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p-d scattering with a nonlocal nucleon-nucleon potential below the breakup threshold
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A short-range nonlocal nucleon-nucleon potential, which previously provided a better description for the
three-nucleon bound states 3H and 3He then the local-potential models, is tested in p-d scattering calculations at
energies below the three-body breakup threshold. This potential again provides an equivalent or better description
of the experimental data than the local Argonne+3N force model.
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I. INTRODUCTION

Recently, in a series of articles, a nonlocal nucleon-nucleon
(NN) interaction has been proposed [1,2]. The potential is
nonlocal inside and Yukawa-type outside (INOY = inside
nonlocal and outside Yukawa) and the nonlocality is of shorter
range than in the earlier nonlocal models [3,4]. The local
Yukawa tail was cut off in the region from 1 to 3 fm, i.e., below
1 fm there is no local potential at all, whereas around 3 fm the
local potential becomes the intact Yukawa tail. The internal
nonlocal potential was subsequently fitted to the NN data,
whereas the local potential was kept fixed. The overlap region
of the local and the fitted nonlocal interactions is practically
the same interval from 1 to 3 fm as the cutoff region of the
Yukawa tail, although the nonlocal interaction is rather small
outside 2–2.5 fm. Its bulk is within the 1.5-fm sphere, which is
in accordance with the more rigorous expectation on the range
of the nonlocality [5].

This new shorter range IS (INOY with Short range nonlo-
cality) potential includes the charge independence and charge
symmetry breaking effects in the 1S0 component. The nn, pp,
and np interactions are slightly different and fit perfectly the
pp and np data and the nn scattering length [1,2]. The higher
partial-wave components of the nonlocal interaction have no
charge symmetry breaking effect; the nuclear part of the nn
and pp interactions is the same.

All interactions were calculated with equal neutron and
proton masses and without electromagnetic terms, and only
the nonrelativistic Coulomb interaction was taken into account
for the pp pair with a charge distribution defined in Ref. [6].
This approximation (equal neutron and proton masses, the
lack of the electromagnetic corrections, and the nonrelativistic
Coulomb interaction) slightly changes the deuteron binding
energy and the zero energy observables produced by the
original Argonne v18 potential [7]. Therefore a small correction
to the nuclear part of the original Argonne v18 potential is
added to reproduce the correct scattering lengths and deuteron

∗E-mail address: doles@rmki.kfki.hu

binding energy. This modified Argonne potential, denoted by
ARGm, produces the same 3N binding energies [1] than the
original Argonne one (accuracy within 1–2 keV). Because
both the INOY and the Argonne potentials, the original and
the modified ones, have the same long range tail, the modified
Argonne potential (ARGm) can be used as a reference local
potential to investigate the effects of nonlocality in the INOY
potential.

The IS interactions reproduce simultaneously the 3H and
3He binding energies with high accuracy [1]. This seems to be a
beneficial effect of the low deuteron D-state probability (PD =
3.60%) and the proper tuning of the 1S0 interactions. The IS
1S0 and 3SD1 interactions of the Ref. [1] are phenomenological
model NN interactions, which do not seem to contradict the
physical expectations about the nature of the NN interaction
and reproduce the NN measurements with high accuracy.

This INOY-type nonlocality has been added also to the
P- and D-wave channels, including the 3PF2 and 3DG3

channels [2]. The triplet P-wave INOY interactions were fitted
to the slightly modified phase shifts [8] to produce better
nucleon and deuteron vector analyzing powers of the N -d
elastic scattering [2]. These P- and D-wave INOY interactions
does not change the earlier achieved correct reproduction of
the 3H and 3He binding energies. For the higher partial-wave
components of the NN interactions the slightly modified
Argonne v18 (ARGm) interactions are used.

In Ref. [2] the estimated Coulomb effect for the INOY
interaction was deduced by comparing the n-d and p-d results
of Ref. [9]. It was found that the expected Coulomb effect
in most cases, and especially the characteristic minimum of
the T22, would improve the agreements with the experimental
data.

The aim of this work is to compare the high-precision p-d
measurements with exact p-d calculations and to investigate
the Coulomb effects in case of the INOY interactions. For
this purpose, the three-body Faddeev equations with Coulomb
potential were solved by using the method of Ref. [10].
The method is sketched briefly in Sec. II, the details of the
calculations are shown in Sec. III, and the evaluation of the
results are in Sec. IV.
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II. TREATMENT OF THE COULOMB INTERACTION IN
NUCLEAR THREE-BODY SYSTEMS

The three-body Hamiltonian is given by the following:

H = H0 +
3∑

i=1

V C
i +

3∑

i=1

V n
i , (1)

where H0 is the kinetic energy operator and V C
i and V n

i ,
respectively, are the long-range Coulomb and the short-range
nuclear interactions between the particles j �= i and k �= i.

The Faddeev decomposition of the wave function

� =
3∑

i=1

�i

leads to a system of equations

(E − H0 − V C − V n
i )�i = V n

i (�j + �k), (2)

where V C =
3∑

i=1

V C
i and (i, j, k) is a cyclic permutation of

Eqs. (1), (2), and (3).
Introducing the channel Coulomb interactions

U ch
i = Zi(Zj + Zk)/Ri,

where Zi is the charge of the i-th particle and Ri is the distance
between the i-th particle relative to the center of mass of the
other two particles (j-th and k-th), the Eq. (2) formally could
be rearranged

�i = �i + Gch
i (E)[Up

i �i + V n
i (�j + �k)], (3)

where Gch
i (E) = (E − H0 − U ch

i − V C
i − V n

i )−1, U
p

i =
V C

j + V C
k − U ch

i is the polarization potential and �i is
the incoming wave function (on-shell channel distorted
Coulomb wave function multiplied by the incoming two-body
bound-state wave function).

This equation is solved by using the Coulomb-Sturmian
expansion method of Ref. [10], which transforms the integral
equation to a matrix equation. Then, the Coulomb-distorted
T-matrix elements are obtained as the matrix elements of the
nuclear potentials between the corresponding wave-function
components. The matrix equation [Eq. (3)] can also be recast
into a matrix equation for the on-shell matrix elements of the
Coulomb-distorted transition operator U

Uij = Kij +
3∑

k=1

KikG
ch
k (E)Ukj , (4)

where Kij = δijU
p

i + (1 − δij )V n
j . The operator form of this

later equation has been discussed in Ref. [11].
Both matrix equations [Eqs. (3) and (4)] were iterated and

solved by the Padé method [12]. It was found that 20–30
iterations are sufficient to have a convergence with the Padé
technique.

III. RESULTS

The p-d calculations were performed by using the modified
Argonne v18 (ARGm) [1] and the INOY potentials with mod-
ified triplet P-wave components (IS-M) [2]. The interactions

TABLE I. J = 1/2+ and J = 1/2− K-matrix results for p-d
scattering at Elab = 2 MeV with the Argonne (Ref. [13]) and the
modified Argonne potentials (this work).

Elab K11 K12 K21 K22

〈J = 1/2+〉
1.0 Ref. [13] −0.231 −0.0039 −0.0040 −0.0137
1.0 This work −0.233 0.0039 0.0040 −0.0137
3.0 Ref. [13] −0.623 −0.0107 −0.0109 −0.0629
3.0 This work −0.626 0.0107 0.0108 −0.0629

〈J = 1/2−〉
1.0 Ref. [13] 0.145 −0.0605 −0.0606 −0.0406
1.0 This work 0.145 −0.0605 −0.0606 −0.0404

were taken into account up to the jmax = 4 components and
Coulomb-Sturmian states up to N = 30−40. The results are
well converged and, as far as the measurable quantities are
concerned, the accuracy is better than 1%.

In case of n-d scattering, with a restricted set of interactions
(jmax = 3), the solution of the present techniques and the
one based on separable approximation of the two-nucleon
T-matrices [2] was compared and perfect agreement have
been found. Because the full calculation [jmax = 4] using
the present technique is rather time consuming, the full n-d
calculations [IS-M(nd)] were performed with the separable
T-matrix approximation [2]. Their accuracy for the measurable
quantities is also within 1%.

The numerical procedure were cross checked by using
the corresponding K-matrix of the p-d scattering results of
the Ref. [13]. Tables I and II show that the K-matrix elements
are in good agreement, although the Argonne interaction in the
present work is slightly different. The phase-factor difference
ili−lj , where li and lj are the angular momenta for the incoming
and outgoing channels, respectively, is certainly related to the
different definition of the bipolar basis. Of course, K-matrix
ought to be symmetric, which may be violated by the applied
numerical procedure. This approximate symmetry itself is a
measure of the accuracy.

The channels up to jmax = 4 contain the dominant part
of the nuclear interaction. Although inclusion of higher
partial-wave components may alter some fine details (see
Ref. [13]), these changes are within the numerical accuracy

TABLE II. J = 5/2+ K-matrix results for p-d scattering at
Elab = 2 MeV with the Argonne (Ref. [13]) and the modified
Argonne potentials (this work).

Ref. [13] This work Ref. [13] This work Ref. [13] This work

K11 K22 K33

−0.0084 −0.0084 −0.0138 −0.0137 −0.0014 −0.0013

K12 K13 K23

0.034 0.034 −0.00072 0.00071 −0.00015 0.00015

K21 K31 K32

0.034 0.034 −0.00074 0.00075 −0.00015 0.00016
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of this work. The calculations were performed with total
angular momentum up to J = 13/2−, and only components
with l � 5 were incorporated. Calculations that do not include
the J = 11/2− and J = 13/2− components and only where
the l � 4 components were used produce practically the same
results for the measurable quantities at 1 MeV; however, at
3 MeV, there are some small differences (the largest relative
deviation is about 3%).

A. The differential cross sections

There are accurate low-energy measurements for the p-d
differential cross sections [14–16]. The results of this calcula-
tions are shown in Figs. 1–6. All the used potentials provide
a good overall description of the data; the cross sections are
sensitive to the fine details of the potentials only around the
minima. These angle regions are shown in separate figures.

Around the minima, the experimental data are excellently
reproduced by the IS-M set of interactions and the Argonne
v18 plus the Urbana 3N force (ARG+UR) (calculations by
Kievsky et al. [14]), whereas the results of ARGm are off.
This success is because of the fact that the minimum of the
differential cross section at low energy is strongly influenced
by the J = 1/2+ channel [17], which is also related to the
3He binding energy. This binding energy is well reproduced
by both the IS-M and the ARG+UR forces. Therefore the
result of Ref. [14] is not a new “evidence for the three nucleon
force,” but just the same effect what a properly normalized 3N
force produces for the 3N binding energies.
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FIG. 1. p-d differential cross sections at a laboratory energy
of 1 MeV. The experimental points are the measurement of Wood
et al. [14].

B. The vector-analyzing powers

The theoretical description of the vector-analyzing pow-
ers up to 30 MeV is rather problematic. Their dominant
dependence on the NN triplet P-wave interactions is well
known [18,19]. By changing the triplet P-wave interactions
one may improve the theoretical description [2]. However, the
agreement between the theory and experiments are not fully
satisfactory yet. The same could be said about the present
results, which are shown in Figs. 7–12.

Although the calculated deuteron vector-analyzing powers
are reasonable at all the three energies, the calculated proton-
analyzing powers are somewhat smaller and at 1 MeV the
calculated maximum is significantly lower than the measured
one (Fig. 7).

C. The tensor-analyzing powers

The p-d tensor-analyzing power experimental results are
available at 1 MeV [20] and 3 MeV [15] energies. The present
calculations are shown in Figs. 13–18. The Coulomb effect
is sizable and the IS-M results, in all cases, are better or
equivalent with those of the ARGm or ARG+UR interaction.
The Coulomb effect predicted before in Ref. [2] is proved to
be correct: the changes due to the Coulomb interaction are
similar to those observed at higher energies.

The most remarkable is the agreement between the
IS-M results and the experiments for the T22 at the backward
angle minimum. Although the 1-MeV measurements are not
accurate enough, at 3 MeV the error bars of the experimental
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FIG. 2. The same as in Fig. 1 around the minimum region.
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FIG. 3. p-d differential cross sections at a laboratory energy of
2 MeV. The experimental points are the measurement of Shimizu
et al. [15].

data are small. It seems that with the present models (local,
local + 3N [9], and nonlocal forces) the best description of
the minimum of T22 is given by the nonlocal IS-M set of
interactions.

60 80 100 120

120

140

160

180

200

c.m. ANGLE (deg)

P
-D

 D
IF

FE
R

E
N

T
IA

L
 C

R
O

SS
 S

E
C

T
IO

N
 (

m
b/

sr
)

E     = 2 MeV
lab.
N

 IS-M

 IS-M(nd)

 ARGm

 ARG+UR

FIG. 4. The same as in Fig. 3 around the minimum region.
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FIG. 5. p-d differential cross sections at a laboratory energy of
3 MeV. The experimental points are the measurement of Kocher and
Clegg [16].

IV. SUMMARY AND CONCLUSIONS

The n-d calculations are much simpler than the p-d ones;
however, the p-d measurements are more accurate, and more
observables, such as tensor-analyzing powers, are available.
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FIG. 6. The same as in Fig. 5 around the minimum region.
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FIG. 7. The proton analyzing power of the p-d elastic scattering
at a laboratory energy of 1 MeV. The experimental points are the
measurement of Wood et al. [20].

Therefore, for a detailed investigation one has to study the
p-d scattering. The inclusion of the Coulomb interaction
in three-body calculations is a difficult and time-consuming
task, and, to achieve a reasonable accuracy, we had to take
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FIG. 8. The deuteron vector analyzing power iT11 of the p-d
elastic scattering at a laboratory energy of 1 MeV. The experimental
points are the measurement of Wood et al. [20].
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FIG. 9. The proton analyzing power of the p-d elastic scattering
at a laboratory energy of 2 MeV. The experimental points are the
measurement of Shimizu et al. [15].

a larger Coulomb-Sturmian basis (30–40 functions in each
variable). This relatively large basis and the available computer
resources (we used PCs) limits the number of included partial-
wave components of the NN interaction to jmax = 4, which,
fortunately, was enough below the breakup threshold.
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FIG. 10. The deuteron vector analyzing power iT11 of the p-d
elastic scattering at a laboratory energy of 2 MeV. The experimental
point is the measurement of Brune et al. [21].
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FIG. 11. The proton and neutron analyzing power of the p-d
and n-d elastic scattering at a laboratory energy of 3 MeV. The
experimental points are the measurement of Shimizu et al. [15].

The present results with the ARGm set of the interaction
were compared to the ones calculated by Kievsky [20,21] with
the full Argonne v18 interaction. There are some differences
in the vector-analyzing power results. At 1 MeV the present
results are larger, whereas at 3 MeV they are slightly smaller.
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FIG. 12. The deuteron vector analyzing power iT11 of the p-d
elastic scattering at a laboratory energy of 3 MeV. The experimental
points are the measurement of Shimizu et al. [15].
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FIG. 13. The deuteron tensor analyzing power T20 of the p-d
elastic scattering at a laboratory energy of 1 MeV. The experimental
points are the measurement of Wood et al. [20].

However, the tensor-analyzing powers are very near to each
other.

Because of the scaling law [17], it may be possible to
reproduce the experimental n-d observables below the breakup
threshold theoretically only if the model provides the correct
3H and 3He binding energies. This is especially true below the
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FIG. 14. The deuteron tensor analyzing power T20 of the p-d
elastic scattering at a laboratory energy of 3 MeV. The experimental
points are the measurement of Sagara [15].
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FIG. 15. The deuteron tensor analyzing power T21 of the p-d
elastic scattering at a laboratory energy of 1 MeV. The experimental
points are the measurement of Wood et al. [20].

breakup threshold, where the difference between the scattering
energies and the the bound-state energy is small. Therefore,
one cannot really expect a good description of the scattering
data with the present local NN potentials, because none of
them reproduces the 3N binding energies. Consequently, only
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FIG. 16. The deuteron tensor analyzing power T21 of the p-d
elastic scattering at a laboratory energy of 3 MeV. The experimental
points are the measurement of Sagara [15].
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FIG. 17. The deuteron tensor-analyzing power T22 of the p-d
elastic scattering at a laboratory energy of 1 MeV. The experimental
points are the measurement of Wood et al. [20].

the local+3N and the nonlocal NN potential models could be
compared.

To make this more transparent, the p-d results of Kievsky
and collaborators [14,20,21,22] with the Argonne v18 plus
Urbana 3N force (ARG+UR) are also shown in the figures.

The scaling effect is well demonstrated by the minima of
the differential cross sections (Figs. 2, 4, and 6). It is clear that
only the IS-M and ARG+UR interactions produce the correct
minima. These interactions also produce excellent agreement
with the measurements in the full angle range for all three
energies.

The vector-analyzing powers are also improved with
the IS-M set of interactions. This, however, is because of the
modified triplet P-wave interactions, as was shown for the n-d
scattering in Ref. [2] (IS-A versus IS-M). One does not expect
any change of this effect by the Coulomb interaction. Also, the
introduction of the 3N forces, the Urbana force in this case,
does not produce any significant change.

The calculated proton analyzing powers with the IS-M
interaction are close to the experimental values at 2 and
3 MeV (Figs. 9 and 11), but they seems to be much below
at 1 MeV. There the p-d maximum is nearly half of the n-d
one (Fig. 7), whereas at higher energies the Coulomb effect, as
expected, is smaller. The electromagnetic forces do not seem
to be strong enough to make up the difference [23].

However, if the energy dependence of the maximum of
the measured p-d analyzing powers is plotted and compared
with the p-d calculations of the IS-M set (Fig. 19), it becomes
visible that the difference between the measured and calculated
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FIG. 18. The deuteron tensor-analyzing power T22 of the p-d
elastic scattering at a laboratory energy of 3 MeV. The experimental
points are the measurement of Sagara [15].

maximum values is approximately a constant. This difference
produces a larger effect when the analyzing power is small.

The calculated deuteron vector analyzing powers with
the IS-M interaction are in reasonable agreement with the
measured ones at all three energies (Figs. 8, 10, and 12),
although, at 2 MeV there is only one experimental
point [22].

The p-d tensor-analyzing powers are measured only at
1 and 3 MeV [15,20]. At 1 MeV the IS-M seems to provide a
better agreement with the measurements [20] than the ARGm
and ARG+UR potentials (Figs. 13, 15, and 17) for all the
three tensor-analyzing powers, although the error bars for
experimental values are rather large. At 3 MeV all three
p-d calculations (IS-M, ARGm, and ARG+UR) for T20

(Fig. 14) slightly differ from the experimental values. The T21

(Fig. 16) produces the same problem what was observed at
higher energies (5 and 9 MeV in Ref. [2]). The forward angle
T21 up to 80◦ is not reproduced by the theory, whereas above
100◦ the Coulomb effect produces an agreement with the
experiments.

The T22 (Fig. 18) is worth for a closer look. In an earlier
work, Ref. [2], it was predicted that the Coulomb shift would
bring the minimum around 120◦−130◦, very close to the that
experimental data. This would be important, because the T22 in
the low-energy region is sensitive to the AD/AS normalization
constant of the deuteron bound-state wave function [24,25].
One important property of the IS interaction is a lower
value for the deuteron D-state probability and a higher value
for AD/AS . The present calculated values of the T22 verify
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FIG. 19. The maximum of the measured and calculated p-d
vector analyzing powers.

this expectations, the p-d calculations with the IS-M set of
interactions reproduces the minimum of the T22, whereas the
calculations with ARGm or ARG+UR interactions fail to do
this (Figs. 17 and 18). It has to be noted, however, that the
3N force (ARG+UR) produces an improvement in the above
mentioned angle region which is probably because of the
scaling effect. Another problem could be that if we consider
the slopes of T22 at 3 MeV (below 100◦ and above the 130◦)
the situation is the opposite: the ARG+UR result seems to be
better than those of the IS-M.

In summarizing the results of this investigation, one can
conclude that the 3N calculations with IS-M set of interactions
are definitely superior to the calculations with the Argonne
v18 potential. For the vector-analyzing powers it is clearly
the consequence of the modified triplet P-wave interaction.
A similar improvment could be achieved if a similar change
is made for the triplet P-wave interactions of the Argonne
potential. However, in all the other cases, the effect of the
wrong 3N binding energy, produced by the Argonne v18

potential, exists.
Comparing to the Argonne v18+Urbana force, in most of

the cases, the IS-M results are equivalent or better. Some of
the differences are because of the modified triplet P-wave
interactions. Certainly, a similar modification of the local
potential in the local+3N force model would lead to a similar
improvement. However, the tensor-analyzing power T22 seems
to show some other effect. A possible spin-orbit 3N force
may also change the vector analyzing powers [21]. However,
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the tensor-analyzing power T22 at 3, 5, and 10 MeV seems
not to be changed by this force. This can be a sign that the
observed differences of the minimum of the T22, calculated
with the ARGm, ARG+UR, and IS-M sets (Figs. 17 and 18),
are caused partly by the scaling and partly by the different
deuteron properties. This effect seems to be present at higher
energies too [2].

This indicates that the deuteron D-state probability and
asymptotic normalization constant AD/AS may need to be
revised. The new accurate measurements of the low-energy T22

(and some older ones at higher energies) could be a good tool
for that. The present calculations indicate that a higher value
than AD/AS = 0.0250 − 0.0255 is necessary to reproduce the
backward minimum of T22. The present value of AD/AS =
0.02697 of the IS interaction, which is in agreement with

the values found by earlier analyses [24,26], seems to be a
more suitable value than the presently accepted 0.00250 −
0.00255 values. The problem is that the AD/AS value seems
to be connected to the deuteron D-state probability [27], and
therefore the local potentials are unable to produce a higher
AD/AS value.

ACKNOWLEDGMENTS

The authors are thankful to A. Kievsky for providing
the results of his calculations with the 3N force and the
experimental results of Wood et al., Brune et al., and Shimizu
and Sagara. This work received partial support from the grants
OTKA T034334, OTKA T046791, OMAA 49öu16, NSF
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