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Polarization observables and spin-dependent distortion effects in single-nucleon
knockout reactions
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A formalism is developed and predictions are made for selected polarization observables in one-nucleon
knockout reactions within the transfer-to-the-continuum direct reaction model. The effects of nucleon-target
spin-orbit distortions are also included and their importance is quantified. The calculated knockout reaction
analyzing powers reach an appreciable fraction of their maximum allowed values. They are also found to
be quite sensitive to the different approximation schemes used for the transfer probability amplitude within
the transfer-to-the-continuum model. In contrast, they are shown to be insensitive to details of the two-body
interactions assumed, including the nucleon-target spin-orbit interaction. The angular distributions of γ -rays,
arising from the decay of heavy reaction residues produced in excited final states, are shown to be strongly
anisotropic.

DOI: 10.1103/PhysRevC.72.044603 PACS number(s): 21.10.Jx, 24.10.−i, 24.70.+s, 27.30.+t

I. INTRODUCTION

The use of nucleon knockout reaction partial cross sec-
tions, and their associated residue momentum distributions,
for the single particle spectroscopy of light exotic nuclei
has been the subject of recent studies and reviews [1–4].
Several direct reaction models have also been developed to
analyze and interpret different aspects of these experimental
data. Among these is the transfer-to-the-continuum (TC)
direct reaction model, as developed by Bonaccorso and
Brink [5].

The potential to exploit spin degrees of freedom and
polarization observables could significantly enhance and
supplement this spectroscopic role, as well as elucidating
studies of the reaction dynamics and the reaction mechanism.
In particular, the angular distributions of the γ -rays emitted
by the heavy residue following the nucleon removal process
are becoming amenable to experimental study [6]. We also
require a better knowledge of the secondary beam polarizations
expected from the fragmentation process itself [7–9]. When
discussing such polarization phenomena, the possible role
of spin-dependent distortions from the interactions between
the projectile’s constituents and the target must also be
considered. This spin-dependence (the spin-orbit force) in
the nucleon-target interaction can be readily included within
the TC approach adopted here. This is not the case in the
much-used eikonal approaches (see, for example Ref. [10] for
the deuteron case) where a first step is the use of an adiabatic
or sudden approximation [11] for the internal motion of the
projectile.

In this work we therefore generalize the TC model for the
study of polarization and nucleon-target spin-orbit distortion
effects in single nucleon knockout reactions. Spin-orbit in-
teraction effects have been included previously, both in the
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semiclassical formulation of transfer reactions between bound
states of heavy ions [12,13], where they affect selectivity
with respect to the bound state angular momentum quantum
numbers, and, as a natural extension, to the TC model of
nuclear breakup reactions [14,20,23] as a spin-orbit distortion.
In the former case [13], this distortion was essential in the
reproduction of the position of the target single particle
resonances, whereas in the latter [20,23] spin-orbit effects
were shown to be important to determine the spin value of
the single particle state from which breakup originates. How-
ever, these were always studied in conjunction with further
approximations to the TC reaction amplitude. Here, these
nucleon-target spin-orbit distortion effects are studied with
and without such additional approximations [15]. Regarding
studies of analyzing powers, in Ref. [16] the TC formalism
was applied in calculations of transfer reactions between
heavy nuclei. One of our aims is to assess this approach in
applications to one-nucleon knockout from lighter and also
more weakly-bound nuclei.

In Sec. II the main formalism is developed and the basis
of the TC model is discussed. The formalism for analyzing
powers is also presented. In Sec. III the reactions under study
and the two-body interactions that we use are described.
Calculations of polarized momentum distributions, analyzing
powers and γ -ray angular distributions are then presented.
Section IV discusses our choice of the nucleon-target spin-
orbit interaction. Finally, in Sec. V, the spin-orbit distortion
effects are included and their importance for the calculated
observables is discussed.

II. FORMALISM

The transfer-to-the-continuum (TC) model has evolved
from theories of the (one-step) transfer of a nucleon (or
cluster of nucleons) between bound states in heavy nuclei.
The essential step in these earlier bound states formulations
involved making a semiclassical approximation to the entrance
and exit channel distorted waves in the distorted-waves
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Born approximation (DWBA) model of transfer reactions
[12,13,17–19]. These bound state models were then gener-
alized and applied to treat, approximately, nucleon/cluster
transfers to both resonant and nonresonant final states in
the continuum—thus the projectile breakup is viewed as a
particle transfer into continuum final states of the nucleon and
target system [5,20]. It is therefore assumed that the nucleon-
target interaction is the dominant interaction in the final
state.

The TC formulation also assumes that the nucleon-core po-
tential, that initially binds the projectile, and the nucleon-target
potential, responsible for the breakup of the projectile, have
no spatial overlap during the entire collision. The TC model
is therefore most applicable to weakly bound systems and to
neutron knockout or transfer processes. This nonoverlapping
potential approximation allows the use of external forms for
both the nucleon-core and the nucleon-target wave functions
[20]. Additionally, in the TC model, the core-target motion is
treated semiclassically while the neutron-target interaction is
treated quantum mechanically [5,17,20]. Here, we adopt the
notation developed in Ref. [15].

A. Cross section

The projectile initial state wave function is described as
a bound state of a neutron and a core c. The projectile
beam direction is chosen to be the coordinate z-axis. The
single-particle wave function has total angular momentum
j1, with projection n1, orbital angular momentum l1 and
an external wave function normalisation constant Ci . The
probability amplitude for the reaction in which the neutron
with final spin projection σ is transferred out of the projectile
is [15]

T (j1n1, σ kf K )

= 16π2h̄Ci

mvKkf

∑
j2n2m1m2σ ′λLl2

im1−m2L̂ exp (2iδL)(l2λsσ |j2n2)

× (l1m1sσ
′|j1n1)(l2m2sσ

′|j2n2)YLm1−m2 (K̂)Yl2λ(̂kf )

×Km1−m2 (ηb)Jl2j2Yl1m1 (β1, π )Y ∗
l2m2

(β2, 0), (1)

where we use the notation L̂ = √
2L + 1 and where

Jl2j2 = [1 − Sl2j2 ]/2. (2)

Here Sl2j2 is the neutron-target elastic S-matrix at energy
h̄2k2

f /2m where kf is the final state neutron-target relative
motion wave vector. j2 and l2 are the final state neutron-target
total and orbital angular momenta and s = 1/2 is the intrinsic
spin of the neutron. The core-target relative motion wave
vector is denoted by K . The core-target scattering is described
by the partial wave phase shifts δL where L labels the
core-target relative orbital angular momentum. The projectile
bound state asymptotic normalisation constant Ci and the
dynamical model parameters η, β1, and β2 are defined by
Eqs. (17), (21), and (22) of Ref. [15].

When the intrinsic angular momentum of the core, Ic,
with projection ξc, is included the resulting probability

amplitude is

T (j1n1, σ ξckf K ) = 16π2h̄Ci

mvKkf

×
∑

j2l2n2m1m2σ ′λLξn

im1−m2L̂ exp (2iδL)(l2λsσ |j2n2)

× (l1m1sσ
′|Inξn)(InξnIcξc|j1n1)(l2m2sσ

′|j2n2)Jl2j2

×YLm1−m2 (K̂)Yl2λ(̂kf )Km1−m2 (ηb)
×Yl1m1 (β1, π )Y ∗

l2m2
(β2, 0), (3)

where the angular momentum coupling order is assumed to
be [[l1 ⊗ s]In ⊗ Ic]j1. The corresponding expression for the
momentum distribution of the heavy residues following one-
nucleon removal is given by

dσ

dk1
= 32π |Ci |2 µi

µf

h̄

mvkf

×
∫

dbPel(b)
∑

j2l2m1m
′
1m2m

′
2

δm1−m′
1,m2−m′

2

∣∣Km1−m2 (ηb)
∣∣2

× (−1)m
′
2−m2

∣∣Jl2j2

∣∣2[
Yl1m1 (β1, 0)Y ∗

l1m
′
1
(β1, 0)

]
× [Y ∗

l2m2
(β2, 0)Yl2m

′
2
(β2, 0)]

× ĵ 2
2

l̂2 l̂1
(−1)2s+j2−l1−l2+In

∑
rρ

r̂2(l1m1rρ|l1m′
1)

× (l2m2rρ|l2m′
2)W (l2sl2s; j2r)W (l1sl1s; Inr), (4)

where the sum over core-target partial waves L has been
transformed into an integral over their impact parameter b.
Here h̄k1 is the (z-)component of the neutron’s momentum
parallel to the beam direction in the projectile’s rest frame.
In this frame the core’s parallel momentum is −h̄k1 which
must then be boosted into the laboratory frame to make
comparisons with the experimentally measured residue cross
section parallel momentum distribution, dσ/dp‖.

In the absence of a neutron-target spin-orbit interaction the
sum on j2 can be carried out and Eq. (4) reduces to

dσ

dk1
= 32π |Ci |2

(2l1 + 1)

µi

µf

h̄

mvkf

∫
dbPel(b)

×
∑

l2m1m2

∣∣Km1−m2 (ηb)|2∣∣Jl2

∣∣2|Yl1m1 (β1,0)Y ∗
l2m2

(β2,0)
∣∣2

.

(5)

In all cases above, the cross section from the inelastic breakup
mechanism, also referred to as the stripping mechanism, which
takes into account all inelastic excitations of the target, can also
be included by redefining [5]∣∣Jl2j2

∣∣2 = [{
1 − ∣∣Sl2j2

∣∣2} + ∣∣1 − Sl2j2

∣∣2]
/4. (6)

The elastic and inelastic breakup terms are now represented
by |1 − Sl2j2 |2 and 1 − |Sl2j2 |2, respectively.

The aims of this paper are now threefold, (i) to derive
formulas for the reaction analyzing powers from the prob-
ability amplitude, Eq. (1), in cases where the core state
spin is not observed, (ii) to obtain final-state core sub-state
populations from Eq. (3), and (iii) to assess the importance of
the neutron-target spin-orbit distortion effects by comparing
the predictions of Eqs. (5) and (4).
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B. Spin observables

In order to calculate analyzing powers for knockout, we
must construct the associated reaction spin-efficiency matrix
Rn1n

′
1
, defined by

Rn1n
′
1
= k2

f

∫
dk̂f dK̂

∑
σ

T (j1n1, σ kf K ) [T (j1n
′
1, σ kf K )]∗.

(7)

Here the probability amplitude T is given by Eq. (1) and
dk̂f denotes integration over only the directions of kf . This
expression is valid in an experiment where no measurements
are made of the directions of the core or neutron final state
momenta. When analyzing powers for the integrated cross
section are discussed in Sec. III C, then the magnitude of kf is
also integrated over in Eq. (7).

Knowledge of this efficiency matrix allows predictions to
be made for a knockout experiment with an incident projectile
beam in an arbitrary spin state, involving both diagonal and
off-diagonal density matrix elements, provided that the spin
projection σ of the knocked out neutron is not observed. This
condition leads to the incoherent summation over σ in Eq. (7).

The efficiency matrix is usually parametrized in terms
of a set of analyzing powers Tkq, k = 0, 1, . . . . 2j1, |q| � k,

defined by

Tkq = Nkq/N00, (8)

where

Nkq =
∑
n1,n

′
1

k̂(j1n1kq|j1n
′
1) Rn1n

′
1
. (9)

When the amplitude, Eq. (1), is substituted in Eq. (7)

Rn1n
′
1
=

∫
dbPel(b)

×
∑

m′
1m

′
2j2l2n2m1m2σ ′σ ′′

δm1−m′
1,m2−m′

2
(l1m1sσ

′|j1n1)

× (l1m
′
1sσ

′′|j1n
′
1)(l2m2sσ

′|j2n2) (l2m
′
2sσ

′′|j2n2)

× ∣∣Jl2j2

∣∣2∣∣Km1−m2 (ηb)
∣∣2

(−1)m
′
2−m2

[
Yl1m1 (β1, 0)

×Y ∗
l1m

′
1
(β1, 0)

][
Y ∗

l2m2
(β2, 0)Yl2m

′
2
(β2, 0)

]
, (10)

where, as we will take ratios, overall multiplicative factors re-
sulting from the integral have been suppressed. The numerator,
Nkq , of the analyzing power of rank k and projection q can be
evaluated in the more explicit form [22]

Nkq =
∫

dbPel(b)
∑

m′
1m

′
2j2l2m1m2

δm1−m′
1,m2−m′

2

∣∣Km1−m2 (ηb)
∣∣2

× [
Yl1m1 (β1, 0)Y ∗

l1m
′
1
(β1, 0)

]
ĵ 2

2

∣∣Jl2j2

∣∣2[
Y ∗

l2m2
(β2, 0)

×Yl2m
′
2
(β2, 0)

] ∑
rρhη

(−1)G(l1m
′
1l2 − m′

2|r − ρ)[r̂ ĥ/k̂]

× (r − ρl1 − m1|hη) (hηl2m2|kq)

×W (l1l2j1j2; rs)




l2 k h

j2 j1 r

s j1 l1


 , (11)

where G is the phase factor G = l2 − m2 + l1 − m1 − k −
q − 2s.

The Kronecker delta functions in Eqs. (10) and (11) [and
also Eq. (4)] arise from the integration over K̂ in Eq. (7). This,
together with the integration over k̂f , have as a consequence
that the Tkq vanish unless q = 0. It can also be shown that k
must be even. These two results are general properties of the
analyzing powers of this type of experiment.

If the nucleon-target spin-orbit force can be neglected, so
that Jl2j2 � Jl2 , then Eq. (10) becomes

Rn1n
′
1
�

∫
dbPel(b)

∑
m′

1m
′
2j2l2n2m1m2σ ′σ ′′

× δm1−m′
1,m2−m′

2
(l1m1sσ

′|j1n1) (l2m2sσ
′|j2n2)

× (−1)m
′
2−m2

[
Yl1m1 (β1, 0)Y ∗

l1m
′
1
(β1, 0)

][
Y ∗

l2m2
(β2, 0)

×Yl2m
′
2
(β2, 0)

]
(l1m

′
1sσ

′′|j1n
′
1)(l2m

′
2sσ

′′|j2n2)

× ∣∣Km1−m2 (ηb)
∣∣2∣∣Jl2

∣∣2
, (12)

and, as before, the j2 sums can be performed to give

Rn1n
′
1
�

∫
dbPel(b)

∑
l2m1m2σ ′σ ′′

(l1m1sσ
′|j1n1) (l1m1sσ

′′|j1n
′
1)

× ∣∣Jl2

∣∣2∣∣Km1−m2 (ηb)
∣∣2∣∣Yl1m1 (β1, 0)

∣∣2∣∣Y ∗
l2m2

(β2, 0)
∣∣2

.

(13)

Upon substituting this in Eq. (9) and carrying out the angular
momentum algebra, the numerator of Tkq becomes

Nkq � k̂ W (l1j1l1j1; sk)
∫

dbPel(b)
∑

l2m1m2

∣∣Jl2

∣∣2

× ∣∣Y ∗
l2m2

(β2, 0)
∣∣2

(l1m1kq|l1m1)

× ∣∣Yl1m1 (β1, 0)
∣∣2∣∣Km1−m2 (ηb)

∣∣2
. (14)

The denominator of Tkq is also given by Eq. (14), but with
k = q = 0, being essentially the unpolarized cross section.
The presence of Clebsch-Gordan coefficients involving only
orbital angular momenta is a consequence of our (current)
neglect of the neutron-target spin-orbit force.

Analyzing powers were derived previously within the TC
model for transfer reactions between heavy nuclei [16]. There
the Bessel function Km1−m2 (ηb) in Eq. (3) was replaced by
the first term of its asymptotic expansion for large ηb. An
additional aim of this paper is to assess the accuracy of such
an expansion to lowest order and also to higher orders, in the
case of breakup studies of light nuclei.

III. RESULTS FOR SPIN OBSERVABLES

Two reactions are used to illustrate this work. The first is
9Be(34Si,33Si)X at a beam energy of 70 MeV per nucleon.
This has been the subject of experiments carried out at
the National Superconducting Cyclotron Laboratory (NSCL)
at Michigan State University (MSU) [23] and has a neu-
tron separation energy of 7.36 MeV. The second reaction,
9Be (17C, 16C)X at 60 MeV per nucleon, has a ground state
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neutron separation energy of only 0.73 MeV. This knockout
experiment has also been performed at the NSCL, but at a
slightly different beam energy of 62 MeV per nucleon [24].
We have chosen to calculate observables at 60 MeV, and to
use the same two-body interaction descriptions as in Ref. [25],
to compare our theoretical analyzing power results with those
presented there. The ground state to ground state transitions in
both cases are assumed to result from a 0d3/2 neutron removal.
With this j1 = 3/2 projectile spin we expect a nonvanishing
T20 analyzing power [21].

A. Model two-body interactions

We use models for the neutron-target optical potential
and core-target (ion-ion) interaction which are appropriate
for intermediate-energy projectile beams. Following closely
the procedures used in Ref. [15], the neutron-target optical
potential is constructed by folding the 9Be target point-nucleon
matter density with the nuclear-matter effective nucleon-
nucleon (NN ) interaction of Jeukenne, Lejeune, and Mahaux
(JLM) [26] and using the local density approximation. We
assume a harmonic oscillator form for the 9Be nucleon
density. This microscopic approach to the complex nucleon
optical potential provides very good agreement with measured
reaction cross sections, and also elastic scattering angular
distributions from light nuclear targets, over a range of incident
nucleon energies, e.g., Ref. [27]. These include the incident
energies of importance here. The JLM effective interaction
parametrization itself extends over the entire energy range
for which the neutron-target two-body S-matrix is required,
thus our approach provides a consistent description of the
nucleon-target interaction over the entire phase space probed
by the TC reaction amplitude.

Since the TC model also assumes peripherality of the
reaction, and that we are fully-external in the wave functions
of the removed nucleon in the initial and final states, the core-
target interaction (absorption) enters only through Pel(b). This
elastic channel survival probability for the core is instrumental
in determining the active regions of impact parameter overlap
of these wave functions and hence the resulting removal cross
sections. We thus take proper account of the geometrical sizes
of the core and target, and their associated strong absorp-
tion radius, by constructing the core-target interaction and
S-matrices using the double-folding of their matter densities
with an effective nucleon-nucleon (NN ) interaction. Details
are given in Ref. [15].

The 16C and 33Si-core point nucleon densities were assumed
to have Gaussian form factors with range parameters chosen
to reproduce the empirically deduced root mean squared (rms)
matter radii. These were taken to be 2.70 and 3.16 fm, for 16C
and 33Si, respectively [28]. Extensive calculations for one-
nucleon knockout, including those for nucleon removal from
tightly-bound states, show that the detailed radial form of these
densities is unimportant for the calculated cross sections, see,
e.g., Ref. [29]. The resulting Pel(b) has essentially a black-disk
absorption profile and the cross sections are determined by the
core and target matter rms radii, which then determine their
strong absorption radius.
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T20
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(a)

FIG. 1. T20 as a function of the core parallel momentum for d3/2

neutron removal from (a) 17C and (b) 34Si at 60 and 74 MeV per
nucleon, respectively. The numbers indicate the order in ηb used in
the asymptotic expansion of the Bessel function.

B. Analyzing power momentum distributions

Calculations of T20 as a function of the core parallel
momentum in the laboratory, p||, are shown in Fig. 1. These
calculations result from (i) the exact evaluation of the Bessel
function in Eq. (11) (solid curves), and (ii) from truncation
of the asymptotic expansion of the Bessel function to zeroth
(dot-dashed), first (short-dashed), and second orders (long-
dashed); see Eq. (25) of Ref. [15] for the explicit form of
this expansion. The analyzing powers have a positive peak
in the region of the maximum in the calculated cross section.
This peak is positioned at the value of core parallel momentum
corresponding to k1 ≈ 0. The T20 decrease with increasing |k1|,
becoming negative. To understand this behavior, the polarized
cross section momentum distributions must be examined. T20

determines the fraction of the total cross section arising from
each projectile angular momentum substate. For the initial
j1 = 3/2 states these polarized cross sections are [30]

σ3/2 = σ0(1 + T20),
(15)

σ1/2 = σ0(1 − T20),
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FIG. 2. Polarized cross sections (a) σ3/2 for 17C, (b) σ1/2 for 17C, (c) σ3/2 for 34Si, and (d) σ1/2 for 34Si, for different orders in the asymptotic
expansion.

where the σµ denote the polarized cross sections for initial
states with n1 = ±µ and σ0 is the cross section for an
unpolarized beam. It is clear that T20 > 0 favors a larger σ3/2.

These polarized cross section results are displayed in
Fig. 2. For both of our model systems we note that there
is a large difference between σ3/2 and σ1/2 in the exact and
in all orders of approximation of the Bessel function. The
contribution from the more-aligned n1 = 3/2 configuration
is significantly bigger. The σ1/2 are small at k1 = 0 as they
correspond to a situation where, classically, the neutron orbit
is in a plane that contains the beam direction. This is sketched
in Fig. 3. In this spin projection the wave function will contain
only small components with k1 ≈ 0. For n1 = 3/2 on the other
hand the angular momentum is aligned more nearly parallel to
the beam direction, the neutron orbits in a perpendicular plane,
and thus contributes more significantly to the cross section
for small k1. The situation is most clear when neglecting the
neutron spin. In this limit the m1 = 0 cross section vanishes
identically at k1 = 0, as has been shown in Ref. [31] within
Glauber theory.

For each of our chosen systems, Fig. 2 also shows the
convergence of the polarized cross section with different
orders in the asymptotic expansion of the Bessel function.
Their agreement is good for σ1/2. For σ3/2 however both

the convergence and the agreement is very poor. It is clear
that these approximations affect, almost exclusively, the most
highly aligned configurations. This sensitivity is to be expected
since the different orders in the expansion have an explicit m1

(a)

(b)

FIG. 3. Sketch of the state of rotation of the neutron (n) around the
core (c), with angular momentum j1, from a classical point of view:
(a) in a poorly aligned initial state, the plane that contains the orbit of
the neutron contains also the beam velocity v; |n1|, the projection of
j1 onto v, is small; (b) in a highly aligned initial state the plane of the
orbit is perpendicular to the beam velocity; now j1 and v are parallel,
thus the modulus of their projection onto one another, |n1|, is big.
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TABLE I. Values of T i
20 for one-neutron knockout from 17C and

34Si when neglecting (ns) and when including (so) the nucleon-target
spin-orbit interaction. Calculations are obtained by exact evaluation
and by truncation of the Bessel function to different orders in its
asymptotic expansion.

Order 17C (ns) 34Si (ns) 17C (so) 34Si (so)

Zeroth −0.37 −0.03 −0.38 −0.04
First 0.03 0.24 0.02 0.22
Second 0.21 0.33 0.20 0.32
Third 0.26 0.37 0.26 0.36
Exact 0.36 0.41 0.35 0.39

dependence, and hence the truncation effects are orientation
dependent. We conclude that for the breakup of light nuclei,
an exact treatment of the TC amplitude is crucial to obtaining
reliable theoretical predictions for analyzing powers.

C. Polarized total cross sections

We now discuss the effect of beam polarization on the
integrated breakup cross section. Relevant experiments are
now those in which the final momenta of the fragments are not
measured, and so are summed over. As was stated in Sec. II B,
the Rn1n

′
1

must now be integrated over all variables except the
n1 labels. This inclusive analyzing power is denoted here by
T i

20. T i
20 is not the area under the curves in Fig. 1, but results

from integrating separately the numerator and denominator of
T20. Table I presents the exact results obtained for 17C and
34Si and those from different orders of the Bessel function
expansion.

We note that T i
20 can reach a significant fraction of its

maximum allowed value which, for j1 = 3/2, is unity. T20

is a measure of the sensitivity of the cross section to the
beam polarization. Therefore, if there was significant (tensor)
polarization of the secondary beam being used as the incident
beam in the knockout reaction, significant differences in the
theoretical predictions for integrated cross sections and of
deduced spectroscopic factors might result. The sign of T i

20
was also discussed in Ref. [25] with the use of geometrical
arguments.

The different approximate predictions for T i
20 are worse

than was the case for the unpolarized cross section, as seen in
the unpolarized momentum distributions of Ref. [15].

A calculation of the T i
20 arising from the inelastic breakup

or stripping mechanism was calculated using eikonal theory
for the 17C reaction [25]. This gave T20 = 0.23. The stripping
contribution from the TC model, the first term only in
Eq. (6), gives 0.35. This suggests that the matching conditions
inherent in the TC model predict a greater alignment effect.
Experimental information is required to study and assess this
effect quantitatively.

D. Populations of the core substates

In general the core nucleus has a nonzero intrinsic angular
momentum Ic and following the reaction some orientations of

Ic will be favored. This can be predicted from the results of
previous sections, where it was shown that the most highly
aligned total angular momenta make the largest contributions
to the cross section. Thus, with ξc being the projection of
Ic on the z-axis, cross sections for large |ξc| are expected to
dominate. According to Eq. (3) each substate population w(ξc)
is then proportional to the probability

P (ξc) =
∫

dbPel(b)
∑

j2n2l2m2n1m1m
′
1m

′
2σ

′σ ′′ξnξ ′
n

δm1−m′
1,m2−m′

2

× (l1m1sσ
′|Inξn)(l1m

′
1sσ

′′|Inξ
′
n)

× (InξnIcξc|j1n1)(Inξ
′
nIcξc|j1n1)(l2m2sσ

′|j2n2)

× (l2m
′
2sσ

′′|j2n2)(−1)m
′
2−m2

[
Yl1m1 (β1, 0)

×Y ∗
l1m

′
1
(β1, 0)

] [
Y ∗

l2m2
(β2, 0)Yl2m

′
2
(β2, 0)

]
× ∣∣Km1−m2 (ηb)

∣∣2∣∣Jl2j2

∣∣2
. (16)

When neglecting the neutron-target spin-orbit interaction,
some of the sums can be carried out analytically, and w(ξc)
becomes

w(ξc) =
∫

dbPel(b)
∑

l2m1m2

∣∣Km1−m2 (ηb)
∣∣2∣∣Jl2

∣∣2∣∣Yl1m1 (β1, 0)
∣∣2

× ∣∣Y ∗
l2m2

(β2, 0)
∣∣2 ∑

k

(−1)kk̂2(l1m1k0|l1m1)

× (Icξck0|Icξc)W (l1Inl1In; sk) W (IcInIcIn; j1k).

(17)

Calculations using the above are presented in Fig. 4 for the
34Si reaction. The calculations, as a function of the core
spin substate ξc, show the same features as those noted as
a function of the neutron total angular momentum. There is
a large difference between the contributions from |ξc| = 1/2
and |ξc| = 3/2, and a better agreement between the different
approximate TC amplitudes for |ξc| = 1/2.

E. γ -ray angular distributions

The 33Si residual nucleus, with an assumed Ic = 3/2+
ground state, is known to have excited states at 1.01 MeV and
at 4.32 MeV [32]. We have assumed that the stripped neutron
originates from the d3/2 valence shell of 34Si. Neutron removal
from the d5/2 shell is now considered, leaving the 33Si nucleus
in an excited Ic = 5/2+ state, with decay to the ground state by
γ -emission. The angular distribution of γ radiation from this
excited state decay is known to depend on the orientation of the
angular momentum of the emitting object [33]. In the nuclear
reactions under study here this information is provided by the
populations of the different spin substates ξc, calculated in
Sec. III D. Figure 5 shows the 33Si (5/2+, 4.32 MeV) excited
state substate populations [23]. These calculations use the
exact Bessel function approach.

As expected, the most important populations are of the
most aligned states. These populations are now used as input
to the calculation of the γ -ray angular distributions [34,35].
The probability of emission of photons with wave vector k, of
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FIG. 4. Populations of the core ground state angular momentum
substates, for several approximations, in the 34Si reaction: (a) |ξc| =
1/2, (b) |ξc| = 3/2.

any polarization, in the rest frame of the emitting body, is [33]

P (k) = k

2πh̄

∑
KLL′ππ ′q

BK (Ic)PK (cos θ )(−1)q+Ic−I0+L′−L−KÎc

× (LqL′ − q|K0)W (IcIcLL′; KI0)qπ+π ′

× 〈Ic||T π
L ||I0〉〈Ic||T π ′

L′ ||I0〉∗, (18)

where I0 is the core ground state spin and

BK (Ic) =
∑
ξc

w(ξc)K̂(IcξcK0|Icξc). (19)

The reduced matrix elements of the electromagnetic transition
operators 〈Ic||T π

L ||I0〉 and 〈Ic||T π ′
L′ ||I0〉 are assumed here to

be unity. If only a single transition (E2,M1...) is considered,
then this assumption does not affect the calculation of relative
intensities as a function of angle. Here, a single multipole
transition is assumed in each calculation. If all substates
were equally populated then clearly the resulting radiation
would be isotropic. Anisotropy is therefore a signal of the
nonuniform distribution of the final core substate populations,
i.e., of their alignment [6,34]. The areas under the curves in
Fig. 5 give the w(ξc) in Eq. (19).

The experimental momentum acceptance also plays a role
in determining the expected γ -ray angular distribution. If only
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FIG. 5. Populations of the angular momentum substates with
projections ξc = 1/2, 3/2, and 5/2 of the 33Si (5/2+, Ex = 4.32 MeV)
fragments.

a narrow momentum acceptance around the beam velocity
is detected, then since in that region the difference between
populations is greatest (Fig. 5), the radiation field will be
most strongly anisotropic. A broader momentum acceptance
of the core fragments, on the other hand, will lead to a
more uniform distribution, as has been predicted in Ref. [2].
Figure 6 presents the angular distributions, calculated using
the TC model, for three different values of the momentum
acceptance. For assumed E2 or M1 transitions, our results
concur with these expectations: the narrower the momentum
bite, the larger the population differences, and the stronger the
predicted γ -ray anisotropy.

IV. NUCLEON-TARGET SPIN-ORBIT INTERACTION

To assess the importance of the spin-dependence of the
nucleon-target two-body interaction responsible for breakup,
we now supplement the JLM neutron-target potential with
a realistic spin-orbit component. We adopt the spin-orbit
potential form of Ref. [36],

Vso(r, E) = h̄2

m2
πc2

[
λso

v (E) + iλso
w (E)

]
Uso(r) l · s, (20)

where mπc2 (= 200 MeV) is the pion mass and E is the nucleon
incident energy. We take Uso(r) to be

Uso(r) = 1

r

dρ(r)

dr
, (21)

where ρ(r) is the target matter density, as was used for
the calculation of the JLM central potentials [37]. The
parameters λso

v (E) and λso
w (E) are also taken from Ref. [36].

These are

λso
v (E) = 130 exp (−0.013E) + 40,

(22)
λso

w (E) = −0.2(E − 20).

We first confirm that our neutron-target prescription is
consistent with experiment by calculating the neutron elastic
scattering analyzing power, Ay and comparing with available
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FIG. 6. γ -ray angular distribution from the 33Si (5/2+, Ex =
4.32 MeV) state considering (a) E2 and (b) M1 transitions. θc.m.

is the angle of the emitted radiation in the rest frame of the
residue. The momentum acceptance � is given in fm−1 around
k1 = 0, −� � k1 � �. The intensities have been scaled to be 1 at
zero angle.

data [38]. One such comparison is shown in Fig. 7 for
neutron-9Be elastic scattering at 16.9 MeV. The agreement
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FIG. 7. Experimental results for Ay in elastic scattering
9Be(n, n)9Be [38], compared to our predictions, with an incident
energy of 16.9 MeV.
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FIG. 8. Momentum distribution of the core fragments with
and without nucleon-target spin-orbit distortions for (a) 17C and
(b) 34Si.

shown is reasonable and is typical of that obtained at other
energies.

V. SPIN-ORBIT DISTORTION EFFECTS

We now consider the effect of this neutron-target spin-
orbit distortion on one-neutron knockout reactions. As was
discussed in Sec. II, in the absence of this interaction, the
j2 angular momentum sums could be carried out and hence
the formalism simplified analytically. Spin-orbit distortions
have been included previously within the TC model, but using
the zeroth order term of the asymptotic expansion of the
Bessel function [14], or under the M-function approach [19],
in Ref. [20]. Here we calculate Eq. (4) that incorporates
both the final-state spin-orbit distortions and the exact Bessel
function.

A. Cross section

The breakup of 34Si and 17C are now revisited in the
presence of spin-orbit distortion. Figures 8(a) and 8(b) show
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FIG. 9. Effects of nucleon-target spin-orbit distortion on the
residue momentum distribution for the 17C projectile. The calculation
with (without) a spin-orbit interaction corresponds to the long-dashed
(full) line. Stars (triangles) correspond to stripping with (without)
spin-orbit, whereas circles (squares) represent elastic breakup with
(without) spin-orbit.

the parallel momentum distribution of the 16C and 33Si ground
state residues, respectively, calculated in the exact Bessel
function approach. These are compared to the previous results
of Eq. (5). The differences between the results of Eqs. (4)
and (5) turns out to be small and within the experimental
error bars on available integrated cross section measurements.
The difference reaches its maximum at beam velocity and is
sizable for negative k1, corresponding to low neutron-target
energies. The effects become smaller as the neutron-target
relative energy is increased, due to the reduction in the
strength of the spin-orbit interaction with incident energy,
Eqs. (22).

Figure 9 displays the effect of spin-orbit distortion on
the individual stripping and elastic breakup contributions to
the momentum distribution of the 16C residue. It is clear
that the spin-orbit force induced differences are due to the
elastic breakup rather than the stripping mechanism. This
insensitivity in the stripping component is to be expected since
the spin-orbit interaction is predominantly real, whereas the
stripping cross section is dictated by the imaginary part of
the nucleon-target phase shift, see, e.g., Ref. [20]. Since, at
these energies, the knockout is dominated by the stripping
mechanism, the spin-orbit distortion effects on the inclu-
sive cross section and momentum distribution are therefore
suppressed.

B. Analyzing powers

As was done in the previous section, for the cross sec-
tion, we now investigate the effect of spin-orbit distortion
on calculations of analyzing powers. This means we use
Eq. (10) rather than Eq. (14). Figure 10 shows T20 in the
34Si case against the parallel momentum of the 33Si cores,
with and without the neutron-target spin-orbit interaction.
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p|| (GeV/c)
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0.5

1

T20
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With S-O

FIG. 10. Calculated T20 versus the 33Si residue parallel momen-
tum, with and without neutron-target spin-orbit distortions, for a 34Si
projectile.

The similarity is quite remarkable and will induce a minimal
effect on the polarized cross sections. Throughout this work
everything points in the direction of the tensor analyzing power
being an observable whose calculation can be carried out with
a good degree of accuracy, without significant sensitivity to the
different ingredients within the reaction model. In particular,
the choices of the radius governing the core-target interaction
and the neutron-target optical potential are of little importance.
To add one more point to this argument, the inclusive analyzing
power T i

20 has been calculated when including the spin-orbit
distortion. These results are also shown in Table I. They are
also very similar.

VI. CONCLUDING REMARKS

Spin observables of one-nucleon knockout reactions, and
the effects of the neutron-target spin-orbit interaction, have
been considered using the transfer-to-the-continuum direct
reaction formalism. The theoretical framework for the calcula-
tion of analyzing powers is presented, and some test cases are
studied. Our results show that the reaction analyzing powers
can be large and may reach a significant fraction of their max-
imum allowed values. We show that the calculated analyzing
powers are very sensitive to the use of approximations to the
TC model amplitude and hence that a proper (exact) treatment
of this transfer amplitude is required for accurate calculations
of analyzing powers.

The spin-dependent formalism developed also enables
predictions of the angular distributions of γ -rays emitted from
excited states of the heavy reaction residues. The potential
of such measurements as an additional source of structure
information have been discussed in the literature [6,34]. We
find significant, final-state-dependent, angular dependence in
these calculated angular distributions and which are sensitive
to the momentum acceptance of the recoiling residues.

Finally, we have assessed the effects of neutron-target
spin-orbit distortion on both the unpolarized knockout
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reaction cross sections and their associated analyzing powers.
This interaction has been neglected in analogous eikonal
reaction model treatments. The model interaction chosen
was consistent with measurements of the analyzing power
in the n+9Be binary system. We find that the effects of
the nucleon-target spin-orbit distortions are small, suggesting
that, for the systems, energies, and polarization observables
considered here, the formal and numerical complications of

this spin-dependence can safely be neglected in such knockout
calculations.
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