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Density of states in multifragmentation obtained using the Laplace transform method
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In equilibrium statistical mechanics, the density of microstates representing the statistical weight associated
with a partition of an isolated system into subsystems (fragments) is the convolution of the state densities of the
component subsystems. The Laplace transform approximation provides a simple representation of this density.
Despite the fact that no external heat bath can be said to exist (the canonical ensemble is not appropriate) the
approximation leads to partition probabilities that involve a product of factors (one for each fragment) expressed in
terms of a characteristic inverse temperature. We apply the method to nuclear multifragmentation with particular
emphasis on a transition that occurs when the major part of the available energy appears as kinetic (as opposed
to internal excitation) energy of fragments. Finally, we discuss the shortcomings and advantages of expressing
the weights of partitions with fixed total mass (charge) and multiplicity in a simple multinomial form.
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I. INTRODUCTION

In the application of equilibrium statistical mechanics to
isolated systems it is often useful to consider the density of
microstates at energy, E, as a convolution of the densities
corresponding to subsets of degrees of freedom. To this end
we define the exact density,

ρex(E) =
∫ E

0

∫ E

0

∫ E

0
. . . δ

(∑
k

Ek − E

)
�k[ρk(Ek)dEk],

(1)

where the symbol �k denotes the product over subsets labeled
by the subscript, k. Thus, for example, when a finite object
breaks into fragments the microstate density is obtained as the
convolution of fragment densities (possibly including motion
of the centers of mass).

The numerical calculation of the convolution may be rather
time consuming. In addition, the number of distinct sets of
subsets may be rather large. For example, in the breakup of a
parent system of mass, M, into fragments of mass � M , the
number of distinct groups of subsets increases rapidly with
increasing M (of order 2 × 108 for M = 100). It is therefore
of interest to develop an approximation for the density ρex(E).
The following section is devoted to this task and makes use
of the Laplace transform [LT] approximation. In essence, the
method involves making the Laplace transform of ρex and then
carrying out the inverse transform in an approximate manner,
thus obtaining an approximation to ρex (which we refer to
as ρL). The technique is well known [1,2] and is included in
Sec. II mainly to introduce appropriate notation.

We are especially interested in nuclear fragmentation [3–6].
In studies of this phenomenon use is often made of the hypothe-
sis of independent emission [7]. Each fragment is emitted with
a characteristic “one fragment” probability independently of
all other emissions. This idea leads to a particularly simple
product form for the probability [8] associated with any
given fragmentation partition that is expressed as a product of
Poisson distributions (the term Poisson reducibility has been

recently coined in works by Moretto and collaborators [9]).
Thus, in terms of a set of parameters, {Xk} each of which
refers to a given fragment,

P (n) = const.�k

X
nk

k

nk!
, (2)

where nk is the number of identical fragments associated
with the label, k, and n represents the partition vector n ≡
{n1, n2 . . . nk . . .}. A part of this work concerns an evaluation
of the usefulness of Eq. (2) in the context of nuclear
multifragmentation.

The expression that will be derived in Sec. II bears
some resemblance to the density of states obtained using
the canonical ensemble. This may well be misleading. The
canonical result [10] is obtained by modifying the original
system to include an additional set of degrees of freedom
(representing the so-called heat reservoir). It is assumed that
the reservoir is characterized by a microstate density, ρR ,
whose logarithm may be linearly expanded at energies close
to the total energy of the combined system (ER). Thus,

In[ρR(ER − E)] = In[ρR(ER)] − E/TR (3)

It is thus implicitly assumed that, for all configurations with
nonnegligible probability, ER � E, with the consequence that
the limit of integration for E that should normally be ER can be
safely set to infinity. The convolution for the combined system
now takes the form of the Laplace transform,

ρC(ER) = ρR(ER)
∫ ∞

0

[∫ E

0

∫ E

0

∫ E

0
. . .

× δ

( ∑
k

Ek − E

)
�k[ρk(Ek)dEk]

]
e−E/TRdE

= ρR(ER)�k

[∫ ∞

0
ρk(Ek)e−Ek/TRdEk

]
= ρR(ER)�k[Zk(TR)]. (4)

Thus, to within the constant ρR(ER), the canonical probability
(proportional to the microstate density) is represented by the
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Laplace transform of the convolution of densities that reduces
to the product of individual canonical sums.

In Sec. III, we apply the result for ρL to the problem of
convolution of nuclear level densities. We show, with the
help of an example, that the LT approximation accurately
reproduces the convolution density and further investigate the
effect of cutting off each of the fragment densities above some
threshold energy.

In Sec. IV, we consider changes produced by the introduc-
tion of additional degrees of freedom associated with fragment
motion. The most important change concerns the function,
β(E), which characterizes the method and may be thought
of as the analog of the inverse temperature that occurs in
systems that include a heat reservoir. This function exhibits a
nonmonotonic variation that may be interpreted as a change
of phase.

In Sec. V, we consider the application of the LT approxima-
tion to groups of partitions. It appears to be useful to consider
groups of partitions constrained by fixed total mass (charge)
and multiplicity (number of fragments). Our objective, in so
doing, is to investigate the possibility of expressing statistical
weights for all members of a group in Eq. (2). The main
difficulty arises because of the fact that, even with fixed mass
and multiplicity, a group of partitions exhibits a significant
energy fluctuation due to variation of fragmentation Q-values.
A simple derivation shows, however, that the induced spread
of β values leads to an inaccuracy in partition probabilities that
is of the order of 10%. A correction that may be incorporated
in a Monte Carlo event generator is proposed and applied in
a study (Sec. VI) of the characteristic evolution of the mean
values 〈nm〉 for a few values of β.

A summary, together with concluding remarks is presented
in Sec. VII.

II. LAPLACE TRANSFORM APPROXIMATION FOR THE
CONVOLUTION OF DENSITIES

We first make the notion of subsets more precise by
considering a finite object that breaks up into a set of fragments
that form a partition, n, of the original object. This step is
not essential in the general context but will be useful for
discussion of nuclear fragmentation. The kth fragment of the
partition is characterized by a density of microstates, ρk(Ek).
The Laplace transform of the density of states representing a
given partition has been given in Eq. (4). Replacing the inverse
of the reservoir temperature, TR , by the generic parameter, b,
the inverse transform [the exact convolution density (1)] is
written as follows:

ρex(E) = 1

2πi

∫ c+i∞

c−i∞
�k

[ ∫ ∞

0
ρk(Ek)e−bEkdEk

]
ebEdb (5)

and is approximated by expanding the logarithm of the
integrand in Eq. (5) as a truncated (second order) Taylor series
about the maximum. Thus if

f (b) =
∑

k

In

[ ∫ ∞

0
ρk(Ek)e−bEkdEk

]
+ bE (6)

we define the inverse energy β through

df

db

∣∣∣∣
b=β

= 0 = E −
∑

k

∫ ∞
0 Ekρk(Ek)e−βEkdEk∫ ∞

0 ρk(Ek)e−βEkdEk

(7)

and write

f (b) ≈ f (β) + (b − β)2

2!

d2f

db2

∣∣∣∣
b=β

. (8)

Equation (7) simply implies that the sum of the average values
of the energies, Ek , is the total energy, E, i.e.,

E =
∑

k

〈Ek〉. (9)

Furthermore, differentiation of Eq. (7) leads (with similar
notation) to

d2f

db2

∣∣∣∣
b=β

=
∑

k

[〈
E2

k

〉 − 〈Ek〉2
] =

∑
k

σ 2
k , (10)

where, by definition, σ 2
k is the variance of Ek . With this

expansion, the inverse transform [approximation for the
convolution, ρex(E)] is

ρL(E) = ef (β)

2πi

∫ c+i∞

c−i∞
e[

∑
σ 2

k ](b−β)2/2db, (11)

which, with the substitution b = c + ix leads to the following:

ρL(E) = eβE(
2π

∑
k σ 2

k

)1/2 x�k

[ ∫ ∞

0
ρk(Ek)e−βEkdEk

]
. (12)

If the partition involves values of k for which the number of
identical fragments, nk > 1, a correction is necessary to avoid
counting microstates that represent identical configurations
more than once. This “classical indistinguishability” simply
entails multiplication of ρL(E) by the factor �k[1/nk!] [as in
Eq. (2)].

For the specific case of fragmentation of a mass M into N
fragments we may use the label, m, to designate the masses
of constituent fragments. A given partition is then represented
as n ≡ {n1, n2 . . . nm . . . nM}, the partition multiplicity, N =∑M

m=1 nm, and the mass, M = ∑M
m=1 mnm. In the nuclear case

it may be necessary to refer to both the mass and the charge of
fragments. This extension is straightforward. We can, however,
remark that the simpler forms of the level densities of atomic
nuclei depend only on the mass [11].

If we define

Zm =
∫ ∞

0
ρm(Em)e−βEmdEm (13)

and further set σ 2 = ∑
m σ 2

m, we can write ρL corresponding
to partitions of fixed mass in the form

ρL(n, β) = eβE

(2πσ 2)1/2
�m

znm
m

nm!
δ

(
M∑

m=1

mnm − M

)
, (14)

where the delta function expresses the mass constraint and
the sum of variances, σ 2, can be considered as a function
of β or E depending on the context. In fact, it will be clear
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from Eq. (7) that

σ 2 = −dE

dβ
(15)

Equation (14) represents an interesting an important result.
For example, we see immediately that, because of the denomi-
nator, ρL(n, β) is not exactly a product of factors each of which
refers only to a particular fragment. We may also observe that,
a priori, β(E) and σ 2 may be partition dependent. Finally, it
is useful to note that the analog of the microcanonical inverse
temperature is as follows:

dIn[ρL]

dE
= β − dIn[σ ]

dE
(16)

Further development clearly requires a detailed description
of the state densities ρm(Em) and therefore depends on the
application. We have chosen to study a problem in nuclear
reaction physics. Specifically, in the next section (and in fact
for the remainder of this work), we are concerned with a
simplified form of the nuclear multifragmentation problem.

III. APPLICATION TO NUCLEAR FRAGMENTATION

Let us state immediately that applications of the theory to
specific problems may vary considerably with the context.
Thus we should keep in mind that the general result is
represented by Eq. (14).

That being said, in this section, we examine the specific
case of nuclear multifragmentation using a simplified form for
nuclear level densities, i.e., for all fragments we assume [3]

ρm(Em) = ρm(0)e2
√

amEm, (0 � Em � εm)

= 0 otherwise (17)

In Eq. (17) ρm(0) is included for dimensional purposes and may
be set to unity and am is usually referred to as the level-density
parameter. Systematics of the variation of this parameter with
nuclear mass were presented by Iljinov et al. [12].

The sharp cutoff for each density specified in Eq. (17)
is not entirely realistic. It is meant to imply that high
excitations correspond to states whose lifetimes are shorter
than the characteristic time scale for fragmentation [13]. The
introduction of a cutoff has considerable consequences but for
the moment it will suffice to notice that the limit of integration
in the definition of zm can be set to εm. Obviously, in precise
practical applications special care should be taken with light
nuclei (e.g., nucleons and α particles are usually considered to
possess only ground states, and the analytical form of the
density may be a poor approximation). However, we may
observe that the level density parameter is approximately
proportional to the mass number (am ≈ m/8) so that light
fragments are not expected to carry important quantities of
energy.

Using the densities [Eq. (17)] we have calculated the full
convolution microstate density [Eq. (1)] for a partition of mass
M = 125, {n5 = 1, n15 = 1, n25 = 1, n35 = 1, n45 = 1}, and
compared the result with that obtained using the LT approx-
imation [Eq. (14)]. For these calculations we have assumed
the cutoff energies to be proportional to the fragment masses

(a)

(b)

FIG. 1. Density of states (represented as points) obtained by
numerical calculation of the density convolution for a “test” partition
of mass M = 125 {n5 = 1, n15 = 1, n25 = 1, n35 = 1, n45 = 1}. The
calculations were made for a few values of the cutoff parameter, α

[defined in Eq. (18)]. The solid lines represent results of calculations
using the LT approximation [Eq. (14)]. (a) the low energy region
with α = 3 MeV/nucleon and (b) higher energies (α = 3, 4,
5 and 10 MeV/nucleon) that show the influence of the cutoffs.

so that the cutoffs are specified by the single parameter, α,
through

εm = αm. (18)

The result is shown in Fig. 1 for a few values of α. Both the
exact and approximate calculations can be made only up to the
global cut-off energy αM ([Eq. (7)] has no solution for higher
energies). As shown in the figure, the LT approximation is
remarkably accurate over a wide range of energies.

IV. INCLUSION OF DEGREES OF FREEDOM
ASSOCIATED WITH KINETIC ENERGY

It is, of course, well known [3,10] that the density of
states for a partition, {n1, n2 . . . nm . . .}, involving N fragments
confined in a volume, V, with kinetic energy Ek is given by
the following:

ρK (EK ) =
[
V

(
2π

h2

)3/2
]N

(�mm3nm/2)
E

3N/2−1
K

	(3N/2)
(19)

so that we can define ZK as a product over fragments

ZK =
∫ ∞

0
ρK (EK )e−βEK dEK = �m(ζm)nm, (20)

where

ζm = V

h3

[
2πm

β

]3/2

. (21)

The inclusion of degrees of freedom associated with kinetic
energy of fragments is therefore straightforward (this remains
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FIG. 2. Effect of the inclusion of kinetic energy [Eq. (19)]. Plot of
d ln[E]/d ln[β] versus E for a few values of the parameter, α (partition
as in Fig. 1). At high energies all curves should tend to the unity. The
position of each minimum occurs at an energy that exceeds, by about
10%, the nominal cutoff. This is simply because of the fact that, even
in the transition region, a small fraction of the available energy is
distributed as fragment kinetic energy.

true when other constraints such as specification of the center
of mass are introduced). However it is easy to see that this
development profoundly modifies the variation of β near the
cutoff simply because we now have [instead of Eq. (13)]

E =
∑
m

nm〈Em〉 + 3N

2β
(22)

where the second term on the right-hand side represents the
mean kinetic energy of N fragments and, following Eq. (13),
〈Em〉 refers to the internal excitation energy of the fragment
of mass, m. Equation (22) has a solution (with positive β) for
all positive values of energy, E. In Fig. 2 we present a plot
of the quantity −dln[E]/dln[β] versus E which has the merit
of showing, quite clearly, the change of behavior between the
low-energy region where β varies approximately as E−1/2 to
the high-energy region where β is proportional to E−1. This
transition is sometimes referred to as a change of phase that,
in the present context, is induced by the imposition of cutoffs
in the internal energies of fragments resulting in the eventual
domination of degrees of freedom associated with fragment
motion. We also note that the quantity, σ 2 [Eq. (14) and (15)]
receives an additional “kinetic” contribution of 3N/2β2.

V. PARTITION PROBABILITIES

Let us begin this section with a closer look at the energy
that is available to be distributed over “internal” and “kinetic”
degrees of freedom for a given partition, (n). If the total
excitation energy of the parent system is E∗, then this energy
is written as follows

E(n) = E∗ + �E(n). (23)

The quantity �E may include several contributions and is
often a substantial fraction of the total energy, E∗. For the
sake of simplicity of presentation we assume that

�E(n) = Q(n), (24)

where the Q-value is the energy produced in the fragmentation
process leading to the partition, n. In adopting Eq. (24) we

ignore the influence of the finite size of fragments, [14], and
of the interfragment Coulomb interaction energy. Inclusion
of this energy (for example, with the help of the Wigner Seitz
approximation [5]) is certainly important for precise numerical
predictions but does not significantly modify the structure of
the formalism. If we write the Q-value as the difference of
mass excesses

Q(n) = �(M) −
∑
m

nm�(m), (25)

we recover an equation of the form in Eq. (2). Indeed by
defining the energy, 	, through

1

	
= eβ[E∗+�(M)]

(2πσ 2)1/2
(26)

and incorporating the kinetic energy via Eq. (21) we arrive at

ρL(n, β) = 1

	

{
�m

[Zmζme−β�(m)]nm

nm!

}
δ

(
M∑

m=1

mnm − M

)

= 1

	

{
�m

Xnm
m

nm!

}
δ

(
M∑

m=1

mnm − M

)
, (27)

which defines the parameters

Xm = zmζme−β�(m). (28)

Note that Eq. (27) is exact within the context of the LT
approximation. In particular, provided the Q-value (or its
equivalent in more refined theories) can be written as a sum
over fragments, the energy, E(n), is accurately represented.
However, to apply Eq. (27) to groups of partitions we must
allow for the fact that different partitions with different
Q-values imply different values of β. In other words, a priori,
we might suspect that the set of parameters {Xm} and the
prefactor, 1/	, may vary with the partition. It is therefore
important to restrict the application to groups of partitions
in such a way as to limit the range of Q-values.

A rather severe limitation can be imposed by considering
partitions of fixed multiplicity. This is illustrated in the
example shown in Fig. 3. From the figure we observe an almost
linear dependence of Q on N and, for given N, a typical spread
of Q-values with standard deviation about the mean of the
order of σQ = 20 MeV. We further observe that this contribution
dominates the energy spread (the “partition” variations of the
mean values of 〈E〉 and 〈σ 〉 which are produced for groups of
partitions at fixed N and β are of the order of the size of the
points plotted in the figure).

The existence of significant spread in the values of Q-values
thus translates into a corresponding dispersion in the values
of β. Therefore if we apply Eq. (27) to groups of partitions
in a Monte Carlo event generator and use the values of β and
σ corresponding to the average Q-value, i.e., with constant 	

and fixed values of the parameters {Xm}, it may be necessary to
correct generated partition weights for this dispersion. Given
Eq. (15) the spread in Q-values corresponds to a variation
in β that is typically of the order of 10%. For variations
of this order of magnitude values of σ show changes that
are typically less than 5% (see Fig. 4). Furthermore, if we
ignore for an instant the factor

√
2πσ 2 in the denominator of
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FIG. 3. Results of Monte Carlo calculations (107 trials) for groups
of partitions with fixed total mass (M = 125) and multiplicity, N. The
partitions were generated using the multinomial formula [Eq. (2)] in
which the set {Xm} were calculated using Eq. (28) with the cutoff
parameter, α = 2 MeV/nucleon and β = 0.2. The freeze-out volume
[Eq. (19)] was taken to be that of a sphere with radius 1.4 × M1/3 =
7 fm, and the mass excess for each mass corresponds to the isotope
with maximum binding energy (for m > 40 a fourth-order polynomial
fit was used). The “error” bars on the plotted Q-values represent
standard deviations of the means 〈−Q〉.

Eq. (14) we may observe that the value of b = β maximizes
the partition probability that is thus unaffected by small
(first-order) changes in β. If we now reinstate the variation
of σ and define the variation of Q-values through

Q(n) = 〈Q〉 + �Q(n) (29)

we find

�In[ρL(n, β)] = �β
dIn[σ ]

dβ
= �Q

σ 2

dIn[σ ]

dβ
. (30)

We shall examine the effect of this correction in the following
section, which is concerned with numerical simulations.

VI. CALCULATION OF DISTRIBUTIONS OF AVERAGE
PARTIAL MULTIPLICITIES

The main purpose of this section is to exhibit the typical
evolution of the mean number of fragments with increasing
energy. We also include results of a Monte Carlo generator
that is based on Eq. (27) and that, in addition, includes the
correction [Eq. (30)]. Explicitly, we consider the evolution of
the distribution of mean values, 〈nm〉 with β. If the multinomial

FIG. 4. Distributions of values of σ for multiplicity N = 20
obtained using sets of parameters {Xm} calculated, using Eq. (28)
for a few values of β obtained from Monte Carlo simulations (other
parameters as specified in the caption to Fig. 3).

FIG. 5. Evolution of the distributions of the mean partial mul-
tiplicities 〈nm〉, for values of β ranging from 0.1 to 0.5. The
continuous curves [Eq. (31)] are additionally labeled by the values
of the multiplicity N corresponding to the maxima of the multiplicity
distributions [obtained using Eq. (32)] at each value of β. Plotted
points represent the results of Monte Carlo simulations (see text for
details).

formula is valid these quantities (and higher order moments)
can be easily obtained for partitions of multiplicity, N, using
identities given in [1], e.g.,

〈nm〉
Xm

= P (X,N − 1,M − m)

P (X,N,M)
≈ Q(X,N − 1,M − m)

Q(X,N,M)
,

(31)

in which P (N,M) is the probability to find partitions with
given N,M and Q(N,M) is the same quantity that results from
a (two-dimensional) application [1] of the Laplace transform
method,

In[Q(N,M)] = N −
∑
m

Xm + a0N + a1M − In[2πNσL].

(32)

In Eq. (14) a0, a1, and σL are quantities obtained from the set
{Xm} and the constraints N and M (see Ref. [1] for details).

Figure 5 shows the results of calculations that provide a
qualitative picture of the variation of the 〈nm〉 distributions
with decreasing β (increasing E). The gradual disappearance of
fragments of intermediate mass is clearly observed. At β = 0.1
only light fragments are produced with substantial probability
corresponding to the approach to the so-called “vaporization”
limit observed in experiment [15].

Superimposed on the curves presented in Fig. 5 are the
results of Monte Carlo calculations that were carried out using
108 trials with a typical hit rate (corresponding to events with
M = 125 and N specified as the most probable multiplicity at
each value of β) of 2 × 10−3. As seen in the figure it is difficult
to observe any effect due to the correction [Eq. (30)], i.e.,
the Monte Carlo calculations are in good agreement with the
predictions made using equation Eq. (31). This test therefore
implies that the multinomial formula is indeed useful for the
analysis of multifragmentation partitions although, of course,
the importance of the correction may depend to some extent
on the observable under consideration.

Given this success it is reasonable to expect that the phase
transition may be visible in studies of the kind represented
above, i.e., using groups of partitions with fixed multiplicity

044605-5



A. J. COLE PHYSICAL REVIEW C 72, 044605 (2005)

(a) (b)

(c)

FIG. 6. Monte carlo calculation of the variation of the average
(over partitions) of the energy E with β−1; (a) with no cutoff (α = ∞),
(b) α = 2 MeV/nucleon (the change of phase is visible as a small
“kink” at approximately 200 MeV), and (c) no internal excitation
(α = 0 MeV/nucleon).

for each value of the total energy, E∗. In Fig. 6 we show a plot
of the variation of 〈E〉 with 1/β that indicates [curve (b)] that
this is indeed the case (this plot is more easily realised than that
presented in Fig. 2). The phase change is certainly observed
although the signal is somewhat attenuated. Also shown in the
figure are the cases with no cutoffs (a) and with the cutoffs set to
zero (c) for all nuclei. Despite a regular increase of multiplicity
with 〈E〉 (accompanied by the progressive disappearance of
heavy fragments) these two latter cases show no evidence of a
transition.

VII. SUMMARY AND DISCUSSION

In this work we have developed the application of the
Laplace transform method to the density of microstates
represented as a convolution of subsystem densities. The result
is expressed in terms of the total excitation energy of the
system, E, and a parameter, β, which has the dimension of
inverse energy and is closely related to the microcanonical
(inverse) temperature. We have specifically considered nuclear
multifragmentation and shown, in a case study, that the method
furnishes an accurate (and rapidly calculated) representation
of the exact result.

We may readily compare the LT approximation with
the familiar canonical result. In the canonical formula the
temperature is an externally imposed constant, whereas in the
LT method the parameter β is determined by the condition
that the sum of the mean energies of subsystems is equal to the
total energy and is therefore an intrinsic property of a closed
system. Both approaches involve a product of factors, each
of which is a “Boltzmann weighted” sum of states. However,
in the Laplace transform approximation, in contrast with the
canonical formula, the parameters, {Xm}, and the prefactor
(1/	) vary with energy (and therefore with the partition). The
value of β at each energy is, however, very close to that value
that maximizes the partition probability (not exactly because
of the factor 1/

√
2πσ 2) resulting in a relative insensitivity of

partition probabilites to small changes in β (not true in the
canonical approximation).

The inclusion of degrees of freedom corresponding to
kinetic energy highlights the existence of a transition that
occurs when the total excitation energy exceeds the maximum
energy that can be accomodated as internal excitation energy
of fragments. This transition can reasonably be thought of
as a change of phase and is accompanied by a qualitative
evolution of the morphology of partitions that occur with
significant probability. At energies below the cutoff region the
density of microstates is maximized for partitions with small
Q-values (typically those partitions with small multiplicities),
whereas at high energies the increase in multiplicity favors the
predominant production of small fragments (high multiplicity
partitions). It is important to note, however, that this latter
“multiplicity driven” evolution does not in itself signal a
transition because it is not uniquely engendered by a finite
cutoff. This study thus indicates that one should look for the
transition in the function E(β).

Our analysis also suggests that it should be possible,
at least in nuclear multifragmentation, to delimit groups of
partitions each group being characterized by average values of
β and σ in which case we arrive at the familiar multinomial
form (i.e., at a formal analogy with the canonical result).
In this situation it should still be possible to detect the
transition that takes place when the internal excitation energy
saturates.
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