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Nuclear incompressibility in asymmetric systems at finite temperature and entropy
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The nuclear incompressibility κ is investigated in asymmetric systems in a mean field model. The calculations
are done at zero and finite temperatures and include surface, Coulomb and symmetry energy terms for several
equations of state. Also considered is the behavior of the incompressibility at constant entropy κQ which is shown
to have a very different behavior than the isothermal κ . Namely, κQ decreases with increasing entropy while the
isothermal κ increases with increasing T. A duality is found between the adiabatic κQ and the T = 0 isothermal
κ . Analytic and also simple approximate expressions for κ are given which illustrate the role of various terms
that enter into κ . Namely, properties of the interaction used, the value of the effective mass, and its density
dependence all play an important role.
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I. INTRODUCTION

Heavy ion collisions produce hot and dense hadronic matter
[1,2]. Such matter is also encountered in nuclear astrophysics
and in supernovae explosions. Future rare isotope accelerators
will explore nuclei at the limit of isospin asymmetry. In neutron
stars one also encounters a system with a large neutron to
proton ratio. Thermodynamic quantities play an important
role in characterizing properties of such systems. One such
quantity is the nuclear incompressibility. While the nuclear
incompressibility at zero temperature has been studied for an
extended period [2–5], it is only relatively recently that its
temperature dependence has been of concern [6,7]. In this
paper we will focus on the temperature dependence of the
incompressibility in asymmetric systems, including the role
of surface, symmetry and Coulomb terms. We will also study
the adiabatic incompressibility which at T = 0 would be the
same as the isothermal incompressibility, but differs from it at
finite T. The isothermal incompressibility will increase with
T while the adiabatic incompressibility will decrease with
entropy [7].

There is still some uncertainty in the value of incom-
pressibility κ at T = 0 of the order of 10–20% [8–11].
Nonrelativistic calculations [12,13] have values of κ ≈ 220 ∼
235 MeV while recent relativistic calculations [14–16] have
higher values with κ ≈ 250 ∼ 270 MeV when contributions
of the negative energy sea are included. A larger range
of values from 211 ∼ 350 MeV is reported in Ref. [17].
Several recent papers [8,9,18] explain this difference between
nonrelativistic and relativistic calculations from differences in
the symmetry or isospin dependent part of the EOS and its
associated κ . The incompressibility of asymmetric nuclei is
somewhat uncertain as noted in Ref. [19]. The experimental
determination of κ involves a study of the breathing mode or
isoscalar giant monopole resonance. Since nuclei are finite,
charged and in the case of heavy nuclei asymmetric, the
measured incompressibility has contributions from surface,
Coulomb, and symmetry energy terms besides the volume
term or infinite nuclear matter term. Recent experimental
data [20,21] on nuclei 90Zr, 116Sn, 144Sm, and 208Pb allow for

an extraction of κ with an uncertainty of ±12 MeV [10,11]. For
light nuclei extraction of κ is complicated by the fragmentation
of the strength of the isoscalar monopole. For heavy nuclei,
uncertainties in the asymmetry term are present. A value of
κ ∼ 230 ± 12 MeV is often quoted by several groups.

Determinations of the nuclear incompressibility and nuclear
EOS are also important in heavy ion collisions. References
[2,22,23] illustrate the importance of κ in both sideward and
elliptic flow and in the transverse momentum response of
the spectators arising from an explosion of the participant
region. In Refs. [24,25] the incompressibility is related to
isospin diffusion [1,26], a process in which large clusters are
nearly symmetric in isospin and the nuclear gas is neutron
rich. Isospin diffusion is sensitive to the density dependence
of symmetry energy. Knowledge of the detailed features of the
symmetry energy is also important in nuclear astrophysics,
where neutron stars probe the isospin limits of this term.
Besides the giant isoscalar monopole, the isobaric analog
resonance has important information on the isovector part of
the nuclear potential. This potential is referred to the Lane
potential and the nuclear symmetry energy is responsible
for the splitting of the analog resonance from its isospin
lower partners, called the anti-analogue states [27]. The EOS
of asymmetric systems appears also in the theory of phase
transition in such systems [28–30]. In many of these cases
information about the EOS and associated incompressibility
is at T �= 0. Thus we explore the T �= 0 situation in this paper.

As a baseline, we will begin with a mean field discussion of
its behavior with T to see the contributions to incompressibility
of effective mass, excluded volume, symmetry energy, surface
energy, and Coulomb energy. In Sec. II, we will summarize a
general description of incompressibility and results of Ref. [7]
which considered the temperature and entropy dependence
of isothermal and adiabatic incompressibility of infinite
symmetric nuclear matter with a simple Skyrme interaction.
In Secs. III and IV we will consider the contributions of
effective mass and excluded volume. In Sec.V we consider the
incompressibility of asymmetric finite nuclear system which
has surface energy, symmetric energy, and Coulomb energy
contribution. The conclusion is given in Sec. VI.
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II. GENERAL CONSIDERATIONS

First, we define a quantity κ , incompressibility coefficient,
as

κ = k2
F

d2(E/A)

dk2
F

= 9ρ2 d2(E/A)

dρ2

= 9V 2 d2(E/A)

dV 2
= R2 d2(E/A)

dR2
. (1)

This quantity is evaluated at the saturation density ρ0 where
E/A has a minimum. The giant monopole resonance energy is

related to κ and this relation is E0 =
√

h̄2κA
m〈r2〉 . If the temperature

is kept constant in the above derivatives we have the isothermal
incompressibility κ , and if the entropy is held fixed, the result
is the adiabatic incompressibility κQ. This κ is related to
the second order Taylor expansion coefficient of E/A with
ρ or E/A = a + b(ρ − ρ0)2/2. Thus κ = 9ρ2

0b. The quantity
κ defined above is not the isothermal compressibility defined
in thermal physics as K = −( 1

V
)(dV /dP )T with T held fixed

and here P is the pressure. Since P = −dF/dV |T , we have
K = ( 1

V
)(1/ d2F

dV 2 )T . At T = 0, F = E − T S = E, and thus
κ = 9/(ρ0K). This reciprocal connection between K and κ

is no longer true at finite T. A reciprocal relation would exist
between K and a κ defined by an equation similar to Eq. (1),
but with energy E replaced with the free energy F. The K can
be connected to the density fluctuations through the equation
〈ρ2〉 − 〈ρ〉2 = (〈ρ〉2/V )T K [31]. Near a first order phase
transition and at its critical point, the K can become very large
since small changes in the pressure can produce large changes
in the volume. Large density fluctuations at a critical point
give rise to the phenomena of critical opalescence where the
presence of droplets of all sizes scatter light. In the limit of an
ideal gas K = 1/P . For a Van der Waals gas, whose equation
of state is (P + a(N/V )2)(V − bN ) = NT , the isothermal
compressibility K will diverge above and near the critical
temperature Tc as 1/(T − Tc)γ , where the critical exponent
γ = 1 which is the mean field value. Its reciprocal will go
to zero. The energy per particle for the Van der Waals gas is
E/N = (3/2)T − a(N/V ) for V > bN , while the entropy per
particle is S/N = log[(V − bN )/(Nλ3)] + 5/2. The λ is the
De Broglie or quantum wavelength λ = h/(2πmT )1/2. The
energy per particle monotonically decreases with increasing
density ρ = N/V and is at its minimum value at the smallest
density determined by the excluded volume V = bN . Besides
the isothermal compressibility, an adiabatic compressibility
can be obtained by keeping the entropy constant. The adiabatic
compressibility is KQ = −( 1

V
)(dV/dP )S with the derivative

at constant entropy. The reciprocal is related to κQ, the
adiabatic incompressibility as κQ = 9/(ρ0KQ). The energy
per particle of a Van der Waals gas can have a minimum with
V at constant entropy. Since the natural variables for energy are
entropy and volume from dE = T dS − PdV variations of the
energy with V at constant S bear a similar relation to variations
of the Helmholtz free energy with V at constant T where
dF = −SdT − PdV . Thus the adiabatic incompressibility of
Eq. (1) can go to zero for a Skyrme interaction as we shall
see. The minimum point (also maximum point) in the energy
occurs at zero pressure since dE/dV at constant entropy

is −P . Therefore E at constant S has the same maximum
and minimum points with variations in V or R or density as F
at constant T since both derivatives are −P which is set to 0.

A. Review of infinite matter incompressibility

Our mean field discussion is based on a Skyrme interaction.
The Skyrme interaction shares some common features with the
above Van der Waals equation such as an intermediate density
attraction [the a(N/V )2 term above] and a higher density
repulsion (the excluded volume term in Van der Waals). The
excluded volume leads to a much stronger repulsive term than
the Skyrme repulsive term since it involves an expansion to all
orders in the density. To keep the discussion simple to begin
with, we consider uncharged symmetric nuclear matter with no
surface energy terms. The Skyrme interaction energy is then

U/A = −a0ρ + aαρ1+α. (2)

The a0 term gives a medium range attraction while the aα term
is a short range repulsion.

At T = 0, the kinetic energy EK/A = ( 3
5 )EF (ρ). The

coefficients a0 and aα are fixed to give a binding energy
per particle EB/A = 16 MeV at saturation density ρ = ρ0 =
0.15 fm3. At this density EF = h̄2

2m
( 6π2

4 ρ)2/3 = 35 MeV and
EK/A = 21 MeV. From E = EK + U and d(E/A)/dρ = 0
at ρ0 the coefficients are

a0ρ0 = b0 = (EK + EB)/A + bα

= (EK + EB)/A + (1/α)(EK/3 + EB)/A

= 37 + 23/α,
(3)

αaαρ1+α
0 = αbα = (EK/3 + EB)/A = 23,

(1 + α)bα = b0 − 2
3EK/A.

The incompressibility coefficient κ at T = 0 is then

κ = −2EK/A + 9(1 + α)αaαρ1+α
0

= EK/A + 9EB/A + α(3EK/A + 9EB/A)

= 165 + 207α. (4)

The last result is for the case of EB/A = 16 MeV and ρ0 =
0.15 fm−3 with nucleon mass m. For an effective mass m∗ �=
m,EF = 35(m/m∗) MeV and EK/A = 21(m/m∗) MeV and

κ = (144 + 21m/m∗) + α(144 + 63m/m∗) (5)

when the density dependence of m∗ is neglected. Detailed
discussions of the role of m∗ are presented in Sec. III. For
m∗/m = 1, α = 1/3, κ = 234 MeV at ρ0 while for m∗/m =
0.7, κ = 234 MeV at α = 60/234 ∼ 1/4. These values are
in agreement with Refs. [10,11]. Smaller values of α lead to
softer equations of state and lower κ . Similar results were
obtained in Ref. [32] with a density dependent effective mass.
In the limit α → 0, logarithmic terms appear in Eq. (2) coming
from the presence of a factor (x/α)(1 − xα) = (x/α)(1 −
eα log x) → −x log(x). The x = ρ/ρ0 = (R0/R)3 with R3

0 =
A/(ρ04π/3). The α → 0 limit is the softest EOS allowed
by Eq. (2), and this limit gives from Eq. (4) a value of
κ = 165 MeV at m∗/m = 1. A stiff EOS has α = 1 and κ =
372 MeV for m∗/m = 1. These extreme values for α → 0 and
α = 1 are unrealistic. The T = 0 results for κ are somewhat
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uncertain, but recent calculations [18,33,34], put κ in the range
210 ∼ 270 MeV and suggest a value of α = 1/3 for κ =
234 MeV in a Skyrme type approach with m∗ = m. When
m∗ < m, a value of κ = 234 MeV is achieved with smaller
values of α. A larger range of values of κ , from 211 ∼
350 MeV, were reported in Ref. [17]. In this paper we will
keep α as a variable to illustrate its role in conjunction with
m∗ and its density dependence. Because of these uncertainties
in κ from more realistic forces, we will present results for
various values of α, from α ≈ 0 to α = 1.

B. Corrections to the infinite matter result

If the corrections to the infinite nuclear matter incompress-
ibility from finite size terms or nonzero temperature or entropy
terms are small, then these corrections can be obtained by
using the following method. Let E0(R) be the nuclear matter
energy per particle EOS which has a minimum at R0 and
an incompressibility κ0. If we add to this a term Ex(R), so
that E(R) = E0(R) + Ex(R) then the minimum shifts to a
new point Rm = R0 + �Rx . The new minimum and κ can be
found by making a Taylor expansions around of R0. The shift
is given by

�Rx/R0 = −R0(dEx(R)/dR)/κ0 (6)

with the derivative evaluated at R0 since R2 d2E/A

dR2 |Rm
≈

R2 d2E/A

dR2 |R0 for small �Rx . The new κ is

κ = R2 d2 (E(R)/A)

dR2
= κ0+R2

(
Ex(R)

A

)′′
− 2R

(
Ex(R)

A

)′

−R

(
Ex(R)

A

)′
Sk

κ0
, (7)

Sk = R3 d3 (E0(R)/A)

dR3

∣∣∣∣
R0

= −k3
F

d3 (E0(R)/A)

dk3
F

. (8)

The various quantities are evaluated at R0 and each ′ represents
one derivative with respect to R. Corrections to κ involving
skewness Sk or third derivative of the energy were pointed
out in Refs. [4,5]. However note here that the skewness Sk is
defined with opposite sign from others. Ellis et al. [35] used
the correlation between compression modulus and skewness
coefficient to examine the implications in a relativistic Hartree
approximation where the Ex is the Coulomb energy. The above
expression is a modified version of their result. When two small
correction terms are present then the above result is easily
generalized and each adds its own separate contribution. If the
corrections are large then the above approximate expression
will not be very accurate and it is best to calculate the shift
and κ exactly. We will use these results for the shift and κ to
find simple expressions for κ for the general case of arbitrary
α. Equation (4) gives an expression for the incompressibility
at T = 0 in terms of EK and EB . This will be κ0 = κ0(α) in
Eqs. (6) and (7). The skewness Sk = R3(E0(R)/A)′′′, in terms
of EK,EB , and α, is

Sk(α) = −27(EB/A)(3 + 4α + α2)

− (EK/A)(11 + 36α + 9α2) (9)

= −3(509 + 828α + 207α2).

The last equality in Eq. (9) follows when EK = 21 MeV and
EB = 16 MeV and m∗ = m. If m∗ �= m, then

Sk(α,m∗) = −3[(432 + 77m/m∗) + (576 + 252m/m∗)α

+ (144 + 63m/m∗)α2]. (10)

Comparing this last equation with the κ of Eqs. (4) or
(5) we see that the ratio of Sk/κ0 is of the order of 10
and somewhat insensitive to α and m∗/m. In particular for
α = 0, 1/3, and 1 and m∗/m = 1 this ratio is −9.25,−10.36,
and −12.45. For these α’s and m∗/m = 0.75 this ratio is
−9.33,−10.45,−12.56. We will apply this procedure or exact
solutions to evaluate the contribution of surface, Coulomb,
symmetry energy, temperature, and entropy to the nuclear
incompressibility. For the particular case α = 1/3, exact
solutions are also easy to obtain in several situations which
lead to a quadratic equation for the equilibrium point R when
E is written in terms of R.

C. Nonzero temperature and entropy considerations

At nonzero T and with T 	 EF , the kinetic energy
is EK/A = ( 3

5 )EF + (π2

4 )T 2/EF [31,36]. The energy per
particle is

E/A = 21
( m

m∗
)

x2/3 +
(

π2

140

)(
m∗

m

)
T 2

x2/3
− b0x + bαx1+α.

(11)

This equation cannot be used for very small x since the
condition T 	 EF will fail. We can use the procedure of
Sec. II B [7]. Taking Ex(R, T ) = 0.0517(m∗/m)T 2R2/A2/3

in Eqs. (7) and (6), we obtain the following expression for κ

and xm:

κ(α) = R2 d2(E(R)/A)

dR2

∣∣∣∣
T

= κ0(α,m∗) − 0.1034(m∗/m)T 2R2
0/A

2/3

×{Sk(α)/κ0(α) + 1}, (12)

xm(α) = ρm/ρ0 = (R0/Rm)3 = (1 + �Rx/R0)−3

= (1 − 0.1034(m∗/m)T 2/A2/3)−3. (13)

Note here that xm > 1, i.e., the saturation density is larger
than ρ0 in an isothermal process. Since A/(4πR3

0/3) = ρ0 =
0.15 fm3 and thus R2

0/A
2/3 = 1.363 fm2 we have the following

final simple results: For m∗ = m,

κ(α = 0) = 165 + 1.16T 2,

κ(α = 1/3) = 234 + 1.32T 2, (14)

κ(α = 1) = 373 + 1.61T 2.

From Eq. (14) we see that the first term is very sensitive to
α but the finite temperature correction is somewhat insensitive
to α [7]. Since Sk/κ0 is insensitive to α with a value of about
−10, the second term does not scale with the first term in
Eq. (14) as α changes. At T = 7.5 MeV the T dependent
corrections in Eq. (14) are 65, 74, and 91 MeV while the first
terms are 165, 234, and 373 MeV for α = 0, α = 1/3, and α =
1. At low T , κ and ρm increase with T and thus the GMR energy
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will be increased as T increases. However the T dependence of
GMR energy would depend on a mean field used and also on its
extrapolation to finite T. These results [Eqs. (12)–(14)] are very
close to the exact solution result of Ref. [7]. The exact result is
given by

κ(T ) = − 42x2/3
m + 0.705T 2/x2/3

m + 9α(1 + α)bαx1+α
m . (15)

At T = 2.5, 5, and 7.5 MeV, and for α = 1/3, the values of
κ are 242, 265, and 302 MeV, respectively. The value of α =
1/3 and T = 0 is also useful. It leads to an energy whose
minimum can be obtained from a quadratic equation in the
radius using ρ = A/(4πR3/3). Namely, E(R)/A is

E(R)/A = 21

(
R0

R

)2

− 106

(
R0

R

)3

+ 69

(
R0

R

)4

= 28.626
A2/3

R2
− 168.7

A

R3
+ 128.2

A4/3

R4
. (16)

At finite T a term (π2/140)T 2(R/R0)2 = 0.0517T 2R2/A2/3

is added to the right side of Eq. (16). When T is replaced
with entropy per particle S/A then this T dependent term
becomes 4.836(S/A)2A2/3/R2 since S = (π2/2)T A/EF at
low T. This S/A term can simply be added to the first term on
the right side of Eq. (16) since both have the same A2/3/R2

dependence. In the limit α → 0, xm satisfies the equation
14(x2/3 − x) + 23x log x = (π2/210)T 2/x2/3. At T = 0, 2.5,
5, 7.5, the xm = 1, 1.0157, 1.0598, and 1.1251, while κ =
−42x2/3 + 0.705T 2/x2/3 + 207x has values 165, 172, 193,
224 MeV, respectively.

At fixed entropy, the second derivative of E(R)/A has a
very different behavior than at fixed T. Namely, it decreases
with R for a given S/A. This can easily be seen by noting that
Ex(R, S) = 4.836(S/A)2A2/3/R2 compared to Ex(R, T ) =
0.0517T 2R2/A2/3. Here we used S = π2

2 T A/EF at low T.
Because R now is in the denominator, the first derivative is
negative and κQ will decrease

κQ = R2 d2(E(R)/A)

dR2

∣∣∣∣
S

= κ0(α) + 9.672(S/A)2A2/3/R2
0{Sk(α)/κ0(α) + 5}, (17)

xm = (
1 + 9.672(S/A)2A2/3

/
R2

0

)−3
. (18)

Note here that xm < 1, i.e., the saturation density is
lower than ρ0 in an adiabatic process in contrast to an
isothermal process. We have the following final results
at m∗ = m:

κQ(α = 0) = 165 − 30(S/A)2,

κQ(α = 1/3) = 234 − 38(S/A)2, (19)

κQ(α = 1) = 373 − 53(S/A)2

in MeV.
At higher T, the nearly degenerate Fermi gas kinetic

energy term is replaced by a virial expansion in ρλ3, where
λ is the quantum wavelength. Namely, EK/A = (3/2)T (1 +∑

cn(ρλ3/4)n) where the sum over n = 1, 2, 3, · · · has coeffi-
cients: c1 = 1/25/2 = 0.177, c2 = (1/8 − 2/35/2) = −3.3 ×
10−3, c3 = 1.11 × 10−4, · · · [31,36]. These coefficients come

from antisymmetrization effects only. The role of clusters in
the virial expansion is discussed in Ref. [7]. Since the cn’s
become small rapidly, we will keep terms up to c2. Then κ is
given by

κ(T ) = −(2196/T 2)x2
m + 9α(1 + α)bαx1+α

m . (20)

The xm is again the minimum of E/A, but now evaluated with
the new kinetic energy. The xm is affected by both the c1 and
c2 terms. A limiting value of κ can be obtained by taking T
very large where an ideal gas EK/A = (3/2)T leads to very
simple results [7].

We also investigate the case of constant entropy in the
ideal gas limit using the Sackur-Tetrode law [37]: S/A =
5/2 − ln(λ3ρ/4). This law connects T to ρ or V as T = CSρ

2/3.
Here CS = [2π (h̄c)2/(mc2)] exp[(2/3)(S/A) − 5/3]. Then
EK/A = (3/2)CSρ

2/3(1 + ρ2/3 ∑
cn([2πh̄2/mCS]3/2)n). The

resulting E(R)/A has a structure similar to the result for a
degenerate Fermi gas since both have a ρ2/3 dependence for
the kinetic energy term but with different coefficients. This
feature and a similar result at lower T suggests a duality
in the energy per particle EOS at constant entropy and its
associated κQ and the T = 0 EOS and its associated constant
T κ [7].

It should be noted that the xm’s for the constant
T case are usually close to 1 except at high T, and greater
then 1, so that the minimum of the energy occurs at a
density that is greater than ρ0. This feature is not the
case for the Helmholtz free energy F = E − T S. Since
P = −dF/dV, F is minimum when P = 0. At low T, the
entropy S = (π2/2)T A/EF , and thus FK = EK − T S, the
part of the Helmholtz free energy coming from the kinetic
energy part of E, is FK/A = (3EF /5)(1 − (5π2/12)(T/EF )2).
The complete F/A = FK/A + U/A, where U/A is given by
Eq. (2). The free energy per particle at low T can be obtained
from Eq. (11) by just changing the sign of the T 2 term: F/A =
21x2/3 − (π2/140)T 2/x2/3 − b0x + bαx1+α . As with the E/A

equation, this F/A equation is only valid when T 	 Ef .
For higher T, we use the virial expansion for EK involving
the coefficients cn mentioned above. Similarly, the T S/A =
(5/2)T − T ln(λ3ρ0x/4) + c1(λ3ρ0x/4)/2 + · · · [31,36]. We
note that the minimum of the free energy F (T , V ) and
energy E(T , V ) at constant T don’t coincide except at T = 0.
However, the minimum of free energy F (T , V ) at constant
T and the minimum of energy E(S, V ) at constant S are
at P = 0. The minimum of F is at subnuclear density, or
xm < 1, at nonzero T. For α = 1/3 and at T = 0, 2.5, 5,
7.5 MeV the xm = 1, 0.988, 0.951, 0.878 and the curvature
function κ = 9x2

m(d2(F/A)/dx2
m) = 234, 225, 199, 150 MeV,

respectively. The F also has a maximum at even smaller
x than its minimum point. The pressure P = ρxd(F/A)/dx =
ρ0x

2d(F/A)/dx and is P = 2.1x5/3 + 0.00705T 2x1/3 −
0.15b0x

2 + 0.15(1 + α)bαx2+α for T 	 EF . At high T and/or
small x, the P = ρ0xT {1 + ∑

cn(λ3ρ0/4)nxn} − 0.15b0x
2 +

0.15(1 + α)bαx2+α . The spinodal line is obtained by setting
dP/dV = 0 or d2(F/A)/dV 2 = 0. The critical point occurs at
the top of the spinodal line where d2P/dV 2 = 0 also. Similar
remarks also apply to E(S, V ) with S held constant and for
different values of S. The specific heat at constant volume is
also easily obtained from the above results. At low T ,CV is
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linear in T and is (π2/2)T/EF . The behavior of CV at higher
T can be obtained from the virial expansion of EK/A given
above. At very high T the CV → 3/2. The T = 0 limit where
CV = 0 is connected to this very high T limit of 3/2 in a
monotonic way with increasing T with no peak or cusp in
CV . This is to be compared with the strong peak found in
CV when inhomogeneities are included [38]. In this latter
case, cost functions arising from the surface energy associ-
ated with the formation of clusters are responsible for the
very large peak as mentioned. These calculation [38] were
done at a freeze-out density of about 1/3 nuclear matter
density. At high density, i.e., above nuclear matter, heated
matter may first form bubbles in a uniform background of
liquid. The formation of a bubble has associated with it a
surface energy. This aspect will be considered in a future
paper.

III. EFFECTIVE MASS EFFECTS

An effective mass m∗ changes the kinetic energy term.
In Sec. II, we presented results with m∗ independent of
density to keep analytic equations simple. In this section
we include a density dependence in m∗. This will introduce
another dependence into our expressions which has to do
with the choice of the density behavior of m∗/m with
ρ/ρ0. If we parametrize it as m∗/m = 1/(1 + r(ρ/ρ0)γ ),
then at zero temperature the E/A will simply read E/A =
(EK/A)x2/3 + r(EK/A)x2/3+γ − b0x + bαx1+α . The results
of Sec. II correspond to the choice γ = 0 with m/m∗ =
1 + r or r = m∗/m − 1. The EK/A = (3/5)EF = 21 MeV,
the value with the unrenormalized mass, and the effective
mass correction appears in the additional second term with
a γ + 2/3 power dependence. The r is a constant and has a
value of 1/2 when m∗/m = 2/3 at ρ0. If α = γ − 1/3, then
this additional effective mass term could be simply added to
the bα term. Since the coefficients are determined to give
the correct binding at ρ = ρ0 or x = 1 where E/A has a
minimum, the bα coefficient must be adjusted also. The final
incompressibility is still given by Eq. (4) with α = γ − 1/3.

If we parametrize m∗/m with γ = 1 then for α = 2/3 the
effective mass term can be added to the bα term and the
final incompressibility is now given by Eq. (4) with α = 2/3.
Similarly if we parametrize m∗/m with γ = 2/3 then for α =
1/3 the effective mass term can be added to the bα term and the
final incompressibility is now given by Eq. (4) with α = 1/3.
If γ = 1/3, the r dependent effective mass term can be added
to b0 term and there is no effect on κ and Sk. For general α

and m∗/m: αbα = (EB/A) + (1 − [3γ − 1]r)(EK/A)/3 and
b0 = (1 + r)(EK/A) + (EB/A) + bα and

κ0(α, r) = 9EB/A + (1 + [3γ − 1]2r)EK/A

+α(9EB/A + 3(1 − [3γ − 1]r)EK/A)

→ 3(55 + 69α + 7r[3γ − 1]([3γ − 1] − 3α)). (21)

For γ = 0 and r = m/m∗ − 1, the result of Eq. (21) reduces to
the result of Eq. (5). For γ = 1/3 or for α = γ − 1/3 this κ is r
independent for reasons already given. When we parametrize
m∗/m with γ = 1, which is the same case as considered in
Ref. [32], for α = 1/3, κ = 234 + 42r and for r = 1/2, κ =
255 MeV. The skewness is also affected by the effective
mass:

Sk = −27(EB/A)(3 + 4α + α2) − (EK/A)(11 + 36α + 9α2

+ r[3γ − 1]([3γ − 1] − 3α)([3γ + 11] + 3α))

→ − 3(509 + 828α + 207α2) − 21r[3γ − 1]

× ([3γ − 1] − 3α)([3γ + 11] + 3α). (22)

For γ = 0 and r = m/m∗ − 1, the result of Eq. (22) re-
duces to the result of Eq. (10). For γ = 1/3 or for α =
γ − 1/3 this is independent of r and for α < γ − 1/3,

Sk/κ0 decreases with r; for α > γ − 1/3, Sk/κ0 increases
with r.

The effective mass also appears in the temperature de-
pendent part of the energy per particle, modifying the
additional term Ex(R, T ) to now be given by Ex(R, T ) =
0.0517(T 2R2/A2/3)(1/(1 + r(R0/R)3γ )). The last factor in
this expression is the change the effective mass produces. The
result of Eq. (7) can be used to calculate the new κ . This leads
to the following equation:

κ = κ0(α, r) − 0.0705T 2

[
(2 + ([3γ − 3][3γ + 2] + 10)r − [3γ − 1][3γ + 2]r2)

(1 + r)3
+ (2 + [3γ + 2]r)

(1 + r)2

(
Sk(α, r)

κ0(α, r)

)]
. (23)

For the case of γ = 1, at T = 7.5 MeV and r = 1/2: κ =
283 MeV for α = 0, 335 MeV for α = 1/3, 388 MeV
for α = 2/3 and 442 MeV for α = 1. The T = 0, r =
1/2 values of κ are 207, 255, 303, and 351 MeV and

values of Sk are 2115, 2739, 3459, and 4275 MeV for
each of these respective α values. For a fixed entropy,
Ex(R, T ) = 4.836(S/A)2(A2/3/R2)(1/(1 + r(R0/R)3γ )) and
thus

κQ = κ0(α, r)

+ 3.548(S/A)2

[
(10 − ([3γ − 2][3γ + 9] − 2)r + [3γ − 2][3γ − 5]r2)

(1 + r)3
+ (2 − [3γ − 2]r)

(1 + r)2

(
Sk(α, r)

κ0(α, r)

)]
. (24)
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At high T with effective mass, EK/A = (3/2)T (1 +∑
n cn(ρ(1 + r(ρ/ρ0)γ )3/2λ3/4)n) due to the mass dependence

in the De Broglie wavelength λ. Due to the density dependence
of the effective mass the c1 term contributes directly to
incompressibility now. Then κ is, up to c1 term, given by

κ(T ) = 1505

T 1/2

xm

(1 + rx
γ
m)1/2

rxγ
m

3

2
γ

(
1 + γ +

(
1 + 3

2
γ

)
rxγ

m

)
+ 9α(1 + α)bαx1+α

m . (25)

The xm is again the minimum of E/A, but now evaluated
with the new kinetic energy. At fixed entropy EK/A =
(3/2)CSρ

2/3(1 + ∑
cn([2πh̄2/mCS]3/2(1 + r(ρ/ρ0)γ )3/2)n).

The lowest order term having effective mass dependence is
the c1 term. Up to this term,

κQ(S) = −3CSρ
2/3
0 x2/3

m + 3

2
CSρ

2/3
0

(
2πh̄2

mCS

)3/2

× c1x
2/3
m

(1 + rx
γ
m)1/2

(
−2 + (27γ 2 + 9γ − 8)

2
rxγ

m

+ (9γ + 4)(9γ − 2)

4
r2x2γ

m

)
+ 9α(1 + α)bαx1+α

m .

(26)

IV. EXCLUDED VOLUME EFFECTS

Excluded volume effects appear in the Van der Waals
approach and modify the adiabatic incompressibility, leading
to an equation of state of the form, for a given S,

E/A = (3/2)CS[ρ/(1 − bρ)]2/3 − a0ρ, (27)

where CS = [2π (h̄c)2/(mc2)] exp[(2/3)(S/A) − 5/3] which
connects T to ρ or V as T = CSρ

2/3 for ideal gas. An expansion
of 1/(1 − bρ)2/3 = 1 + (2/3)(bρ) + (5/9)(bρ)2 + · · · leads to
an infinite series of repulsive terms with various powers of the
density. The numerator has ρ2/3 so that additional terms such
as ρ5/3, ρ8/3, ρ11/3, . . . are generated in this expansion. These
terms collectively give rise to a much high incompressibility.
If we had truncated the series at ρ5/3, then the resulting EOS
would be similar to a Skyrme with α = 2/3. A Skyrme with
α = 2/3 has an incompressibility of 303 MeV which is rather
high compared to the often quoted range of 210 ∼ 270 MeV.

To explore higher density repulsive terms in a T = 0
Skyrme parametrization, we can use the duality between the
EOS at constant entropy and the EOS at zero T [7]. Thus we
take the specific form of Eq. (27) with (3/2)CS replaced by a
constant parameter aK at zero T as a very simple model for
studying excluded volume like effects in our E/A. We can fix
the coefficient a0 and aK to give a binding energy per particle
of 16 MeV at ρ = 0.15 fm3: bK = aK ( ρ

1−bρ
)2/3 = 48( 1−bρ

3bρ−1 )

and b0 = a0ρ = 32
(3bρ−1) . The resulting κ is

κ = 96(6bρ − 1)/((3bρ − 1)(1 − bρ)). (28)

This κ has a minimum value of 754 MeV at b = 3.60.
Alternatively if we fix aK to be the T = 0 Fermi kinetic energy
coefficient, aKρ

2/3
0 = 21 MeV, and determine a0 and b by

having correct binding energy at saturation we get b = 3.61
and an incompressibility of 754 MeV. The two methods result

in very similar values for b and κ . An unrealistically high
incompressibility of 754 MeV is equivalent to having a single
Skyrme repulsive term with α = 2.85 from Eq. (4). This high
incompressibility is unreasonable but it can be moderated by
having higher order attractive terms in the density which, for
example, can come from higher order attractive correlations
of nucleons [7]. The presence of both attractive and repulsive
terms in various orders of the expansion of the equation of
state leads to a very complicated density dependence which is
beyond the scope of the present development presented here.
The skewness is given by

Sk = 192

(
bρ − 1

3bρ − 1

) [
6 + 31

(
bρ

1 − bρ

)
+ 45

(
bρ

1 − bρ

)2

+ 20

(
bρ

1 − bρ

)3
]

+ 1920

3bρ − 1
. (29)

The effects of temperature and entropy dependences coming
from a kinetic energy can be obtained from Eqs. (12) and (17)
with the κ0 and Sk given above.

V. ASYMMETRIC AND FINITE SYSTEMS

For N,Z asymmetric systems with Coulomb and finite
size effects included, the T = 0 κ is reduced [3,4]. This
was qualitatively explained in Ref. [3] as a reduction in the
binding energy term in Eq. (11). Detailed calculation done in
Ref. [4] confirmed this feature. In this part of the paper we
will present some very simple equations for the contribution
of surface, symmetry and surface symmetry, and Coulomb and
surface Coulomb. The surface, symmetry energy and Coulomb
terms each reduce the binding energy per particle from
16 MeV to 8 MeV. For light nuclei around A = 27, the
surface energy/A ∼ 6 MeV, the symmetry energy/A ∼
0 MeV and the Coulomb energy/A ∼ 1.5 MeV. For heavy
nuclei around A = 216, the above numbers are changed to
∼3 MeV, ∼1 MeV and ∼4 MeV for the surface, symmetry,
and Coulomb terms, respectively. We will find a somewhat
similar pattern of relative importance in κ , but the surface
term will be dominant even for large nuclei. The Coulomb is
of next importance followed by the symmetry term for nuclei
near the valley of beta stability. Surface symmetry and surface
Coulomb terms will also be included.

A. Surface contribution

First, let us investigate the role of finite size or surface
correction, before considering the full complexity of the
problem with Coulomb and symmetry energy terms included
in the energy. The surface energy can be studied by using
ρ(r) = ρc/(exp[(r − R)/a] + 1) as a density profile. Here ρc

is the central density and a is a parameter that determines the
surface thickness. This density can then be used in a Skyrme
energy density functional: E(ρ) = aKρ5/3 − a0ρ

2 + aαρ2+α .
The aK is the kinetic energy constant and is taken as aKρ

2/3
0 =

(3/5)EF = 21 MeV. The a0 and aα are given above. The
energy per particle is the integral of E(ρ) over all space divided
by A. The resulting integrals can be simplified by an integration
by parts and very accurately approximated by noting that the
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derivative of the Woods-Saxon profile gives a narrow peak
of width a in the vicinity of R. A substitution y = (r − R)/a
and a change in the lower limit of integration from −R/a to
−∞ gives a very accurate approximation to these integrals
when R � a, as is usually the case. As an example, the
energy per particle from the a0 attractive interaction term
is (a0/A)(4πR3/3)ρ2

c [1 − 3(a/R) + π2(a/R)2 − π2(a/R)3].
The central density ρc, R, and a are also connected since the
integral of ρ over all space must give A. Using the integration
procedure just mentioned, the condition (4πR3/3)ρc(1 +
π2(a/R)2) = A is obtained. Note that in this last result the
linear and cubic terms in a/R are absent in the constraint
equation. This is not the case for the integrals involving
the kinetic energy density, the a0 and the aα terms. Each
of these has a form involving surface thickness corrections
that is (1 − c1(a/R) + c2(a/R)2 − c3(a/R)3). For the kinetic
energy term c1 = 2.2769, c2 = 9.1046, c3 = 7.805. For the
a0 term c1 = 3, c2 = c3 = π2, and for the aα term, for
α = 1/3, c1 = 3.585, c2 = 10.819, and c3 = 11.642, for α =
1, c1 = 9/2, c2 = π2 + 3, and c3 = 3π2/2. The energy per
particle can be rewritten as

E(R)/A = 28.626CK (A2/3/R2) − (58.89 + 36.61/α)

×C0(A/R3) + (23/α)Cα(A/(0.8565R)3)α+1.

(30)

The CK,C0, and, Cα are the surface correction factors, each in-
volving their corresponding c1, c2, c3 terms as [1 − c1(a/R) +
c2(a/R)2 − c3(a/R)3]/[1 + π2(a/R)2]j , where the denomi-
nator arises from the constraint condition between R, ρc, and
A. The j = 5/3 for the kinetic term, j = 2 for the a0 term and
j = α + 2 for the aα term. For a/R 	 1, the surface energy
can be approximated by keeping linear terms in a/R to give

Ediff(R)/A = −(a/R)(21 × 2.2769(R0/R)2 − (37 + 23/α)

× 3(R0/R)3 + (23/α)(3.585)(R0/R)3α+3)

= −(a/R)(65.18A2/3/R2 − 506.11A/R3

+ 459.65A4/3/R4) (31)

for α = 1/3. This Ediff → 0 as a → 0 and Ediff =
10.36A2/3 MeV at a = 0.53 fm and ρ0 = 0.15 fm−3. To have
correct surface energy of ∼20A2/3 MeV, we also consider
a gradient dependent energy density of B(∇ρ)2 = −Bρ∇2ρ.
With the Woods-Saxon density profile this becomes

Egrad/A = B
ρc

2Ra

[1 + (a/R)2(π2/3 − 2)]

[1 + π2(a/R)2]2

≈ B
ρ

2Ra
= B

3

8πa

A

R4
= 3B

8πa2

a

R

A

R3

= 3B

8πa2

a

A1/3

(
4πρ0

3

)4/3 (
R0

R

)4

. (32)

The approximate form of this term is for a/R 	 1 and is the
same form as the a0 term in Ediff . The total surface energy then
becomes

Esurf = 4πR2σ (ρ) = 4πr2
0 A2/3σ (ρ) = Ediff + Egrad. (33)

The surface energy has a contribution from the gradient
term that varies with a as 1/a while the diffuseness term

varies directly with a. Note that as the surface gets sharper
or a → 0, the gradient term becomes very large and the
decrease in binding from the surface diffuseness becomes
small. Alternatively, as the surface thickness a becomes large,
the gradient term is reduced while the other term increases.
These behavior implies an extremum condition for Esurf

versus a. We take this extremum to be at a = 0.53 fm
and use this to determine B. This extremum condition on
Esurf leads to the result that the gradient term and the the
reduction in binding energy from diffuseness make equal
contributions to Esurf at its saturation. For a = 0.53 fm, with
the approximated form of Egrad, the B = 85.47 MeV fm5 and
Ediff = Egrad = 10.36A2/3 MeV. The surface energy Esurf is
the same form as Eq. (31) with modified coefficient of a0 term
to be 542.43, i.e.,

Esurf(R)/A = −(a/R)(65.18A2/3/R2 − 542.43A/R3

+ 459.65A4/3/R4). (34)

The incompressibility will also have two contributions each
from Ediff and Egrad. To have the same surface energy
Esurf = Ediff + Egrad for other values of α, a can be determined
to have Ediff = −(4πρ0/3)1/3(a/A1/3)(21 × 2.2769 − (37 +
23/α)3 + (23/α)Cα1) = 10.36/A1/3 with Cα1 the coefficient
of a/R term in Cα . Then the parameter B can be set by
Egrad = 3B

8πa2 ( 4πρ0

3 )4/3 a
A1/3 = 10.36/A1/3.

The values of κ at the minimum E/A can be obtained from
Eq. (30) with Egrad included. The energy E(R)/A with Egrad

is

E(R)/A = 21CK (a)(R0/R)2/D5/3 − (37 + 23/α)C0(a)

× (R0/R)3/D2 + (23/α)Cα(a)(R0/R)3α+3/Dα+2

+ 10.36CG(a)(R0/R)4/D2, (35)

where

CK (a) = 1 − 2.2769(a/R) + 9.1046(a/R)2 − 7.805(a/R)3,

C0(a) = 1 − 3(a/R) + π2(a/R)2 − π2(a/R)3,

C1/3(a) = 1 − 3.585(a/R) + 10.819(a/R)2 − 11.642(a/R)3,

C1(a) = 1− (9/2)(a/R)+(π2+3)(a/R)2−(3π2/2)(a/R)3,

CG(a) = 1 + (π2/3 − 2)(a/R)2,

D(a) = 1 + π2(a/R)2.
(36)

Since Esurf is not a small quantity we need exact calculation
here. For A = 216, 125, and 64 with a = 0.53 fm, the
respective values of κ are 145, 128, and 103 in MeV, at
the minimum values Rm of E/A Rm = 6.888, 5.709, and
4.527 or xm = 1.0518, 1.0691, and 1.0981, respectively. These
values are well below the value of κ = 234 without finite size
corrections. An approximate expression for these κ is given by

κ = κ(0) − 2.26κ(0)/A1/3, (37)

while approximate calculation up to first order of a/R =
(4πρ0/3)1/3(R0/R)(a/A1/3) gives κ = κ(0)(1 − 2.01/A1/3).
The form of this result not only applies for α = 1/3, but also
for softer EOS or smaller α, and harder EOS or larger α.
The κ(0) is κ at R → ∞ which is the infinite A κ . Thus
κ(0) = 165, 234, 372 for α = 0, 1/3, 1, respectively. The
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simple result given by the equation comes from the observation
that the surface correction coefficient scales with the κ(0)
coefficient for different α. This observation came from the
detailed calculation that were done for various A from A = 64
to A = 216 and various values of α. For example, when
α = 1 κ(0) = 372 and detailed calculations gave κ = 249,
224, 188 for A = 216, 125, 64 with a = 0.478 fm which can
be approximated as κ = κ(0)(1 − 1.98/A1/3).

Surface corrections to the T = 0 nuclear matter compress-
ibility have been also considered in several recent papers.
Reference [39] gives a wide range of values of surface
to volume contributions. Specifically, their ratio Ksf /K∞
runs from ∼0.5 to ∼1.8, depending on the force, where
κ = K∞ − Ksf /A1/3. Reference [40] has the ratio of surface
to volume coefficients with a Seyler-Blanchard interaction at
∼1.2, while Ref. [41] finds values ∼1.6 and 1.8 for two Skyrme
forces. Reference [42] has this ratio at 1.8 for the parameter set
NL1 in a relativistic Hartree approach. Our results for this ratio
is ∼2. Reference [43] gives a very large value of the surface
incompressibility coefficient which is −800 MeV, which was
questioned in Ref. [41].

The temperature and entropy dependence of the incom-
pressibility can be evaluated using Eq. (7) for the T dependent
kinetic energy with the κ0 and Sk determined above for the
surface energy included. Beside the kinetic energy, the surface
energy itself can have a temperature dependence which needs
further investigation.

B. Symmetry energy contribution

We next investigate the role of symmetry energy terms.
Symmetry energy terms appear in both the kinetic energy and
potential energy parts of the total energy. The symmetry energy
appears as (N − Z)2/A2 in the binding energy per particle
in the well-known mass formulae. At low temperatures, T 	
EF , and for proton fractions y = Z/A, such that |2y − 1| 	 1,
the kinetic energy per particle is

EK/A = 21x2/3(1 + (5/9)(2y − 1)2)

+ (π2/140)(T 2/x2/3)(1 − (1/9)(2y − 1)2). (38)

At higher temperatures, an expansion in ρλ3 is more appropri-
ate and the kinetic energy per particle now becomes [36]

EK/A = (3T/2){1 + c1(λ3ρ0/4)x(1 + (2y − 1)2)

+ c2(λ3ρ0/4)2x2(1 + (2y − 1)2) + · · ·}. (39)

The y dependence in Eq. (39), to the expansion order c2, is
not restricted to |2y − 1| 	 1, i.e., it is valid for any y. The
potential energy per particle, U/A, is [36]

U/A = −b0x + bαx1+α + (2/3)(1/2 + x0)b0(2y − 1)2x

− (2/3)(1/2 + x3)bα(2y − 1)2xα+1. (40)

The x0 is a parameter which we fix to give the empirical
symmetry energy coefficient in the binding energy mass
formula. This symmetry energy coefficient is taken to be
25 MeV. Note that the kinetic energy contributes to this value
and from Eq. (38) is (35/3) MeV at x = 1 and T = 0. The
remaining (40/3) MeV comes from the third and fourth term
on the right hand side (rhs) of Eq. (40). Thus (40/3) = (2/3)

(1/2 + x0)b0 − (2/3)(1/2 + x3)bα then x0 and x3 satisfy (37 +
23/α)x0−(23/α)x3 = 3/2. For α = 1/3, 106x0−69x3 = 3/2.
If x3 = 1, which is the value taken for Skyrme forces ZR1,
ZR2, ZR3 [44], then x0 = 0.6651. If x3 = −1/2, so that the
fourth term in Eq. (40) is absent [36], then x0 = −0.3113.
If x0 = −1/2, so that the third term is now absent, then
x3 = −0.7899. The nuclear incompressibility involves the
second derivative of E/A with respect to x or ρ so that the
fourth term in Eq. (40), which involves xα+1, is very important
in the asymmetric part of the nuclear incompressibility. Terms
involving linear powers in x do not make explicit contributions,
but they do affect the minimum point in the evaluation of
E/A. However because of the uncertainty in the value of x3,
and thus in the coefficient 1/2 + x3 that appears in the fourth
term, the contribution of the asymmetry term to the nuclear
incompressibility would seem to be somewhat uncertain. This
turns out not to be the case because of cancellations so that
the coefficient multiplying the (1/2 + x3) part in κ is small
as will be found. We can evaluate the relative importance
of the contribution of the symmetry energy to κ by isolating
those terms associated with it and turning off the Coulomb and
surface contributions. Let us consider the choice of a general
x3, which has an associated x0 to give correct symmetry energy.
Our E(R) with symmetry terms included and is

E(R)/A = CK (y)(R0/R)2 − C0(y)(R0/R)3

+Cα(y)(R0/R)3(α+1) (41)

with

CK (y) = 21 + (35/3)(2y − 1)2,

C0(y) = (37+23/α)−(40/3+(46/3α)(1/2+x3))(2y−1)2,

Cα(y) = (23/α) − (46/3α)(1/2 + x3)(2y − 1)2. (42)

Thus

0 = −2CK (y)(R0/R)2 + 3C0(y)(R0/R)3

− (3α + 3)Cα(y)(R0/R)3α+3, (43)

κ = 6CK (y)(R0/R)2 − 12C0(y)(R0/R)3

+ (3α + 3)(3α + 4)Cα(y)(R0/R)3α+3, (44)

Sk = −24CK (y)(R0/R)2 + 60C0(y)(R0/R)3

− (3α + 3)(3α + 4)(3α + 5)Cα(y)(R0/R)3α+3. (45)

For α = 1/3, the minimum point of E(R)/A is determined by
a simple quadratic equation. The value of κ at this minimum
is accurately given by, up to (2y − 1)2 order,

κ = 234 − (300 − 16(1/2 + x3))(2y − 1)2 (46)

with xm = (R0 /Rm)3 = (1 − (0.271 − 0.197 (1/ 2 + x3))
(2y − 1)2)3. The small coefficient of 16 compared to 300 in
front of the term involving x3, means that uncertainties in x3 do
not have a pronounced effect on the value of κ . Similar results
are also true for other values of α, with the second 1/2 + x3

term about 5% of the first term in the (2y − 1)2 dependent part
of κ . For general α, using either Eqs. (44) or (7),

κ = κ0(α) − 182.9 + 403.33α + 190α2

0.7971 + α
(2y − 1)2

+ (1/2 + x3)(9.333 + 28α)

0.7971 + α
(2y − 1)2 (47)
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with xm = (1 − (0.3060 − 0.2222 (1/2 + x3)) (2y − 1)2/

(0.7971 + α))3. Surface symmetry corrections can also be
easily included following the procedure given above. Since
the volume and volume symmetry terms have the same density
dependence, the surface corrections to each will scale in
exactly the same way with their corresponding volume term.
Thus we can rewrite the symmetry term in the above equation
as (300 − 16(1/2 + x3))(2y − 1)2(1 − 2.26)/A1/3) for α =
1/3, where the 2.26/A1/3 part of this result is now the surface
symmetry correction to the symmetry energy [c.f., Eq. (37)].

Symmetry corrections to the T = 0 nuclear matter com-
pressibility can also be found in Refs. [40,42]. For example
in Ref. [40], the symmetry energy coefficient is −393 MeV
and its surface correction is 333 MeV. Reference [42] has the
volume symmetry term at −677 MeV.

At nonzero but low T, Eq. (38) gives a small T de-
pendent kinetic energy term Ex = (π2/140)T 2(R/R0)2(1 −
(2y − 1)2/9). Using Eq. (7),

κ(T ) = κ(0) − (π2/70)T 2(1 − (2y − 1)2/9)(Sk/κ(0) + 1),

(48)

where κ(0) is the incompressibility at zero T for an asymmetric
system which is given by Eq. (47). On the other hand
Ex = (35/π2)(S/A)2(R0/R)2(1 − (2y − 1)2/9) for a given
entropy since S/A = (π2/2)T/EF . This gives the adiabatic
incompressibility of

κQ(T ) = κ(0) + (70/π2)(S/A)2(1 − (2y − 1)2/9)

× (Sk/κ(0) + 5). (49)

At higher T, the energy is the sum of Eqs. (39) and (40) and
we can neglect higher order terms in virial expansion keeping
terms only up to c2. Then κ is given by

κ(T ) = 27
c2

T 2

(
2πh̄2

m

)3 (ρ0

4

)2
x2

m(1 + (2y − 1)2)

+ 9α(1 + α)bα

[
1 − 2

3

(
1

2
+ x3

)
(2y − 1)2

]
x1+α

m .

(50)

The xm is again the minimum of E/A, but now evaluated with
the new kinetic energy. The xm is affected by both the c1 and
c2 terms. A limiting value of κ can be obtained by taking T very
large where an ideal gas EK/A = (3/2)T leads to very simple
results. Adding this EK/A to U/A given by Eq. (40) leads to
a minimum xm given by xα

m = b0[1 − (2/3)(1/2 + x0)(2y −
1)2]/(bα(1 + α)[1 − (2/3)(1/2 + x3)(2y − 1)2]). In this high
T limit κ is given by the second term on the right side of
Eq. (50) and is

κ(T >∼ 10 MeV)

= 9αb0

[
1 − 2

3

(
1

2
+ x0

)
(2y − 1)2

]

×
(

b0
[
1 − 2

3

(
1
2 − x0

)
(2y − 1)2

]
(1 + α)bα

[
1 − 2

3

(
1
2 + x3

)
(2y − 1)2

]
)1/α

. (51)

At fixed entropy EK/A = (3/2)CSρ
2/3(1 + ∑

cn([2πh̄2/

mCS]3/2(1 + (2y − 1)2)). The resulting E(R)/A has a struc-

ture similar to the result for a degenerate Fermi gas since
both have a ρ2/3 dependence for the kinetic energy term but
with different coefficients. This feature and a similar result at
lower T suggests a duality in the energy per particle EOS
at constant entropy and its associated κQ and the T = 0
EOS and its associated constant T κ even for asymmetric
system.

C. Coulomb energy contribution

Next, let us consider the Coulomb energy contribu-
tion. For a uniformly charged sphere we have Ec/A =
(3/5)e2(Z2/A)/R = (3/5)(e2/h̄c)(h̄c)(Z2/A)/R. As before,
we turn off the other two contributions, now the surface
and symmetry, to first study the isolated importance of the
Coulomb interaction. In this case our energy per particle at
T = 0 is

E(R)/A = 28.627A2/3/R2 − (58.89 + 36.61/α)A/R3

+ (23/α)(A/(0.8565R)3)α+1 + 0.8628(Z2/A)/R.

(52)

The Coulomb contribution to κ can be expressed in terms of a
simple result, using Eq. (7),

κC = 4EC/A + (EC/A)(Sk/κ0). (53)

The skewness Sk, third derivative of E0(R), is negative. Here
E0(R) is the energy without the Coulomb correction and κ0

its associated incompressibility. The rhs is evaluated at the
minimum without Coulomb corrections. For a uniform sphere
of radius R, for α = 1/3, the

κ = 234 − 4.75Z2/A4/3. (54)

For A = 216, Z = 86, Rm = 7.14, and κ = 207 MeV; for
A = 125, Z = 50, Rm = 5.914, and κ = 215 MeV; for A =
64, Z = 28, Rm = 4.717, and κ = 220 MeV. The Coulomb
coefficient of −4.75 MeV can also be compared to the work
of others. Reference [40] has this coefficient at −5.25 MeV
while Ref. [42] gives a value of −5.83 MeV for it. If the
density profile is taken to that of a Woods-Saxon form, the
Coulomb energy can be approximated by (3/5)(Z2/A)(1 −
(7π2/6)(a/R)2)/R [45]. Thus surface contributions appear
both directly and indirectly, modifying the other terms. Adding
surface contributions gives, using Eq. (7) for α = 1/3,

κ = 234 − 4.75Z2/A4/3 + 22.9Z2/A2. (55)

Other values of α can also be easily evaluated. Neglecting
surface-Coulomb we have for α = 1, κ = 372 − 6.25Z2/A4/3

and for α = 0, κ = 165 − 3.875Z2/A4/3. The ratio of the
Coulomb coefficient of Z2/A4/3 to volume coefficient is not
the same for each α so that a simple scaling result is not
possible.

Since both the Coulomb energy and the T dependent part
of kinetic energy are small the effects of these energies to the
incompressibility are additive.
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VI. CONCLUSIONS

In this paper we investigated the behavior of the asymmetric
nuclear matter incompressibility at finite temperature and
entropy using a mean field theory. The T dependence of
incompressibility is important for a thermalized hot system
produced in heavy ion collision or in supernovae explo-
sions. The incompressibility is related to the curvature of
the energy as a function of density, with the isothermal
incompressibility having temperature held constant and the
adiabatic incompressibility has entropy held constant. These
two incompressibilities are the same at T = 0 or S = 0 but
have very different behaviors with temperature T and entropy
S. At all T or S these incompressibilities are very sensitive
to the choice of α, the density dependent power of the
repulsive interaction. Also important in the determination of
κ are properties of the effective mass, such as its density
dependence and its value at normal density. These properties
are determined by two quantities called r and γ in Sec. III.
For example, at T = 0, κ = 234 MeV for α = 1/3 and for
an effective mass m∗/m = 1 which is density independent.
For m∗/m = 2/3 and m∗ density independent, or γ = 0, κ =
234 MeV for a softer equation of state given by α = 13/53 ∼
1/4. For density dependent m∗ with γ = 1 and r = 1/2, κ =
207, 255, 303, and 351 MeV for α = 0, 1/3, 2/3, and 1, respec-
tively. However, for γ = 1/3, the T = 0 κ is independent of
m∗/m or r. We look at extreme cases of a very soft equation of
state where α goes to zero to a very hard equation of state with
α = 1. The range of κ is from 165 MeV to 372 MeV. For a
moderate equation of state that is frequently used, α = 1/3 and
κ = 234 MeV. When a temperature dependence is included,

the value of the isothermal incompressibility κ increases
sharply with T. At low T or T much less than the Fermi energy,
κ increases as T 2. For example at T = 7.5 MeV and α = 1/3
with m∗/m = 1 and density independent or for γ = 1/3, κ

is 302 MeV. By contrast, the adiabatic incompressibility was
shown to decrease with increasing entropy and it eventually
goes to zero. The adiabatic incompressibility is shown to arise
from an equation of state (EOS) or energy per particle that has
a structure that is similar to a T = 0 Fermi gas.

The incompressibility is also studied in finite systems where
we investigated the role of surface, symmetry energy, and
Coulomb energy effects. First we studied each of these terms
separately to illustrate the relative importance of them. Of these
three terms, the surface had the largest effect, followed by the
Coulomb and then the symmetry term for nuclei in the valley
of β stability. Uncertainties in the x3 parameter of the Skyrme
interaction were shown not to be so important. In our study of
the surface term we used a Woods-Saxon density distribution.
We found an approximation scheme to do various integrals
(similar to the Sommerfeld method for Fermi gas integrals)
that appear in our analysis and obtained very accurate analytic
results for the surface contribution to the energy per nucleon.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. DOE Grant
Nos. DE-FG02-96ER-40987 and DE-FG01-05ER-05-02 and
in part by the Kyung Hee University Research Fund Grant No.
20050313.

[1] S. Das Gupta, A. Z. Mekjian, and M. B. Tsang, Adv. Nucl. Phys.
26, 81 (2001).

[2] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592
(2002).

[3] L. Zamick, Phys. Lett. B45, 313 (1973).
[4] J. P. Blaizot, D. Gogny, and B. Grammaticos, Nucl. Phys. A265,

315 (1976); J. P. Blaizot, Phys. Rep. 64, 171 (1980).
[5] J. M. Pearson, Phys. Lett. B271, 12 (1991).
[6] H.-M. Müller, S. E. Koonin, R. Seki, and U. van Kolck, Phys.

Rev. C 61, 044320 (2000).
[7] A. Z. Mekjian, S. J. Lee, and L. Zamick, Phys. Lett. B621, 239

(2005).
[8] B. K. Agrawal, S. Shlomo, and V. KimAu, Phys. Rev. C 68,

031304(R) (2003).
[9] B. K. Agrawal and S. Shlomo, Phys. Rev. C 70, 014308 (2004).

[10] G. Colo, N. V. Giai, J. Meyer, K. Bennaceur, and P. Bonche,
Phys. Rev. C 70, 024307 (2004).

[11] G. Colo and N. VanGai, Nucl. Phys. A731, 15 (2004).
[12] G. Colo, P. F. Bortignon, N. VanGai, A. Bracco, and R. A.

Broglia, Phys. Lett. B276, 279 (1992).
[13] J. P. Blazot, J. F. Berger, J. Descharge, and N. Girod, Nucl. Phys.

A591, 435 (1995).
[14] Z. Ma, N. VanGai, A. Wandelt, and P. Vretenar, Nucl. Phys.

A686, 173 (2001).
[15] D. Vretenar, A. Wandelt, and P. Ring, Phys. Lett. B487, 334

(2000).

[16] D. Vretenar, T. Niksic, and P. Ring, Phys. Rev. C 68, 024310
(2003).

[17] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540
(1997).

[18] J. Piekarewicz, Phys. Rev. C 69, 041301(R) (2004); 66, 034305
(2003).

[19] S. Shlomo and D. H. Youngblood, Phys. Rev. C 47, 529 (1993).
[20] D. H. Youngblood, H. L. Clark, and Y. W. Lui, Phys. Rev. Lett.

82, 691 (1994).
[21] D. H. Youngblood, Nucl. Phys. A687, 1c (2001).
[22] L. Shi, P. Danielewicz, and R. Lacey, Phys. Rev. C 64, 034601

(2001).
[23] P. Danielewicz, nucl-th/0203002; nucl-th/0201032 (2002).
[24] M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch,

G. Verde, H. Xu, Phys. Rev. Lett. 86, 5023 (2001); 92, 062701
(2004).

[25] B. A. Li, Phys. Rev. C 69, 034614 (2004).
[26] C. B. Das, S. Das Gupta, W. G. Lynch, A. Z. Mekjian,

and M. B. Tsang, Phys. Rep. 406, 1 (2005).
[27] A. Z. Mekjian, Adv. Nucl. Phys. 7, 1 (1973).
[28] H. Muller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).
[29] S. J. Lee and A. Z. Mekjian, Phys. Rev. C 68, 014608 (2003).
[30] J. B. Silva, A. Delfino, J. S. Sá Martins, S. Moss de Oliveira,
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