn and their energy
relative the α-particle Eα−(nn).

clear signal of resonance behavior (see Ref. [22] and relevant
discussions there). Monopole correlations reveal two peaks:
one, where the α particle is at rest and two neutrons carry all
excitation energy, and the other where the two neutrons have
low relative energy and the excitation energy is defined by the
relative motion between the α and the neutron pair. This picture
keeps an imprint of the cigar and dineutron configurations in
the ground state structure of 6He [11].

Next we consider the angular correlations in coincidence
cross sections. Again, to reduce the number of independent
variables, we integrate Eq. (17) over relative energy εy and
calculate cross sections d5σ/d�f d�ydE∗ as a function of the
angle θαq between the α particle and the transferred momentum
q. Before demonstration of general cases, it is instructive
to look at coincidence cross sections for single multipole
excitation. Taking into account that at low-energy excitations
the motions with lowest possible orbital momenta dominate,
for the dipole in 6He we can obtain from Eq. (17) the following
expression:

d5σ

d�f d�ydE∗ = 1

4π

d3σ

d�f dE∗ {1 + 2P2(q̂ · k̂y)S1}.

Here S1 denotes the structure factor for dipole excitations and
is equal to

S1 = S(lx = 0, ly = 1) + 1

2
S(lx = 1, ly = 2)

+ 1

10
S(lx = 2, ly = 1) + · · · , (20)

S(lx, ly) = ∣∣ρ101
γ Jf Ji

(κ, q)
∣∣2/∑

γ ′

∣∣ρ101
γ ′Jf Ji

(κ, q)
∣∣2

.
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(a)

(b)

FIG. 6. Cross sections d5σ/d�f d�ydE∗ for electrons with
energy εi = 500 MeV and scattering angle θ = 10◦ as function of the
relative angle θαq between the α particle and transferred momentum
q. Parts (a) and (b) correspond to 1.8 MeV and 3.5 MeV excitation
energies in 6He, respectively. The solid, dashed, dotted-dashed and
thin solid curves are the total, dipole, quadrupole, and monopole
contributions.

The factor S(lx, ly) gives the weight that the mode of motion
described by the corresponding quantum numbers has in the
total transition from the ground state to continuum at given ex-
citation energy. Terms corresponding to larger orbital angular
momenta and interference from excitations with fixed quantum
numbers (Sf , lx) and different ly are not shown explicitly in
Eq. (20). They are not large at excitations near breakup
threshold. It is important to note that the angular dependence is
defined by the presence of motion modes with ly > 0. Compo-
nents with ly = 0 give contributions to the isotropic part of the
cross sections defined by the Legendre polynomials PL with
L = 0. Only via small possible interference terms with modes
having nonzero values of ly is angular dependence induced in
the cross sections. A corresponding analysis can be done for
quadrupole excitations. It leads to analogous expressions but
with a more complicated angular dependence that includes
some combination of the Legendre polynomials of orders
2 and 4.

Figure 6 shows examples of the θαq angular correlations for
two different excitation energies in 6He: the 2+ resonance is
largest in part (a) and the dipole excitation dominates in (b).
The shapes of the distributions are different for different
multipolarities, and symmetric relative 90◦. The monopole
has an isotropic distribution. The dipole has a pronounced
minimum at 90◦ while the quadrupole has two minima near
60◦ and 120◦ and maximum at 90◦ with a height a few
times less then at 0◦ or 180◦. The total distribution includes
contributions not only from separate multipole excitations

FIG. 7. Cross sections d5σ/d�f d�ydE∗ for electrons with
energy εi = 500 MeV and scattering angle θ = 10◦ as function
of nuclear excitation energy E∗. The solid, dotted, dashed, and
dotted-dashed curves correspond to angles θαq equal 0◦, 60◦, 90◦,
and 180◦, respectively.

but also their interference. As a result, the total distribution
is not symmetrical relative to 90◦ and can have a rather
complicated shape as, for example, in Fig. 6(a), where dipole
and quadrupole are excited with comparable strength. In cases
when one multipole excitation dominates as, for example, in
Fig. 6(b), the total distribution keeps a shape that is specific
for the single multipole and only slightly distorted. Thus it can
give a clear signal on the multipole nature of dominant nuclear
excitations. Then the analysis given above can be applied.
If, for example, dipole correlations with deep minimum will
be observed that will exclude a large weight for motion with
ly = 0 in the energy region of the excitation spectrum which
is under investigation.

Finally, Figure 7 shows coincidence spectra d5σ/d�f

d�ydE∗ for electron scattering angle θ = 10◦ as function of
the nuclear excitation energy E∗ for different angles θαq . In the
energy region of the 2+ resonance the multipole interference
strongly influences the shape of the spectrum. For angle
θαq = 0◦ (solid curve) this results in a separation of 2+ and
dipole, while at 180◦ (dotted-dashed curve) there is no gap
between. At 60◦ (dotted curve) the 2+ is much more strongly
suppressed than other multipoles, giving a smooth spectrum
without a resonance peak.

IV. CONCLUSION

We have developed a theory for description of electron
scattering from two-neutron Borromean halo nuclei in which
effects of final state interactions between fragments are fully
taken into account. The theory is coined for processes with
small transferred momenta leading to low-energy nuclear
excitations, the region which is most sensitive to the specific
features of halo structure. The participant-spectator model
is not applicable to this region. The nuclear structure was
described within a cluster three-body model. This model not
only reproduces rather well the properties of the ground state
but is the natural basis for calculation of continuum states
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when the nucleus breaks into three fragments. The method
of hyperspherical harmonics was used for solution of the
three-body problem and for calculations of transition densities
to the continuum.

The theory has been applied to make predictions for electron
scattering from 6He, the Borromean nucleus which is the
test-bench example for theoretical studies of two-neutron halo
structure. Our calculations of inclusive inelastic scattering
show that dipole excitations dominate in the spectrum at
small transferred momenta. The position of the maximum
and the shape of the dipole spectrum change with increasing
transferred momenta. This differs from the behavior of the
well-known 2+ true three-body resonance and gives additional
evidence against a resonance nature for the soft dipole
excitations.

Future measurements of electrons in coincidence with
fragments promise to give valuable information about the halo
structure. The pattern of energy and angular correlations are
rather specific for different multipole excitations. Correlation
measurements in general provide a unique tool for revealing
the complex dynamics of nuclear excitations and pave the way
to spectroscopy of the continuum, granted that rather small
cross sections can be measured.
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