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A systematic study of global properties of superheavy nuclei in the framework of macroscopic-microscopic
method is performed. Equilibrium deformations, masses, quadrupole moments, radii, shell energies, fission
barriers and half-lives are calculated using the following macroscopic models: Myers-Swiatecki liquid drop,
droplet, Yukawa-plus-exponential, and Lublin-Strasbourg drop. Shell and pairing energies are calculated in
Woods-Saxon potential with a universal set of parameters. The analysis covers a wide range of even-even
superheavy nuclei from Z = 100 to 122. Magic and semimagic numbers occurring in this region are indicated and
their influence on the observables is discussed. The strongest shell effects appear at proton number Z = 114 and at
neutron number N = 184. Deformed shell closures are found at N = 152 and 162. Spontaneous fission half-lives
are calculated in a dynamical approach where the full minimization of the action integral in a three-dimensional
deformation space of β deformations is performed. The fission half-lives obtained this way are two orders of
magnitude smaller than the ones resulting from static calculations. The agreement of theoretical results and
experimental data is satisfying.
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I. INTRODUCTION

Since the successful production of superheavy elements
(SHE) Z = 110, 111, and 112 in GSI [1–3] the process
of synthesis of nuclei belonging to the island of stability
predicted theoretically in the 1960s [4–6] has been sped up.
The Z = 114 element was reported by the Dubna group in
1999 [7] and only 2 years later the Z = 116 element was
discovered [8]. Another significant achievement of nuclear
experimentalist was the production of nine odd-proton number
superheavy nuclei originating from the isotopes of the Z =
115 element [9]. The most recent discovery, belonging to
the RIKEN scientists, was synthesizing the Z = 113 element
[10]. Although all elements with 110 � Z � 116 have been
produced successfully in the laboratory, the experimental
evidence is still far from being complete and the data that
already exist are being still modified as a result of new
experiments. Nevertheless, the fast progress in experimental
techniques and intensive studies of the heaviest elements by
different groups (Dubna, GSI, Jyväskylä, Livermore, RIKEN)
promise to verify all the data independently in various
laboratories.

These successful experimental efforts provide a great
challenge for nuclear theory, not only in terms of interpretation
of the measured data. What is expected as well is extrapolation
of the theoretical results to the regions of nuclei not yet
observed. Only the models able to reproduce the existing
data to a high accuracy for a wide range of nuclei can be
considered reliable for predictions of properties of nuclei not
known and to explain the physics underlying the observed
phenomena.

The theoretical investigation of the superheavy region has
been as well very intense in recent years. In searching for
the island of stability and the next doubly magic nucleus

many of approaches were employed by different authors,
e.g., fully self-consistent calculations such as Skyrme-Hartree-
Fock (SHF) [11] or the relativistic mean-field (RMF) model
[12,13] and on the other hand Strutinsky-like calculations
with more refined macroscopic-microscopic (MM) formulas
such as the finite range droplet model (FRDM) [14], Yukawa-
plus-exponential (YpE) [15], or the recent Lublin-Strasbourg
drop (LSD) [16,17]. Different approaches, however successful
in determining of some properties of studied superheavy
nuclei, are not fully consistent in their predictions of, e.g.,
magic numbers beyond the well-known Z = 82 and N =
126. The major magic proton number Z = 114 indicated in
MM calculations was also found in the RMF model with
NL-SH parametrization [18]. However, Skyrme-Hartree-Fock
calculations do not support this prediction, anticipating the
shell closure instead at Z = 124, 126 [19]. Several models
agree that a shell gap should occur at the neutron number
N = 184 but various RMF calculations predict no strong shell
effects for this number [20].

The differences in the description of shell effects are
followed by various predictions of deformation properties of
superheavy nuclei. The recent RMF results [20] suggest shape
coexistence and superdeformed minima for the heaviest nuclei,
whereas the MM approaches disfavor any superdeformation
[21]. The disagreements between MM and fully microscopic
approaches as well as the differences in predictions of the
same type of calculations depending on the parameter sets
used should be clarified basing on the available experimental
data.

In the present work we perform a detailed study of nuclear
properties calculated in various MM approaches for a wide
range of even-even superheavy nuclei with Z = 100–122.
Considering this region our article overlaps the formerly pub-
lished studies of that type done by the Warsaw group [22–24],
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where a similar range of SHE was studied in the YpE+WS
model. Here, the commonly used macroscopic models such as
Myers-Swiatecki drop (MSD), the droplet model (DPT) [25],
or Yukawa-plus-exponential [26] are examined in comparison
to the recent (LSD) model, which was shown to be more
powerful in determining masses and fission barriers all over
the periodic table [27,28]. The microscopic corrections to the
liquid drop energy are calculated in Woods-Saxon potential
with a universal set of parameters [29].

The outline of the present work is as follows. In Sec. II
we present the theoretical background of our calculations.
We briefly review the recent LSD model and then discuss
the methods employed to determine half-lives of considered
nuclei. Some calculational details are given in Sec. II C.
Section III is devoted to presentation of our results and consists
of three parts. First, we discuss equilibrium deformations,
radii, and shell and pairing corrections based on the LSD model
(Sec. III A). In Sec. III B we focus on the effects of different
macroscopic models on properties of superheavies, e.g., on
α-decay energies, fission barriers heights, and lifetimes.
Finally, in Sec. III C we verify the results by comparison to
available experimental data. Concluding remarks are collected
in Sec. IV.

II. THEORETICAL MODEL

The total binding energy in the macroscopic-microscopic
method is obtained as a sum of a smooth energy based on a
liquid drop type formula and shell plus pairing corrections.
Because the Strutinsky-type calculations are well known and
most of macroscopic models used in the presented study were
widely discussed in the literature, let us only briefly review the
LSD formula in the next section.

A. Lublin–Strasbourg drop

The nuclear mass according to the curvature-dependent
LSD model proposed in Ref. [27] is given by the following
formula:

M(Z,N ; def) = ZMH + NMn − 0.00001433Z2.39

+ bvol (1 − κvol I 2 ) A

+ bsurf (1 − κsurfI
2 ) A2/3Bsurf(def)

+ bcur (1 − κcur I 2 ) A1/3Bcur(def)

+ 3

5
e2 Z2

rch
0 A1/3

BCoul(def) − C4
Z2

A

+ Emicr(Z,N ; def) + Econg(Z,N ), (1)

where

Emicro = Epair + Eshell (2)

and

Econg = −10 MeV exp(−42|I |/10) (3)

is the congruence energy according to Ref. [30]. Bx (x =
surf, cur, Coul) are coefficients that depend on the geom-
etry of the nuclear shape and are defined as the ratio of
corresponding energies of a deformed and a spherical nucleus

Bx = Ex(def �= 0)

Ex(def = 0)
. (4)

Definitions of the curvature (Bcur), Coulomb (BCoul), and sur-
face (Bsurf) coefficients remain the same as in the standard drop
model (Coulomb and surface coefficients) or in the droplet
model (curvature coefficient Bcur) [25,31]. The parameters
appearing in Eq. (1) are as follows:

bvol = −15.4920 MeV,

κvol = 1.8601,

bsurf = 16.9707 MeV,

κsurf = 2.2938,

bcur = 3.8602 MeV,

κcur = −2.3764,

r0 = 1.21725 fm,

C4 = 0.9181 MeV .

Such a liquid drop formula with microscopic corrections as
in Ref. [32] results in root-mean-square (rms) mass deviations
equal to 0.698 MeV for binding energies of 2766 nuclei with
Z � 8 and N � 8 and rms = 0.88 MeV for 40 fission barrier
heights experimentally known.

B. Spontaneous fission and α-decay half-lives

At the present stage, there is still no fully microscopic
approach to nuclear fission. Theoretical works of the self-
consistent type focus mostly on extracting the fission barriers
but the serious drawback of this type of calculations is
overestimating the barrier heights. There are still not many
studies of nuclear dynamics and collective motion described
in a completely microscopic way. The work of Ref. [33], where
time-dependent calculations based on the generator coordinate
method and Hartree-Fock-Bogoliubov states were performed,
has been recently developed [34] to calculate the kinetic energy
distribution and mass distribution of fission fragments of 238U.
However, it is not easy to predict fission half-lives by use
of such an approach. We describe the spontaneous fission
of a nucleus as a tunneling through the many-dimensional
collective potential energy barrier. In the WKB approximation
the spontaneous fission half-life is inversly proportional to the
probability P of the penetrability through the barrier

Tsf = log 2

n

1

P
, (5)

n being the number of assaults of the nucleus on the fission
barrier in a time unit. For a vibrational frequency h̄ω0 =
1 MeV assumed in this article one obtains n = 1020.38 s−1.
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The tunneling probability P can be determined as [35]

P = (1 + e2S)−1, (6)

where S(L) is the action integral calculated along the fission
path L(s) in the multidimensional space of deformations

S(L) =
∫ s2

s1

{
2

h̄2 Beff(s)[V (s) − E]

}1/2

ds. (7)

Here s is the arc length measured along the curve L and E is
the energy of the system. The effective inertia Beff(s) is given
by the following:

Beff(s) =
∑
k,l

Bkl({βλ})dβk

ds

dβl

ds
, (8)

where {βλ} is the set of collective degrees of freedom.
Collective tensor components Bkl for multipole vibrations
can be evaluated in the first-order perturbation approximation
[36,37]

Bkl(β) = 2h̄2
∑
m

〈0|∂/∂βk|m〉〈m|∂/∂βl|0〉
E0 − Em

, (9)

where |0〉 and |m〉 denote ground and excited states of a
nucleus with the corresponding energies E0 and Em. For
an even-even nucleus excited states can be described in
terms of two-quasiparticle excitations Em = Eν + Eµ. After
the transformation to quasiparticles Eq. (9) takes a compact
form [38,39]

Bkl(β) = 2h̄2
∑
µ,ν

P k
µν(β)(Eµ + Eν)−1P l

νµ(β), (10)

where for the shape deformations

P k
µν(β) = 〈ν|∂Hs.p./∂βk|µ〉

Eµ + Eν

(uµvν + uνvu)

− 1

2
δµν

(
	

E2
ν

∂λ

∂βk

+ eν − λ

E2
ν

∂	

∂βk

)
. (11)

Here uµ and vµ are BCS occupation amplitudes, Hs.p. is the
single-particle Hamiltonian with eigenvalues eµ and Eµ =√

(eµ − λ)2 + 	2 is the quasiparticle energy corresponding
to the state |µ〉.

Theoretical investigations of spontaneous fission half-lives
are usually based on the static approximation [40,41] or on the
method connecting dynamical calculations in two-dimensional
deformation space with the simultaneous minimization of the
potential energy in the remaining degrees of freedom [22,
23,42]. The advantages of the dynamical treatment of fission
process are the following. Contrary to the static calculations,
where a phenomenological inertia function may be considered
and at least one free parameter fitted to experimental data is
present in the analysis, in the dynamical approach we have
no adjustable parameters of this type. The second issue is that
phenomenological mass tensor disregards the shell structure
of a nucleus, whereas in the dynamical treatment of fission
process it is taken into account in calculations of the effective
inertia tensor.
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FIG. 1. Statical (stat) and dynamical (dyn) fission barriers V (β2)
(MeV) (solid lines) and effective inertia Beff (h̄/MeV) (dashed lines)
as functions of elongation parameter β2 calculated for 290Dt along
statical and dynamical paths to fission discussed in the text. The left
abscissa corresponds to the fission barrier and the right one to the
mass parameter.

In the following, to find the trajectory Lmin that fulfills a
principle of stationary action [39]

δS(L) = 0 (12)

we have used the multidimensional dynamical programming
method first applied to fission in Ref. [43]. The algorithm
of minimization searches all possible paths joining both the
entrance of the barrier and the exit point and crossing all
the grid points. This is performed in one pass, the cost
of which is proportional to the dimension of the net. The
classical entrance and exit points are defined by the equation
V ({βλ}) = E ≡ E({β0

λ}), where {β0
λ} are the ground-state

deformations.
The above procedure leads in effect to a large decrease of the

mass parameter as compared to the one calculated along a static
path to fission and then to the increase of the fission probability
and consequently to the decrease of the fission half-life Tsf .
The behaviors of the effective inertia parameter Beff [see
Eq. (8)] and the fission barrier V (β2) for 290Dt can be seen in
Fig. 1. There are shown the cases calculated along statical and
dynamical paths to fission as functions of elongation parameter
β2. In the case of dynamical path one sees a large reduction of
the effective inertia as compared to the statical case. Typically,
the values obtained along the dynamical path to fission are a
factor of two smaller than the corresponding statical values. At
the same time the barrier increases by about 10%. Correlations
between the fission barrier and the mass parameter reflect the
shell structure of the single-particle energies. Extrema of the
potential energy and the inertia tensor nearly coincide.

044310-3



BARAN, ŁOJEWSKI, SIEJA, AND KOWAL PHYSICAL REVIEW C 72, 044310 (2005)

From the phenomenology of α decay one knows that the
half-life of an α-particle emitter depends strongly on the
energy (Qα) released in the process

Qα(Z,N ) = B(Z,N ) − B(Z − 2, N − 2) − B(2, 2), (13)

where B(N,Z) is the binding energy of a nucleus with
Z protons and N neutrons. In the literature there exist many phe-
nomenological formulas describing the half-life of a nucleus
with respect to an α-particle emission. The parameters of these
semiempirical approaches are fitted to available experimental
data. In our study we follow the well-known equation of Viola
and Seaborg [44]

log Tα = AZ√
Qα

+ BZ + C, (14)

where

AZ = az Z + a0

(15)
BZ = bz Z

but with the parameters for az, a0, bz, and C given in Ref. [45],
where more experimental data were taken into account.

C. Calculational details

Our calculations were done by use of the BCS approach,
in the constant gap approximation with intensities Gn,Gp

following the dependences

Gn A = 19.3 − 0.084(N − Z),
(16)

Gp A = 13.3 + 0.217(N − Z),

found in Ref. [46] and used successfully in the SHE region
[41]. The pairing problem was solved in a truncated single-
particle space taking into account Z levels for protons and
N levels for neutrons in BCS equations.

The deformations are introduced as proportionality coeffi-
cients of the nuclear surface expansion

R(θ ) = R0 c ({βλ})
∑

λ=2,4,6

[1 + βλYλ0(cos θ )] , (17)

where c({βλ}) is a constant calculated from the volume
conservation condition, R0 is the radius of equivalent spherical
sharp density distribution (R0 = r0A

1/3), and Yλ0(cos θ ) are
spherical harmonics.

The potential energy and all the components of the inertia
tensor were evaluated separately for each nucleus on a three-
dimensional deformation grid defined as follows

β2 = 0 (0.05) 1.2,

β4 = −0.12 (0.04) 0.32, (18)

β6 = −0.12 (0.04) 0.12.

We disregard odd-multipolarity deformations (β3, β5) that
play an important role only for lighter nuclei with more
complex fission barriers [47]. In the case of heavy nuclei
odd-multipolarities show up at a rather large quadrupole
deformation β2 ∼ 0.65 that is close to the exit point (the end of
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FIG. 2. The region of superheavy nuclei considered in the present
study.

the fission barrier). Therefore, their influence on the ground-
state properties, α decay, and fission process is negligible. The
dynamical treatment of fission allows us to neglect as well
axially asymmetric shapes (γ �= 0), the reason being that the
effective inertia [Eq. (8)] is usually considerably larger along
nonaxial trajectories than for those along γ = 0 and leads to
larger action integrals in case of nonaxial shapes [42].

Having found the set of the ground-state deformations
{β0

2 , β0
4 , β0

6} one can evaluate microscopically the quadrupole
moments

Q2 ≡ Q20
({

β0
λ

}) =
√

16π

5

∑
ν

〈ν|r2Y20|ν〉v2
ν , (19)

where |ν〉 are proton single-particle states in equilibrium point
and v2

ν are BCS occupation probabilities. Similarly, we can
calculate the mean square charge radii:

〈r2〉0 ≡ 〈
r2

({
β0

λ

})〉 = 1

Z

∑
ν

〈ν|r2|ν〉v2
ν + 0.64 fm2 . (20)

The last term here is the correction related to the finite range
of the internal proton charge distribution.

III. RESULTS

In the present work we consider the region of even-even
superheavy nuclei that includes all up to now discovered SHE
and additionally allows to study the structure of quantities
crucial for their existence in a wide range of atomic (Z =
100 ÷ 122) and neutron numbers. Nuclei taken into account in
our calculations are shown in Fig. 2. These are the superheavies
that, according to our predictions, are still stable with respect
to a proton or a neutron emission. This follows the analysis
of single-particle separation energies (Sp, positively defined)
that are positive for all described nuclear systems.

The results of our calculations are divided into three
separate parts. First, we limit ourselves to the discussion of
static nuclear properties (radii, quadrupole moments, shell
energies) obtained only with the LSD model. In the second
part we focus on the effects of different macroscopic models
on the nuclear properties that strongly reflect the changes in
the liquid drop energy, i.e., fission barrier heights, α decay,
and spontaneous fission half-lives. In the last part we discuss
in detail the LSD results and compare them to available
experimental data.
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FIG. 3. Contour map of the Struti-
nsky shell energy (Eshell) for consid-
ered nuclei calculated in the ground
state. The LSD model is used for the
macroscopic part of the energy. The
distance between isolines is 1 MeV.

A. Static properties in the LSD model

In the following we discuss radii, quadrupole moments,
and shell and pairing energies for studied nuclei. These
properties are mostly dependent on the microscopic part of
the energy and are affected by the smooth part only via its
influence on the equilibrium deformation. The intermodel
deviations of ground-state deformations are rather small,
except in the case of the YpE model, where the maximal
absolute deviation of elongation parameter β2 reaches 0.08
and that of the hexadecapole deformation β4 is equal to
0.04. It should be pointed out that despite the differences
in equilibrium deformations predicted with various models
the global behavior of the properties described in this section
remains the same in all cases and possible differences concern
only separate nuclei. Therefore, we restrict the discussion to
the results of LSD model. Although the stability of SHE is
determined mainly by shell effects, we begin this section with
a discussion of shell energies.

1. Shell correction

Values of total shell energies Eshell in ground states of
considered nuclei are shown on a contour map in Fig. 3.
Three minima of Eshell are observed in this region. The first, of
about −8.5 MeV, occurs for N = 152 for lighter superheavies
and disappears for elements with Z � 110. The closure of
the N = 162 subshell is represented by the second minimum
(−10 MeV) for all isotopic chains. These strong shell effects
form the island of well-deformed superheavy nuclei centered at
270Hs whose stability has been confirmed in recent experiments
[48]. The last minimum (−9.5 MeV) shows up for 298114.

This feature and the fact that all elements with N = 184
and Z � 114 have been predicted to have spherical shapes
(see Fig. 5) suggests the magicity of the neutron number
N = 184 and proton number Z = 114 that is in agreement
with the results of other Strutinsky-type calculations [41] and
of Skyrme-Hartree-Fock models [19].

2. Mass

In the region of superheavy nuclei the number of ex-
perimentally known masses is very limited. However, there
exist estimates of nuclear mass obtained from the general
trends [49,50]. Figure 4 shows the mass deviations 	M =
Mth − Mest in mega-electron volts for all reported estimates.
The rms error for all known and estimated cases is σmass =
0.51 MeV. Maximal deviation does not exceed ±1 MeV.
Similar results were obtained recently in the case of LSD+WS
calculations with a more refined δ-type pairing interaction (see
Refs. [16,17]).

3. Quadrupole moments

In Fig. 5 we show quadrupole moments obtained accord-
ingly to Eq. (19) within LSD calculations. It is seen that all
the superheavy elements have prolate deformations whose
magnitudes are slightly decreasing with the increase of the
neutron number. An abrupt change of equilibrium deformation
is clearly visible in isotopic chains of the heaviest elements
in the vicinity of N > 162. The quadrupole moments in this
region are suddenly lowered by a dozen or so units. The nuclei
with Z � 116 and N � 162 are weakly deformed. Among
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FIG. 4. Mass deviation 	M (in
mega-electron volts) resulting the cal-
culations of Lublin-Strasbourg drop
and Woods-Saxon model vs. mass
number A. σ denotes the rms error.
Experimentally known masses and es-
timates were taken from Refs. [49,50].
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FIG. 5. Electric charge quadrupole moments (Q2,p) in barns
as a function of neutron number N. The underlying equilibrium
deformations were calculated by use of the MM method with the
LSD macroscopic part.

them, around the magic number N = 184, one observes a
group of nuclei that tend to be spherical.

4. Root-mean-square radii

Root-mean-square charge radii [Eq. (20)] are shown in
Fig. 6. A rather regular dependence of the radii on the neutron
number is perturbed around N = 162−166, which can be
attributed to the abrupt change of equilibrium deformation
(see Fig. 5) that causes the difference in charge distribution.
The local maxima in rms radii curves suggest that the Coulomb
repulsion energy, approximately inversly proportional to the
radius of the system, is locally smaller for these nuclei thus
they are more stable. The nearly linear increase of the rms
radii for the heaviest (A>∼ 278) nuclei is a consequence of
their sphericity.
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FIG. 6. Root-mean-square charge radii as functions of neutron
number N for even-even transfermium nuclei (Z = 100 − 122).

5. Pairing gaps

The shell structure is strongly reflected in the solutions of
BCS equations. The BCS gap parameters (	n) for neutrons
as a function of neutron number are displayed in Fig. 7. The
values of 	n reach their maxima in the middle of shells and are
significantly lowered when the shell effects become stronger.
Additionally to the three distinct minima (N = 152, 162, 184)
another one can be distinguished at N = 174. Zero values
of pairing gaps around the shell closures are a drawback of
the BCS method that does not provide superfluid solutions
in cases of low-level density around the Fermi surface that
is a consequence of the nonconservation of the particle
number. One of the simplest method to cure this problem
is applying the approach of Lipkin and Nogami (LN) [51,52].
The discussion of LN solutions as well as other particle number
projection methods in the superheavy region will be given in
a forthcoming publication [53].

B. Decay properties in MM models

Decay properties of nuclei in this region of periodic table
are determined by nuclear masses, the behavior of fission
barriers and effective mass parameters. Energies released in
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FIG. 7. Neutron pairing gap parameters (	n) in mega-electron
volts resulting BCS calculations as a function of neutron number N.
Each curve corresponds to one isotopic chain Z = const.

α-particle emission which determine the half-lives with respect
to this process are defined by the differences between nuclear
masses of parent and daughter nuclei [Eq. (13)]. Contrary
to α decay, the description of the fission process depends
not only on the ground-state properties but as well on the
shape of the fission barrier and mass tensor along the fission
path. The behavior of barriers is decisive for the assesment of
the macroscopic part of nuclear energy. In the following we
compare the main quantities such as fission barrier heights and
half-lives calculated in considered MM models.

1. α-decay energies

In the left part of Fig. 8 there are shown α-decay energies
(Qα) calculated with LSD. Experimental data of Ref. [49] are
indicated by large open circles. The right panel of the figure
shows the differences

	Qα = Qα(model) − Qα(LSD), (21)

in mega-electron volts, where the word model corresponds to
the MSD, DPT, or YpE. As can be seen, the largest differences
appear for the YpE model (up to 0.6 MeV). This leads to

the estimated α-decay half-lives that differ from the LSD
results on 2 − 3 orders of magnitude. Except the region with
N ∼ 168, where the deviations reach 0.3 MeV, the magnitudes
of Qα in the MSD, DPT, and LSD models are comparable.
Consequently, the predictions of these models for α-decay
half-lives are similar. This is mainly the result of the fits
of parametrizations of macroscopic models that are done in
the ground states to the experimental nuclear masses. No
role in this adjustment is played by heights and widths of
fission barriers. It should be added that there are few reliable
experimental evidences concerning the former and no data
for the latter. Therefore, the significant differences between
various MM models are expected in the case of dynamical
quantities, such as fission half-lives.

2. Fission barriers heights

Figure 9 shows the heights of the first barrier VBar for the
LSD (left panel). Although this model appeared to be very
successful in calculations of nuclear masses and barriers, we
compare different results to those of the LSD. The differences
are shown in the left part of the figure.

The barrier height (VB) is defined as a difference of the
barrier peak and the energy of the ground state, which is equal
to the minimum of the macroscopic-microscopic energy. It is
seen that the most significant differences (1 MeV) as compared
to the LSD results occur when the YpE model is concerned.
The MSD and DPT models give similar barrier heights that
are, on avarage, 0.5 MeV lower for lighter superheavies and
are in a good agreement with the LSD barriers for nuclei
with N � 168. The results obtained in YpE model are the
opposite—the barriers that are higher as compared to other
models in the region of lighter superheavy nuclei become much
lower with the increase of neutron number. An interesting fact
is that the heights of the barriers become nearly the same (4–
4.5 MeV) for elements around N = 168 that shows up in the
corresponding similar stability of these nuclei with respect to
spontaneous fission in all considered macroscopic models.
This feature is a consequence of the fact that the shell energies
of all nuclei with N = 168 are almost equal (see Figs. 3
and 9).

3. Spontaneous fission half-lives

Spontaneous fission half-lives (Tsf) calculated in the dy-
namical approach for LSD model are shown in the left part of
Fig. 10. The half-life model differences with respect to LSD
results for MSD, DPT, and YpE are shown in the right area of
the figure.

The LSD model predicts the shortest half-lives for isotopic
chains of lighter elements, namely fermium, nobelium, and
ruthefordium. For these nuclei the estimates of the droplet
model are up to 8 orders of magnitude larger, whereas for
other nuclids the average deviation is about 2 orders of
magnitude.

The half-lives predicted in the YpE drop are longer as
compared to the LSD results in nearly all cases. These
differences reach 4 orders of magnitude for N less than
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parts of the figure.

170, whereas in the case of heavier nuclei they are reduced
approximately to 1 order of magnitude.

The largest half-lives are obtained with the use of the MSD
model, which is known to give relatively high and wide fission
barriers [54]. The average difference is around 4 orders of
magnitude.

A characteristic feature that shows up in the case of
all light nuclids (Z � 112) and all MM models is a large
bump in half-life curves with a maximum at N = 152,
which is a manifestation of the shell closure. For the
same isotopic chains one observes a distinct plateau of Tsf

ranging from N = 162 to 168. The half-lives of heavier
nuclei (Z > 112) are constantly increasing, reaching their
maximal values at N = 180–184. After passing this point
the curves fall down rapidly. The range of variation of

Tsf is very broad and covers 40 orders of magnitude. The
behavior of half-lives reflects clearly the structure of the fission
barrier heights (see Fig. 9) and is a consequence of shell
effects.

C. Decay properties in LSD model

Analyzing the half-lives of heavy and superheavy nuclei
one should bear in mind the variation of data that reaches
40 orders of magnitude. The precision of model calculations
should be very high to make the extrapolations reliable.

As it was already shown [16,17,27] the agreement of
the LSD masses and experimental data is satisfactory and
comparable to the results of self-consistent HFB models [55],
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extended Thomas-Fermi approach [30], or FRDM [14]. The
rms deviations for binding energy in all these models are
0.7 ± 0.05 MeV. Another important point is that because of
a proper inclusion of the curvature term the fission barriers
predicted in LSD model, especially in the region of heavier
nuclei, are determined with a very high accuracy that is even
better than that for the Thomas-Fermi approach. Therefore,
and based on the discussion of Sec. III B, we expect the LSD
model to be reasonable for predictions of half-lives and decay
modes of SHE. However, the results for fission half-lives of
fermium and nobelium isotopes obtained in YpE model are
closer to experimental data.

1. Spontaneous fission half-lives

Looking at LSD results in Fig. 10 one can separate three sets
of long-living nuclei. The first set is centered on 254No, which is

the most stable within this group. The second region is formed
by middle mass nuclei (N ∼ 162) with log(Tsf/y) ∼ −8.
The last group that is located in the vicinity of the magic
number N = 184 contain nuclei with the longest fission
half-lives log(Tsf/y) ∼ 8. However, it should not suggest
the possibility of an easy experimental observation of these
nuclei bacause other processes (α decay) may determine their
existence.

2. α-decay half-lives

The range of α-decay half-lives calculated from Eq. (14)
is comparable to the one for spontaneous fission half-lives
(Fig. 11). One observes a continous increase of the half-life
with the kinks located at deformed subshell closures N =
152 and 162 and at the spherical N = 184 shell closure.
The avarage slope of the log(Tα/y) curves is larger for the
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nuclei with Z � 114 than of those with the atomic number
greater than 114. As seen, the nuclids belonging to isotopic
chains of lighter elements are resistant to an α decay,
the lifetimes in this region are quite large contrary to the
heaviest elements that are unstable with respect to an α decay
(A � 290).

3. Decay probability

The last figure of this series (Fig. 12) shows the relative
probability of α decay calculated as follows:

pα(%) = 100
�α

�α + �sf
, (22)

where �α, �sf are partial widths of α and spontaneous fission
decays. The whole region of nuclei can be roughly divided into
two parts. The first is of α-decaying nuclids with N � 170 and

Z � 112. The spontaneous fission is the dominant process for
lighter nuclei. The approximate line of A ∼ 288 crosses the
area of the strongest competition between α and spontaneous
fission decays.

4. Comparison to experimental data

Experimental investigation of SHE encounter a general
problem that only a few atomic nuclei of each species are
produced. In the region considered here, there are about
17 measured Qα values and 30 total half-lives of even-
even nuclei. For Z � 110 only seven cases are known.
Therefore, the conclusions drawn from comparisons of the-
oretical and experimental data are slightly limited. However,
good agreements of macroscopic-microscopic results in the
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TABLE I. Results of LSD calculations vs. available experimental data taken from Refs. [49,50,59]. The first two column show atomic (Z)
and neutron (N ) numbers, respectively. The next column shows calculated values of electric charge quadrupole moment in barns. In the fourth
and fifth columns we give calculated and experimental α-decay energies in mega-electron volts. The decimal logarithms of total half-lives are
given in columns six (theory) and seven (experiment). The last columns contain theoretical and experimental decay modes and intensities (in
percentages). Asterisks indicate recent measurements of Dubna group [59].

Symbol or Z N Q2 (b) Qα (MeV) Qexp
α (MeV) log(T ) log(T exp) Mode(th) (%) Mode(exp) (%)

Fm 144 13.32 8.36 −10.70 −9.98 sf sf ≈ 100
146 13.61 7.96 8.37 −9.10 −7.45 sf sf4.5
148 13.84 7.49 8.01 −5.90 −5.94 sf α93
150 14.04 7.14 7.54 −4.40 −4.24 sf α > 90; sf0.0069
152 13.78 7.05 7.15 −4.00 −2.54 sf; α2 α100
154 13.74 6.83 7.31 −5.80 −3.43 sf α100
156 13.50 6.50 7.03 −11.80 −3.52 sf α8.1; sf91.9

No 146 14.01 9.05 −15.30 −13.1 sf
148 14.40 8.69 −11.30 −12.7 sf sf ≈ 100
150 14.16 8.50 8.54 −9.40 −7.11 sf α67; sf32
152 14.26 8.02 8.23 −6.71 −5.79 sf; α3 α90; sf0.17
154 14.09 7.90 8.57 −8.80 −7.03 sf α100; sf0.53

Rf 150 14.44 9.12 −14.90 −11.13 sf α < 1.5
152 14.48 8.68 8.95 −12.00 −9.69 sf α0.32
154 14.38 8.98 −12.80 −9.42 sf α13; sf87
156 14.12 8.89 −12.70 −11.17 sf
158 13.60 8.35 −11.80 −7.13 sf α < 0.8; sf ≈ 100

Sg 152 14.63 9.77 −14.40 −9.98 sf α < 20
154 14.56 10.08 9.92 −13.40 −9.92 sf α40; sf60
156 14.15 9.65 −12.10 −7.13 sf α < 22
160 13.55 8.48 −10.30 −6.17 sf α34

Hs 156 14.02 10.45 10.87 −13.90 −10.76 sf α50
158 13.69 10.04 10.33 −12.60 −10.60 sf
162 13.59 9.13 9.29 −7.83 sf; α7

Ds 160 13.12 10.85 11.20 −11.83 −11.29 sf; α8 α 100

112 170 8.92 10.04 −11.30 −10.49∗ sf sf∗

172 7.20 9.51 −9.80 −6.00 sf α100
−8.5∗ sf∗

114 172 5.17 10.45 −9.19 −8.03∗ sf; α20 α/sf∗

174 4.61 9.94 9.97 −7.23 −7.05 α70 α100
−7.7∗ α∗

116 174 4.27 10.83 −8.88 −9.32∗ α α∗

176 3.44 10.75 10.71 −8.68 −8.42 α100 α 100

region of transuranium nuclei [56–58] lead one to believe
the accuracy of this type of calculation remains similar for
SHE.

In Table I the theoretical results versus available experi-
mental data and empirical evaluations [49,50,59] are shown.
First, we give predicted values of quadrupole moments and
then calculated and experimental α-decay energies (columns 4
and 5) and decimal logarithms of total half-lives (in years)
are displayed. Last, theoretical and experimental decay modes
and intensities (in percentages) are given. It seems that the
worst results for total half-lives is obtained for 256Fm where
the disagreement of the measured and calculated values

reaches 8 orders of magnitude. The predicted dominant decay
mode is spontaneous fission, which is in agreement with
experimental data. The other results differ from experimental
ones on 2.4 orders of magnitude on the average, which
is comparable with precision of earlier calculations of that
type [22].

At present, for the heaviest nuclei only basic properties
can be directly extracted from experiment (lifetimes and
Qα values). Ground-state masses cannot be obtained, thus
the energies of emitted α particles are the only mass-type
observables in this region. Standard error for Qα energies
resulting our calculations for SHE is 0.35 MeV. Although the
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nuclear masses in LSD model are determined with the average
accuracy of about 0.7 MeV, the rms for Qα in this region is
highly satisfying.

IV. SUMMARY

In the presented work we have compared four macroscopic
models (Myers-Swiatecki drop, Yukawa-plus-exponential,
droplet, and Lublin-Strasbourg drop) applied to determine
global properties (static and dynamic) of heavy and
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FIG. 12. Partial probability of α-decay (in percentages) for SHE.
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superheavy even-even elements—from fermium up to Z =
122. Properties of about 210 nuclei were calculated and
examined in macroscopic-microscopic approach in which the
source of shell correction was the Woods-Saxon single-particle
potential. Residual interactions were accounted in framework
of BCS model where the pairing interaction was assumed to
have constant matrix elements.

The research of SHE properties in this framework leads to a
conclusion that MM models describe satisfactorily basic data
of superheavies in a wide range of atomic and neutron num-
bers. The characteristics of nuclei with Z � 116 are predicted
at the same level of accuracy. All models (in connection with
WS potential) give comparable static properties (masses and
Qα values) but differ substantially in the case of dynamical
quantities such as half-lives.

The quality of the reference model selected in the article,
Lublin-Strasbourg drop, which has a relatively small number
of free parameters fixed once for the whole periodic table
of elements, is comparable to other discussed macroscopic
models. Qα energies are predicted with an average accuracy
0.35 MeV and logarithms of half-lives with the rms less than
2.5 orders of magnitude.

Based on these observations one can believe that the
description of not only even but also of odd and doubly odd
nuclei is promising as well. The latter is the subject of the
forthcoming study.
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