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New measurement and reevaluation of the nuclear magnetic and
quadrupole moments of 8Li and 9Li
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The nuclear magnetic moment of 9Li and the quadrupole moments of 8Li and 9Li have been measured by use of
the β-asymmetry detection of nuclear magnetic resonance on optically polarized beams at ISOLDE/CERN. The
radioactive beams were implanted in Si for g-factor measurements and in Zn, LiNbO3, and LiTaO3 crystals for
quadrupole moment measurements. The electric-field gradient Vzz = 4.26(4) × 1015 V/cm2 is deduced for Li in
Zn. Using a recently adopted reference value, Q(7Li) = −40.0(3) mb, we reevaluated all earlier reported nuclear
quadrupole moments of 8Li and 9Li. Based on all available previous and present data, the adopted quadrupole
moments for these isotopes are Q(8Li) = +31.4(2) mb and Q(9Li) = −30.6(2) mb. The magnetic moment of
9Li is deduced as µ(9Li) = 3.43678(6)µN . The values are compared with predictions from shell-model and
cluster-model calculations.
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I. INTRODUCTION

The Li isotopes, among them the two-neutron halo nucleus
11Li, belong to the most investigated nuclei of the past
two decades. Because of their small nucleon number, the
calculation of their properties can now be done by use of ab
initio no-core shell-model approaches with realistic nucleon-
nucleon interactions [1,2]. Cluster models, considering, e.g.,
the halo nucleus 11Li as consisting of a 9Li core and two
neutrons [3] or an α+t+4n configuration [4], as well as
models based on antisymmetric molecular dynamics (AMD)
wave functions [5], are also used to describe these light nuclei.
Accurate values of the nuclear ground-state properties of the Li
isotopes, such as the magnetic dipole and electric quadrupole
moments, are ideal tools for testing the validity of these nuclear
models. Our final goal is to study these properties for the 11Li
halo nucleus, the most challenging case for both theory and
experiment. As an intermediate result, we report here on the
experimental procedures used to obtain improved values of the
8Li and 9Li dipole and quadrupole moments. Results for 11Li,
which were obtained recently, will be reported and discussed
in a forthcoming paper.

Spin-polarized beams of Li isotopes are implanted into
suitable crystals, where they decay with an asymmetric angular
distribution of the emitted β particles. To allow for accurate
nuclear-magnetic-resonance (NMR) measurements, several
host crystals were investigated to find the best conditions for
preserving the polarization, for achieving narrow resonance
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signals, and for finding suitable electric-field gradients (EFGs)
for the determination of quadrupole moments. This is de-
scribed in Sec. III A.

In Sec. III B, we describe the precise measurement of the
magnetic moment of 9Li relative to that of 8Li. The ratio of their
Larmor frequencies is measured by the β-asymmetry detection
of NMR (hereafter β-NMR) with an accuracy reaching the
10−5 level, similar to that of the adopted magnetic moment of
8Li [6,7].

For the determination of quadrupole moments, as described
in Secs. III C and III D, we aim at measuring very precisely
Q(8Li) and Q(9Li) relative to the quadrupole moment of 7Li.
Quadrupole moments reported in literature are given with
respect to different reference values for 7Li, for which more
precise values have become available over time. Recently, the
quadrupole moment of 7Li was reevaluated based on refined
calculations of EFGs [8]. The deduced value is in excellent
agreement with a reevaluation of former nuclear scattering data
[9] and the recommended value is Q(7Li) = −40.0(3) mb [10].
In this paper, we reevaluate all earlier reported values for the
8Li quadrupole moment, which were deduced from quadrupole
frequencies measured in crystals of LiNbO3 [11–13], LiIO3

[11], and LiTaO3 [14], relative to those measured for 7Li
[11,15–17]. We compare these results with our own values,
which we obtained in two independent experimental runs and
measured in two crystals: LiNbO3 and LiTaO3. A new adopted
value for Q(8Li) is deduced, which is then used to determine
the EFG of Li in Zn to the 1% level.

For 9Li, earlier measurements were performed only in
LiNbO3 crystals [13,18], and the data do not agree very well
with each other. In the present work, the quadrupole moment
of 9Li is measured relative to that of 8Li in crystals of Zn and
LiTaO3. These results are compared with the earlier work, and
a recommended value is deduced.
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FIG. 1. Schematic view of the experimental setup. See text for details.

Finally, the revised quadrupole moments of the Li isotopes
from A = 6 to A = 11 are compared with recent nuclear-model
calculations.

II. EXPERIMENTAL SETUP AND MEASURING
PROCEDURE

The experiment was performed at the on-line collinear
laser spectroscopy beam line at the ISOLDE [19] facility
at CERN. A 1.4-GeV pulsed proton beam (one pulse every
2.4 s with a maximum intensity of 3 × 1013 protons/pulse),
provided by the PS Booster, is impinging on the ISOLDE
production target. The target consists of a stack of rolled Ta
foils. The Li isotopes, with half-lives T1/2(8Li) = 838(6) ms
and T1/2(9Li) = 178.3(4) ms, are ionized on a hot tungsten
surface and accelerated to an energy of 60 keV. Beams of
8×107 8Li and 4×106 9Li ions/pulse were selected by use of
magnetic mass separation. Isobaric contamination was not an
issue because isobars are either nonexistant (8Be, 9B), very
exotic (8B), or stable (9Be). The Li beams were guided to the
experimental setup, where they are overlapped collinearly with
a continuous wave (cw) laser beam (Fig. 1) [20].

Polarization of the Li isotopes is achieved by optical
pumping on a beam of neutral Li atoms. Therefore the Li+
beam is neutralized by charge exchange with Na atoms in a
vapor cell containing Na metal heated to about 250◦C (leading
to about 50% neutralization efficiency). The remaining ions
are deflected out of the atom beam to prevent them from
contributing as a nonoriented background to the subsequent
β-asymmetry detection. A narrow-bandwidth cw dye laser
(Coherent 699-21) with 4-dicyanomethylene-2-methyl-6-(P-
dimethylaminostyryl)-4H-pyran laser dye provides circularly
polarized light at a wavelength of 670 nm and a power of
about 100 mW. This laser light induces resonant excitations
between hyperfine-structure levels in the transition 2s 2S1/2 −
2p 2P1/2 of the Li atoms [D1 line, Fig. 2(a)]. With the
neutralization cell at a tunable electrical potential of maximum
±10 kV, the velocity of the Li ion beam can be adjusted,
which allows the Doppler tuning of the atomic excitation
frequencies into resonance with the laser light. After several
cycles of resonant excitation (�m = +1) and subsequent
decay (�m = 0,±1), atomic and nuclear spin polarization
is created. This process of “optical pumping” [21] needs an

interaction time of typically 0.5 µs to reach maximum atomic
polarization. The quantization axis is established by a small
(Bs ≈ 1 mT) guiding magnetic field �Bs along the beam line.
In a gradually increasing rotational field close to the NMR
magnet, the coupled system of electronic and nuclear spins
is rotated to the transverse direction, before both spins are
adiabatically decoupled while entering the transversal static
NMR field of B0 ≈ 0.29 T. Here the atoms are implanted into
a suitable crystal, the nuclei thus forming a spin-polarized
ensemble.

When the β-decay asymmetry is measured as a func-
tion of the Doppler-tuning voltage, the Li atoms are tuned
into resonance with the laser light, so that the optical-
pumping condition is established in the transitions between the
hyperfine-structure components [see Fig. 2(b)]. The nuclear
spin polarization is observed with two β-detection telescopes,
each consisting of two plastic scintillators of 1-mm thickness,
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FIG. 2. (a) Atomic level scheme of 8Li. (b) Example of a
“hyperfine scan” in which the velocity of the Li atoms is Doppler
tuned across the optical resonance by scanning the post-acceleration
voltage of the ion beam. Only the ground-state hyperfine structure is
clearly resolved.
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placed at 0◦ and 180◦ with respect to �B0. Comparison
of the coincident count rates in the two telescopes allows
one to deduce the asymmetry a = (N0 − N180)/(N0 + N180),
which is proportional to the nuclear spin polarization. Note
that the observed asymmetries, as shown on the measured
spectra, include an offset from instrumental asymmetries. The
implantation depth of the 60-keV atom beam varies between
0.2 and 0.5 µm for the different crystals. Thus the surfaces
of the crystals need to be carefully polished and treated to
preserve the spin polarization and to ensure a well-defined
EFG at the implantation site. All experiments are performed
at room temperature.

Once the polarization condition is established, the voltage
is set to the value yielding maximum β asymmetry. Now the
nuclear moments can be measured with high precision by use
of the β-NMR. For this purpose, a magnetic rf field with
variable frequency νrf perpendicular to the static magnetic field
�B0 is applied to the implanted ensemble.

For nuclei implanted into a crystal with cubic lattice
symmetry, the nuclear Zeeman interaction with the static
magnetic field causes an equidistant splitting of the magnetic
substates m. If the applied frequency νrf matches the Larmor
precession frequency νL = gµNB0/h, transitions are induced
among all these states, resulting in a resonant destruction of
the initial polarization [22].

If the crystal has a noncubic lattice symmetry, the electric
quadrupole interaction causes an additional shift of the m levels
[see Fig. 3(a)]. For a small angle γ between the static-field
axis and the symmetry axis of the EFG, and νL � νQ with

νQ = eQVzz/h being the quadrupole frequency, the energy
levels are given by [22]

Em = −mhνL + hνQ

4I (2I − 1)
[3m2 − I (I + 1)]

3 cos2 γ − 1

2
.

(1)

Resonant destruction of part of the initial polarization is
induced by every frequency that fulfills the condition hνrf =
�E = |Em − Em−1| [22,23]. The quadrupole frequency is
deduced from the distance � between the 2I equidistant
resonance frequencies [Figs. 3(a) and 3(b)]. The angle
γ ≈ 0◦ is chosen in all our experiments. A deviation from
perfectly collinear magnetic and electric interactions reduces
the observed quadrupole frequency, e.g., by 1.1% for γ = 5◦.
Thus the possibility of misalignment may induce a systematic
error on the deduced quadrupole moment. To control and
minimize this error, all measurements were performed in two
experimental runs, with the crystals mounted independently.

The destruction of polarization is in all cases measured
by the recording of the β asymmetry as a function of the
rf frequency, with the static-magnetic-field strength B0 kept
constant. In the case of a cubic crystal lattice, one resonance
is observed for νrf = νL, whereas in a crystal with an EFG
the 2I equidistant resonances are symmetric with respect
to the Larmor frequency and have a spacing of � = 6νQ/

[4I (2I − 1)]. The amplitudes of the resonances, being pro-
portional to the destruction of polarization, are much smaller
in the latter case, because only the population differences of
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FIG. 3. (Color online) (a) Magnetic substates of a nucleus with spin I = 3/2 immersed into a static magnetic field and an EFG.
(b) Simulation of the three resonances appearing in the β-decay asymmetry because of a resonant breakdown of the ensemble polarization.
(c) Result of a single-frequency scan around the Larmor frequency for 9Li implanted into a Zn crystal. (d) Multiple-rf scan for 9Li in Zn.
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two magnetic substates contribute to the signals. To overcome
this problem, up to 2I rf fields with correlated frequencies
can be applied simultaneously, as explained in [24] and in
Figs. 3(a) and 3(b) for the case of 9Li (I = 3/2). When three
rf frequencies with values as defined in Fig. 3(d) are applied,
all levels are coupled at once, resulting in one resonance with
an amplitude that is more than five times larger than in the
single-rf measurement shown in Fig. 3(c).

III. EXPERIMENTAL RESULTS

A. Choice of the implantation crystal

The implantation properties of the Li isotopes in a particular
crystal lattice determine the linewidths and amplitudes of
the observed β-NMR resonances. A long relaxation time,
a homogeneous magnetic-field distribution over the crystal,
and implantation of the isotope in a substitutional lattice site
are prerequisites for a large β-NMR amplitude and narrow
linewidth. To identify the optimal crystal for the implantation
of Li isotopes, as well as to obtain a crystal-independent
determination of the quadrupole moments, measurements were
performed for 8Li implanted into different single crystals: LiF,
Si, Au with a cubic lattice structure, and Zn, LiTaO3, and
LiNbO3 with an axially symmetric EFG.

In Fig. 4(a) the NMR amplitudes from measurements on
8Li in Si, Au, and LiF are plotted as functions of the rf field
strength. On the axis we put the field strength induced by
the coil, not the one that is actually felt by the Li isotopes:
Because of the skin effect this field strength is reduced in

β-
as

ym
m

et
ry

(%
)

lin
e

w
id

th
(k

H
z)

0

2

4

0

5

10

15

0 0.2 0.4 0.6
B (G)

rf

(a)

(b)

LiF
Au
Si

LiF
Au
Si

FIG. 4. (a) Amplitude and (b) linewidth of β-NMR resonances
for 8Li implanted in different crystals with cubic lattice symmetry
as functions of the applied rf field strength. In (a) the laser-induced
β-asymmetry after implantation (open symbols) is compared with the
amplitudes of the NMR signals (filled symbols).

Si, Au, and Zn. The destroyed asymmetry (filled symbols) is
compared with the laser-induced asymmetry as deduced from
the hyperfine scan (open symbols). The asymmetry maintained
after implantation (open symbols) is different in each crystal
because of the different relaxation behavior. It is maintained
best in LiF, which has a long relaxation time, T1 > 15 s, at
room temperature [25]. The asymmetry in the Au crystal is
significantly reduced because of the fast Korringa relaxation
in metals {T1 = 0.6(3) s for Li in Au [26]}. In addition, we
see that in Au only about half of the initial polarization is
destroyed at the Larmor frequency, whereas for the other
crystals this ratio is about 80%. This means that in Au half
the nuclei do not contribute to the NMR effect because they
are implanted in defect-associated lattice sites with a noncubic
environment.

In Fig. 4(b) the linewidths of the resonances are shown. In
Si it is very small and dominated by homogeneous broadening
that gives a purely Lorentzian line shape. An inhomogeneous
broadening, induced, e.g., by a nonhomogeneous magnetic
field or a small EFG, would lead to a more Gaussian shape, as
observed in LiF. The fact that for low rf power the linewidth
in Si is reduced to 0.5 kHz confirms that the applied static
magnetic field is very homogenous over the beam spot, which
is about 6 mm in diameter. Because of this small linewidth and
large amplitude of the NMR signal in Si, this crystal was used
for the measurement of the nuclear magnetic moment of 9Li
relative to that of 8Li.

Figure 5 shows results of the same study for the crystals
with a noncubic lattice symmetry: Zn, LiTaO3, and LiNbO3.
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As in Si, in Zn the linewidth of the resonance is mainly
determined by homogeneous broadening, and at low power
it is reduced to less than 1 kHz. In combination with the
large-resonance amplitudes, this makes Zn a good crystal
for accurate quadrupole frequency measurements on the
Li isotopes. To deduce absolute values for the quadrupole
moments, a reliable value for the EFG of Li in Zn is needed.
As this EFG was determined to an accuracy of 6% only [27],
we calibrate it for the determination of the quadrupole moment
of 9Li by measuring νQ(8Li in Zn) and νQ(9Li in Zn) and by
using our newly adopted accurate value of the 8Li quadrupole
moment. A similar study is performed in the LiTaO3 crystal.
Although here the resonances are broader (≈6–10 kHz), the
large EFG and large-resonance amplitudes still allow rather
accurate measurements.

Measurements in two different LiNbO3 crystals showed
a significant difference in the observed resonance linewidths.
The resonances were resolved for only one crystal, which illus-
trates that the crystal quality (as provided by the manufacturer)
plays a crucial role. These resonances also suffered from small
amplitudes, and therefore measurements were performed only
for 8Li in LiNbO3, mainly for comparison with former such
measurements.

To judge possible systematic effects, all the relevant
measurements described in the following subsections were
performed twice, in two beam time periods with independent
magnetic-field calibrations and settings of the crystal orienta-
tion (referred to as run-1 and run-2).

B. Magnetic moment of 9Li

The Larmor frequency of 9Li (Iπ = 3/2−) was measured
relative to that of 8Li (Iπ = 2+), yielding the ratio of both
g factors. Consistent values for the 8Li magnetic moment have
been reported [6,26,28], with the most precise numbers given
by Winnacker et al. [6]. Here we use the value adopted in
the compilation of Raghavan [7], µ = +1.653560(18) µN ,
corresponding to g = 0.826780(9), for deducing the g factor
of 9Li.1

Both isotopes, 8Li and 9Li, were implanted alternately in
the Si crystal, and for each of them more than 15 resonances
were measured in each of the two runs. Typical resonances,
obtained in a few minutes of beam time, are shown in Fig. 6.

The ratios of the Larmor frequencies, deduced as the
weighted mean of the data in each run, are in very good
agreement with each other, being 2.77124(6) and 2.77121(4),
respectively. The weighted average of these gives a very
precise value for the ratio of the g factors: g(9Li)/g(8Li) =
2.77122(3), from which we obtain g(9Li) = 2.29119(4). Thus

1We note that this number deviates from the weighted average of the
g factors quoted in the original paper by Winnacker et al. [6], after
correction for diamagnetism. However, further corrections to that
value are necessary, accounting for chemical shifts in the crystalline
samples and for a revised reference g factor for protons in water.
Assuming this to be included in the tabulated value [7], we still
believe there should be an additional systematic error (of the order of
the experimental error) coming from these corrections.
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asymmetry as a function of the rf is shown for 8Li and 9Li in Si.
In (a) the error bars are too small to be visible.

the magnetic moment for 9Li is µ(9Li) = 3.43678(6) µN in
good agreement with the value µ = 3.4334(52) µN reported
by Arnold et al. [13]. An earlier value reported by Correll
et al. [18], µ = 3.4391(6) µN , deviates by nearly 4σ from
ours. However, our reevaluation of the results presented in that
paper indicates that the errors quoted for these data may be
underestimated.

C. Quadrupole moment of 8Li; EFG of Li in Zn

In Table I, the earlier published values for the 8Li
quadrupole frequencies in single crystals of LiNbO3, LiTaO3,
and LiIO3 are summarized. The deduced quadrupole moments
have been reevaluated, with common references used for the
7Li quadrupole frequencies [11,15–17], and the new adopted
7Li quadrupole moment [10]. All values agree with each other
within their respective error bars.

We compare these previous results to the new values
obtained in this work. A total of six quadrupole resonance
spectra for 8Li in LiTaO3 were taken in the two experimental
runs. A typical result is shown in Fig. 7(a). The data are
fitted assuming that the resonances are equidistant, with the
distance represented by the quadrupole splitting � as deduced
from Eq. (1). Equal linewidths are assumed, and it has been
verified that this does not influence the deduced splitting within
the fit error. The resulting frequencies with their statistical
fit errors are summarized in Fig. 8(a). The weighted mean
values from the two runs are in excellent agreement with each
other: νQ(1) = 59.44(36) kHz and νQ(2) = 59.60(24) kHz. We
also remeasured the quadrupole frequency in a LiNbO3 single
crystal, resulting in an average value νQ(8Li in LiNbO3) =
43.4(8) kHz [Fig. 7(b)].
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TABLE I. Overview of the revised quadrupole moments of 8,9Li relative to |Q(7Li)| = 40.0(3) mb.

Crystal νQ(7Li) (kHz) νQ(ALi) (kHz) |Q(ALi)| (mb) Reference

8Li LiNbO3 54.5(5) [15] 43(3) 31.6(22) [12]
LiNbO3 42.5(6) 31.2(6) [13]
LiNbO3 44.68(88) 32.8(8) [11]
LiNbO3 43.4(8) 31.9(7) This work-run 1
LiIO3 36.4(5) [11] 29.24(36) 32.1(6) [11]

LiTaO3 76.7(6) [16,17] 60.2(3) 31.4(4) [14]
LiTaO3 59.44(36) 31.0(4) This work-run 1
LiTaO3 59.60(24) 31.2(4) This work-run 2

31.4(2) Adopted value

Zn 33.5(20) [27]
Zn 32.32(7) Used to deduce EFG This work-run 1
Zn 31.84(12) This work-run 2

9Li LiNbO3 54.5(5) 48.4(24) 35.5(18) [18]
LiNbO3 37.4(13) 27.4(9) [13]
LiTaO3 Relative to 8Li 58.2(11) 30.7(6) This work-run 1
LiTaO3 57.9(7) 30.5(4) This work-run 2

Zn Relative to 8Li 31.4(2) 30.5(3) This work-run 1
Zn 31.1(1) 30.7(2) This work-run 2

30.6(2)a Adopted value

aIn the error calculation on the weighted mean, we did not include the standard deviation from the two earlier less pre-
cise measurements. The weighted mean value itself remains the same, whether or not the earlier values are included.

To deduce the 8Li quadrupole moment relative to that
of 7Li, we take the ratio of the measured frequencies with
respect to the 7Li quadrupole frequency (column 2 of Table I).
In LiTaO3 this frequency has been measured twice to a
precision of about 1% [16,17], and we take the weighted
mean of both values, νQ = 76.7(6) kHz, as a reference. For
the quadrupole frequencies of 7Li in LiIO3 and LiNbO3 we
use the values reported in [11] and [15], respectively. The
deduced quadrupole moments from the present work are in
very good agreement with all previous measurements (Table I).
The weighted mean of all these data results in the adopted value
Q(8Li) = +31.4(2) mb, with the sign as determined by Jänsch
et al. [29].

Measurements of the quadrupole frequency of 8Li in Zn
were performed to determine precisely the EFG of Li in Zn. A
typical spectrum is shown in Fig. 7(c). The fitted quadrupole
splittings deduced from measurements in the two runs are
summarized in Fig. 8(b). The weighted mean of the data from
each run, with the errors determined by the respective standard
deviations and statistical errors, are νQ(1) = 32.32(8) kHz
and νQ(2) = 31.84(12) kHz. Given the small error bars, the
two results differ from each other, which suggests that the
crystal was aligned differently with respect to the magnetic
field in both runs (a misalignment of γ = 5◦ can account for
the observed deviation).

Using the larger value of these measured quadrupole
frequencies and the newly adopted value for the 8Li quadrupole
moment, we can deduce the EFG of Li in Zn to the 1% accuracy
level. To account for a possible 3◦ misalignment of the crystal
c axis with respect to the applied magnetic field, we add 0.13
kHz to the error and obtain |νQ(8Li in Zn) | = 32.3(2) kHz.

This results in an EFG for Li in Zn, Vzz(Li in Zn)(1 − γ∞) =
4.25(4) × 1015 V/cm2, in good agreement with the value
reported by Ohtsubo et al., 4.24(27) × 1015 V/cm2 [27].

D. Quadrupole moment of 9Li

To determine the quadrupole moment of 9Li as precisely as
we did that of 8Li, we determined the ratio of both quadrupole
frequencies in two different crystals, LiTaO3 and Zn. Because
of the very small β-asymmetry parameter of 9Li (less than 0.1),
we used the multiple-rf method to improve the experimental
sensitivity by almost an order of magnitude (as demonstrated in
Fig. 3). A comparison of the quadrupole frequencies deduced
from multiple-rf and single-rf measurements revealed no
significant difference. Measurements were performed in both
runs, and in the two crystals several scans were alternately
made for 8Li and for 9Li. The fit results from each measurement
are summarized in Fig. 8. The resulting quadrupole frequencies
are given in Table I separately for the two runs and the two
crystals. Typical multiple-rf resonance curves for 9Li in Zn
and in LiTaO3 are shown in Fig. 9.

By use of our adopted value for Q(8Li), these four
independent measurements of the ratio Q(9Li)/Q(8Li) =
νQ(9Li)/νQ(8Li) lead to the 9Li quadrupole moments given
in the last column of Table I. They are all consistent with each
other and much more accurate than the earlier reported values
deduced from measurements in a LiNbO3 single crystal by
Correll et al. [18] and by Arnold et al. [13].

As a recommended value we take the weighted mean
of all independent measurements (Table I), leading to
Q(9Li) = −30.6(2) mb, with the negative sign adopted from
theory.
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FIG. 7. (Color online) Examples of β-NMR spectra of 8Li in
different crystals with an EFG. The asymmetry is shown as a function
of the frequency detuning, �scan = νrf − νL, with respect to the central
Larmor frequency. Because of the narrow resonance linewidths in the
Zn crystal, two-photon transitions are observed as well.

IV. DISCUSSION

In Table II we summarize the experimental results for the
magnetic and quadrupole moments of all Li isotopes. The
quadrupole moments are all directly or indirectly deduced
relative to that of 7Li, including that of 6Li which was recently
remeasured very precisely by Cederberg et al. [30]. The
quadrupole moment of 11Li was reported relative to that of
9Li [24], and we reevaluate its absolute value based on the
new accurate 9Li quadrupole moment reported here.

In a shell-model picture, the properties of the odd-A
Li isotopes with three protons are dominated by the unpaired
proton in the πp3/2 orbital. This is reflected in their g factors,
which are all close to the Schmidt value gsp(πp3/2) =
2.5293, as shown in Fig. 10. For the odd-odd Li isotopes,
6Li (I=1) and 8Li (I=2), the neutron is expected to occupy
preferentially the νp3/2 orbit. Indeed, the free-nucleon g factor
for a pure πp3/2νp3/2 configuration, coupled to spin I = 1

15.2

15.1

15.0

14.9

14.8

14.7

14.6

∆ =14.86(9) =14.90(6)

∆ 
[k

H
z]

(a)
8
Li(LiTaO )3

∆

29

30

31

32

28

=29.12(55)

(c)
9
Li(LiTaO )3

=28.95(36)∆ ∆

Run-1 Run-2

∆ 
[k

H
z]

(b)
8
Li(Zn)

S
S

M
M

M
S

S

S S
S

8.15

8.10

8.05

8.00

7.95

7.90

7.85

=8.08(2) =7.96(3)∆ ∆

Run-1 Run-2

15.4

15.6

15.8

16.0

(d)
9
Li(Zn)

M M
M

M

M

M

M
M

S

M
M

=15.7(1) =15.53(6)

15.2

∆ ∆

FIG. 8. (Color online) Overview of the deduced quadrupole
splittings from fitting the individual NMR spectra. In the LiTaO3

crystal we applied the single (S) NMR method for 8Li and multiple
(M) NMR for 9Li. In the Zn crystal the two measuring techniques
were applied for both isotopes, showing the independence of the
results on the applied measuring procedure. The weighted mean of
the data taken during each run is indicated by a gray bar (blue in the
color version).

or I = 2, results in the value g(πp3/2νp3/2) = 0.627. The
experimentally observed g factor for both isotopes is somewhat
larger than this, around 0.823, which suggests that other
configurations contribute to their wave function. For example,
the g factor for a configuration with a neutron in the νp1/2

orbital is g(πp3/2νp1/2) = 2.84, and a small admixture of
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FIG. 9. (Color online) Examples of multiple-rf scans for 9Li after
implantation in (a) Zn and (b) LiTaO3.
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TABLE II. Experimental magnetic dipole and electric quadrupole
moments of Li isotopes. The magnetic moments have been corrected
for diamagnetic shielding. The quadrupole moments are all deduced
relative to that of 7Li.

Isotope Iπ µ(µN ) Ref. Q(mb) Ref.

6Li 1+ 0.8220473(6) [7] −0.806(6) [30]
7Li 3/2− 3.256427(2) [7] −40.0(3) [9]
8Li 2+ 1.653560(18) [7] +31.4(2) This work
9Li 3/2− 3.43678(6) This work −30.6(2) This work
11Li 3/2− 3.668(3) [20] −35.0(49) [24]

this component in the wave function can easily explain the
observed differences. This is confirmed from shell-model
calculations, which predict indeed some occupation of the
νp1/2 and also of the πp1/2 orbits and do reproduce the
observed g factor within a few percent (open circles in Fig. 10).

We performed the shell-model calculation with the CKI
(Cohen-Kurath) interaction [31], in which protons and neu-
trons are restricted to the p shell. Free-nucleon g factors
were used to calculate magnetic moments and effective
charges eπ = 1.35e and eν = 0.5e to calculate the quadrupole
moments. Although this model space and interaction seem to
account rather well for the g factors, they do not reproduce the
observed trend in the quadrupole moments (see open circles
in Fig. 11). The strong increase of the absolute value of the
7Li quadrupole moment compared with that of 9Li is not at all
reproduced in this model space. If 7Li is considered as a two-
cluster structure of 4He and 3H, then the enhanced quadrupole
moment is reproduced well, Qclu = −38.5 mb [32]. Recently,
a microscopic cluster-model calculation was performed for all
Li isotopes up to A = 11 by use of the stochastic variational
method [4,33]. In this model, 7,8,9,11Li are considered to
consist of 4He, 3H, and single-neutron clusters. The calculated
quadrupole moments for the odd isotopes are represented in
Fig. 11 by filled squares. They reproduce very well the trend
line of the experimental values, in particular between 7Li
and 9Li. For 11Li, an increase in the quadrupole moment is
predicted, but a more accurate experimental value is needed to
prove this to be correct. By performing such an experiment in
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FIG. 10. g factors of Li isotopes, compared with Schmidt values
and to a shell-model calculation developed by Cohen and Kurath [31]
interaction in the p shell with free-nucleon g factors.
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FIG. 11. Experimental quadrupole moments of odd-A Li iso-
topes, compared with a shell-model calculation (with CKI interaction
in the p shell), with multicluster-model calculations, and with the
value for a pure πp3/2 configuration (eπ = 1.35e and eν = 0.5e.),
assuming that the Li quadrupole moments are determined by the
unpaired proton only.

a Zn crystal, one can improve the error on the 11Li quadrupole
moment by an order of magnitude as compared with the earlier
value that was obtained by use of a LiNbO3 host.

This cluster model also predicts very well the recently
observed decrease of the charge radii from A = 6 to A = 9
[34]. Using the experimental charge radii and assuming that
the quadrupole moment of the odd-A isotopes is determined
only by the p3/2 proton, we can calculate their single-
particle quadrupole moment as Qsp = −eeff[(2j − 1)/(2j +
2)]〈r2(N )〉. With an effective charge eπ = 1.5e, these single-
particle values (stars in Fig. 11) reproduce the experimental
values rather well. This confirms that indeed the unpaired
proton gives the major contribution to the odd-A Li quadrupole
moments. The agreement is not as good for 7Li because of the
enhanced cluster effect in this nucleus, which needs to be
considered explicitly to account for the quadrupole moment
observed.

V. CONCLUSION

The implantation of 8Li and 9Li into Si allowed the
determination of the magnetic moment of 9Li with a similar
accuracy as for 8Li: µ(9Li) = 3.43678(6) µN . By implantation
of these isotopes into LiTaO3 and Zn single crystals, we could
determine their quadrupole moments to a relative accuracy
of 1%, which is an improvement of nearly an order of
magnitude for Q(9Li). Our experimental values are compared
with earlier measured quadrupole moments after they were
all renormalized to the same reference value Q(7Li) =
−40.0(3) mb. This yields new adopted values Q(8Li) =
+31.4(2) mb and Q(9Li) = −30.6(2) mb. These accurate
nuclear moments are compared with results of shell-model
and cluster-model calculations. Good agreement is found
with the predictions of the cluster model, in particular in
explaining the large enhancement of the magnitude of the 7Li
quadrupole moment. A more accurate value for the EFG of Li
implanted in Zn, Vzz(1 − γ∞) = 4.25(4) × 1015 V/cm2, was
obtained.
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