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χ2 or � test function in analysis of nuclear elastic scattering data
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The paper presents differences in the results of the optical-model analyses of nuclear elastic scattering data
when the true χ 2 and its approximation, i.e., the � test functions, are used in an automatic search for the best
model parameters.
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I. INTRODUCTION

Nuclear elastic scattering is the simplest nuclear process
studied since the early beginning of nuclear physics. The
main task when investigating this reaction is to develop a
theoretical model that can describe it correctly. There are few
such models, of classical, semiclassical, and pure quantum-
mechanical nature. The commonly used quantum-mechanical
model is the optical model (OM), in which elastic scattering
differential cross sections are described as a result of the
Coulomb and nuclear interactions of beam particles with the
nucleus by use of a complex nuclear potential. However,
the simple phenomenological spherical OM is not able to
reproduce the experimental data perfectly, and it serves only
as a starting point for its further modifications and extensions.
Using this model, we adjust the parameters of the complex
nuclear potential until the theoretical predictions are as close
to the experimental data as possible. With a computer, the set
of measured elastic cross sections σel(θi) at angles θi , with
their experimental errors δσel(θi), is compared with the set
of calculated theoretical cross sections σth(θi) for the same
scattering angles. The model parameters are adjusted until
the best fit is obtained. The procedure used to determine the
optimal set of parameters of the OM is called the automatic
search routine. It is then necessary to choose a quantitative
measure of a goodness-of-fit function that would stop the
search when the theoretical predictions are as close to the
experimental data as possible. The choice of a goodness-of-fit
test function is to some extent arbitrary, but it must be
statistically acceptable and should be the same for all research
groups to allow a comparison of the fits’ quality. As will be
shown later, the goodness-of-fit test function used so far is
probably not the best one, especially when fitting the nuclear
elastic channel.

II. THE χ 2 AND � TEST FUNCTIONS

In statistics, there is a test function used to judge how good
the theoretical predictions agree with a set of experimental
data. This is the χ2 test function, defined as

χ2 =
n∑

i=1

(
Ni

T − Ni
E

)2

Ni
T

(1)
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where Ni
E and Ni

T are the experimental and theoretical
numbers for the ith measurement and summations run from 1
to n separate measurements. In the present situation Ni

E and Ni
T

are the number of detected particles scattered through an angle
θi and the predicted number of scattered particles through the
same angle, respectively. However, we should compare, not the
number of scattered particles, but the values of experimental
and theoretical cross sections σ i

E and σ i
T . These are related to

the numbers of scattered particles by very simple relations:
σ i

T = αNi
T and σ i

E = αNi
E . The experimental cross sections

have the uncertainty δσ i
E = α(Ni

E)1/2. From the preceding
expression α can be expressed as α = (δσ i

E)2/σ i
E . Calculating

Ni
E and Ni

T from the preceding relations and inserting these
into Eq. (1), we can write it in the form presented by Hodgson
in his book The Optical Model of Elastic Scattering [1], i.e.,
in the form
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Next Hodgson made an assumption that, if the theory is
perfectly good, then σE � σT , and therefore σE/σT � 1, and
he got

� =
n∑

i=1

(
σ i

T − σ i
E

δσ i
E

)2

� χ2. (3)

This approximation is generally incorrect. This aproxima-
tion can be accepted only when the theory is perfectly good
and when the ratios σE/σT are uniformely distributed around
unity. We know that the OM is not a perfect theory and is
unable to reproduce the experimental data perfectly, especially
for strongly absorbed particles and heavy ions, and then σE/σT

is not symmetrically distributed around unity. Moreover,
Eq. (2) can be written in the form

χ2 =
n∑

i=1

(
σ i
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δσ i
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)2 (
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+ σ i
E

σ i
T

− 2

)
, (4)

where σ i
E/δσ i

E is the reverse of the relative experimental
error of the ith point. These fractions are playing the role
of weighting coefficients for each experimental point in the
total sum.

Now, if we put σE/σT � 1, then we should put σT /σE � 1
too!
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FIG. 1. Theoretical profiles of χ 2
i (solid curve) and �i (dashed

curve) tests as functions of the σ i
E/σ i

T ratio.

We can also present Eq. (3) in the same form as that of
Eq. (4), and thus we have

� =
n∑

i=1

(
σ i

E

δσ i
E

)2 (
σ i

T

σ i
E

− 1

)2

(5)

We see then that χ2 and � are completely different
functions.

The � function (which in fact is a function of the least-
squares method) has been adopted as an approximation of χ2,
and this function is widely used in all OM automatic search
routines. Both functions, χ2 and �, have minima at the same
point (where all σ i

T = σ i
E) but, as shown in Fig. 1, the former

is symmetric around the minimum, whereas the latter is highly
asymmetric around it (note that the ratio σ i

T /σ i
E is plotted on a

log scale). It is only in the nearest vicinity of the minimum that
χ2 can be approximated by the � function. As will be shown
in the next section, both functions work in a slightly different
way and give different search results.

III. THE χ 2 AND � SURFACES

To examine how both test functions work, we analyzed
four low-energy experimental elastic scattering data, present
in literature, by means of a four-parameter phenomenological
OM by using both test functions. The selected data were
28Si + 4He at 26.5 MeV [2], 40Ca + 4He at 24.15 MeV [3],
28Si + 16O at 54.69 MeV [4], and 208Pb + 4He at 26.0 Mev [5].
The analysis was performed by a scan of the χ2 and � surfaces
in two-parameter space, i.e., in the U - W space with fixed
geometrical parameters r0 and a. The geometrical form factor
for real and imaginary parts of the OM potentials was of the
ordinary Woods-Saxon type, without surface absorption.

The positions of the minima obtained for the χ2 and
� functions are shown in Fig. 2. The exact positions of these
minima are listed in Table I. The differences in the positions
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FIG. 2. The positions of minima of χ 2 (solid curves) and �

(dashed curves) test functions found when they were scanned in the
U - W space for a set of four experimental elastic scattering data.

of the minima found for the χ2 and � functions seem to be
rather small, and for 208Pb + 4He both minima are at the same
position. For this case, we have one well-defined minimum
and no “discrete” ambiguity. If we now calculate the angular
distributions for these minima, we see a substantial difference
in the differential cross section at backward angles for three
sets of experimental data and no difference for 208Pb + 4He.
The results are presented in Fig. 3. Looking at these results, we
see that the differential cross sections at backward angles are
much closer to the experimental data for the χ2 minima than
those for the � function. If we now perform a search of all four
parameters within the minima found by scanning, we get sets
of parameters that are almost identical to those presented in
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TABLE I. OM parameters for the minima of χ2 and � surfaces found when they were scanned in the U - W space for a set of four various
experimental elastic scattering data. N is the number of experimental points. The values of inactive test functions in the last two columns are
in parentheses.

Reaction N Elab Test U ru au W rw aw χ 2/N �/N

(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm)

28Si + 4He 63 26.5 χ 2 75.62 1.13 0.47 8.39 1.13 0.47 1474 (2668)
" " � 75.68 " " 9.38 " " (3047) 1192

40Ca + 4He 62 24.15 χ 2 64.60 1.16 0.52 6.25 1.16 0.52 1626 (3187)
" " � 64.68 1.16 0.52 9.09 " " (11 306) 737

28Si + 16O 92 54.69 χ 2 148.87 1.189 0.47 10.54 1.189 0.47 20.65 (45.54)
" " � 148.91 " " 12.56 " " (82.32) 23.50

208Pb + 4He 34 26.0 χ 2 25.06 1.22 0.55 6.69 1.22 0.55 7.6 (7.3)
" " � 25.31 1.22 0.55 6.58 1.22 0.55 (7.3) 7.6
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FIG. 3. The elastic angular distributions calculated for the pa-
rameters of minima of χ 2 (solid curves) and � (dashed curves)
test functions listed in Table I for a set of four experimental elastic
scattering data.

Table I. A detailed study of the χ2 and � surfaces shows that,
apart from the vicinities of deep minima, the first surface is very
“wavy” and has many local minima where the search based on
the gradient analysis stops, whereas the � function surface is
very smooth and the search usually reaches the nearest deep
minimum. When the χ2 test is used, it is necessary to scan
its surface first, and next to perform the search within the
deep minima. By adding more free parameters to the OM, we
can slightly improve the quality of the fits, but the preceding
differences still persist.

IV. DISCUSSION

The goodness-of-fit function used in the automatic search
for the best parameters of any theoretical model used to fit sets
of experimental data must have an absolute minimum for those
model parameters that reproduce perfectly the experimental
points, and it must have a minimum for the set of those
model parameters that describe the experimental data only with
certain accuracy. Moreover, it is clear that a good test function
should be symmetrical around the minimum, as it is only in
this case that the predicted values would be symmetrically
distributed around the experimental values. Which function
we select as a test function while performing the automatic
searches for the best set of the studied model parameters
is a matter of convention, but we must keep in mind the
fact that various functions might operate in a different way,
and the computer will choose a set of parameters that is not
always the best. The test function must also give a statistical
measure-of-fit quality, and it is clear that the χ2 function can
guarantee this.

Here I present a very simple example of the analysis of
elastic differential cross sections by means of a very simple
phenomenological four-parameter OM. The elastic differential
cross section is the simplest nuclear reaction observed, but
of a very specific type. This differential cross section is a
superposition of two phenomena, namely nuclear diffraction
and nuclear refraction [6]. The origins of these phenomena and
their mechanisms are quite different. The diffraction picture
forms beam particles that pass by the nucleus and have no
contact with it (have no contact with the nuclear forces).
The refraction picture forms particles that pass through the
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FIG. 4. The profiles and positions of the deepest minima of χ2

(solid curve) and � (dashed curve) test functions in the W direction
for the 40Ca + 4He case.

nucleus, are in contact with it, and are affected by nuclear
forces. Diffraction, being a purely wave effect, can be correctly
described by the “incomplete” Coulomb scattering amplitude.
The refraction mechanism is much more complicated and can
be described only approximately by means of complex nuclear
potential of the OM. The diffractive cross section, which is very

strong, dominates at forward angles, whereas the refractive
one, which sometimes is only a fraction of a percentage of the
whole elasic effect, rises above the diffractive tail at backward
angles. If we fit the whole elastic angular distribution with the
OM, the automatic search routine with the � test function will
easily find a set of parameters that reproduce the diffractive
forward-angle part of the angular distribution, and, because of
its high asymmetry (see Fig. 4), will pay much less attention
to its backward-angle part. The � test function will then select
parameters giving σT � σE for the refractive cross section.
In a real situation, the asymmetry of the � function is even
higher because of higher statistical errors at backward angles
(compare Figs. 4 and 1). This is a common situation when
the elastic differential cross section is fit with the OM by use
of the � test function. The whole elastic scattering angular
distributions of strongly absorbed particles and heavy ions
cannot be reproduced perfectly by the simple OM. To get
better fits to the backward-angle parts of the cross sections, we
must add more free potential parameters to the OM or include
some other effects, like narrow resonances. First, however, we
must determine the set of pure OM parameters that give the
best possible fit to the data. By adding resonances to the elastic
scattering cross-section analysis we in fact add another effect
of yet another different mechanism and origin (surface). In the
simple analyses just presented, the χ2 test is definitely better
in the first three cases. In the case of 208Pb + 4He, which is
almost pure diffraction [6], of course both functions give the
same results.

A similar situation might exist when any other experimental
data are fit with a model that is unable to reproduce them
perfectly.
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