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Semiclassical Coulomb interaction

B. V. Carlson∗
Departamento de Fı́sica, Instituto Tecnológico de Aeronáutica - CTA, 12228-900 São José dos Campos, Brazil
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The semiclassical Coulomb excitation interaction is at times expressed in the Lorentz gauge in terms of the
electromagnetic fields and a contribution from the scalar electric potential. We point out that the potential term can
make spurious contributions to excitation cross sections, especially when the decay of excited states is taken into
account. We show that, through an appropriate gauge transformation, the excitation interaction can be expressed
in terms of the electromagnetic fields alone.
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Coulomb excitation has proven itself as an important tool
for studying the structure of both stable and exotic nuclei [1–4].
The phenomenon has been well-studied in a nonrelativistic
context [5] and studied perturbatively in a relativistic one [6]
by Alder and Winther. More recent experimental studies have
shown the need to consider multiple Coulomb excitation at
relativistic energies [2–4] and, although the formalism of
Ref. [6] can be extended to permit such calculations, it is
not easy to implement [7,8]. An alternative semiclassical form
of the Coulomb excitation interaction was presented in Ref. [9]
and refined in a more recent analysis [10]. There, the Coulomb
excitation interaction is expressed in the Lorentz gauge in
terms of the electromagnetic fields and the scalar electric
potential. This mixed representation of the interaction yields
the results of Winther and Alder when used perturbatively
and is adequate for describing single and multiple excitation
of states of zero width at incident energies lower than about
2 GeV/nucleon, where the results are almost identical to those
obtained by directly using the electromagnetic fields, as in a
classical treatment of the problem. At higher energies, coupled
channel calculations in the mixed and field representations
yield results that are increasingly discrepant, as the excitation
cross section of the mixed representation quickly grows to
absurdly large values. Similar discrepancies have also been
observed in a recent comparison of relativistic Coulomb
excitation in the Lorentz and Coulomb gauges [11].

Electromagnetic processes, such as Coulomb excitation,
should be gauge-invariant. Truncation of the coupled-channels
model space can spoil this invariance however [12], permitting
spurious, but gauge-removable terms, such as the potential
term in the Lorentz interaction, to contribute to the cross
sections. Baltz, Rhoades-Brown, and Weneser have seen
similar large effects in their extensive study of e+e− production
[13–15] and have found as well that, when performed with
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care, an appropriate gauge transformation can greatly simplify
calculations.

In the case of the mixed interaction of the Lorentz gauge,
the effects of the spurious potential term are exacerbated
even further when the excited states are allowed to decay.
The mixed representation then yields large, unphysical cross
sections at all incident energies, due to the loss of flux after
excitation by the long-range potential term. The production
cross section of the decay products of a dipole transition,
in particular, grows as the square of the Lorentz factor
γ . This makes a treatment of multiple Coulomb excitation
incorporating fluctuation contributions, such as those of the
Brink-Axel type [16–19], unviable in the mixed representation,
since finite widths are a fundamental component of such
models.

Following, we first provide an estimate of the production
cross section of the decay products of a dipole transition
induced by the long-range potential term. We then demon-
strate, through an appropriate gauge transformation, that the
Coulomb excitation component of the interaction can indeed
be expressed in terms of the electromagnetic fields alone.
Aside from making a satisfying parallel with the classical
case, the pure field representation of the excitation interaction,
known as the multipolar or Poincaré gauge [20], provides
physically reasonable cross sections even when the excited
states decay [18]. A similar expression has been used in the
treatment of Coulomb excitation of plasmon resonances in
metallic clusters [21].

In the usual semiclassical approximation to heavy-ion scat-
tering, the relative motion is described by a classical trajectory.
The projectile-target interaction is then a time-dependent
function determined by this trajectory. The semiclassical
form of the electromagnetic interaction Hamiltonian is
given by

V (t) =
∫

d3x

(
ρ(�x, t)ϕ(�x, t) − 1

c
�J (�x, t) · �A(�x, t)

)
, (1)
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where ϕ(�x, t) and �A(�x, t) are the scalar and vector electromag-
netic potentials due to the projectile, for which

�E(�x, t) = −∇ϕ(�x, t) − 1

c

∂ �A(�x, t)

∂t

and

�B(�x, t) = ∇ × �A(�x, t), (2)

and ρ(�x, t) and �J (�x, t) are the charge and current density
operators of the target nucleus. In high-energy collisions,
one usually uses the Liénard-Wiechert potential, which is the
retarded electromagnetic potential, in the Lorentz gauge, of a
charged particle moving on a straight line trajectory.

In Ref. [9] the Liénard-Wiechert potential was used to ob-
tain the Coulomb interaction for multipole excitation of a target
nucleus in a mixed representation that depends on both the
electric field and the scalar electric potential. The interaction
inducing transverse dipole excitations is written in terms of
the electric field alone. Due to the contribution of the vector
potential, the interaction inducing longitudinal transitions
also includes a potential-like term. It can be written as

V1‖(b, t) = V0

[
γ vt

(b2 + (γ vt)2)3/2

− e−iωt βγ

c

d

dt

(
eiωt

(b2 + (γ vt)2)1/2

)]
, (3)

with b being the impact parameter, v the projectile velocity, h̄ω

the excitation energy, β = v/c, and γ the associated Lorentz
factor. The quantity V0 represents the product of the projectile
charge, the matrix element for dipole excitation and numerical
factors. (Note that the factor E2(τ ) defined in Eq. (26) of
Ref. [9] must be divided by τ 2 to provide the correct
expression, which can be found in Ref. [22].)

Let us now consider the time evolution of three states: the
ground state, the longitudinal dipole mode excited by Coulomb
excitation, and the residual state fed by the decay of the latter.
The time evolution equations of the ground-state and dipole-
mode amplitudes, a0(b, t) and a1‖(b, t), respectively, can be
written in the interaction picture as [18]

ih̄
d

dt
a0(b, t) = V1‖(b, t)e−iωta1‖(b, t),

(4)

ih̄
d

dt
a1‖(b, t) = V1‖(b, t)eiωta0(b, t) − i

�

2
a1‖(b, t),

where � is the width of the dipole resonance. The residual
state is fed incoherently by the decay of the dipole mode. The
time evolution equation for its occupation probability can be
written as

dPdec

dt
(b, t) = �

h̄
|a1‖(b, t)|2. (5)

Coupled coherent-incoherent evolution equations such as these
can be consistently formulated in terms of the density matrix,
as shown in Refs. [18,19]. The formulation above is sufficient
for our purposes here.

Since the interaction tends to zero as b → ∞, first order
perturbation theory is valid at large values of the impact
parameter, where depletion of the ground-state and occupation

TABLE I. Dipole mode excitation cross section of 208Pb incident
on 208Pb using the pure field and the mixed (Lorentz) representations
of the interaction.

Representation �(MeV) σ (b) at σ (b) at
1 GeV/nucleon 10 GeV/nucleon

Field 0 4.26 13.98
Field 4 4.53 13.73
Mixed 0 4.46 98.84
Mixed 4 15.09 334.06

of the longitudinal excitation can be neglected on the right
side of the equation. We can then approximate the amplitude
for excitation of the longitudinal mode by retaining only the
second term in V1‖(b, t), which decreases as b−1, as

a1‖(b, t) ≈ − i

h̄

∫ t

−∞
dsV1‖(b, s)eiωs

= iV0
βγ

h̄c

eiωt

(b2 + (γ vt)2)1/2
+ O

(
1

b3

)
. (6)

It is clear that the contribution of the 1/b term vanishes as
t → ∞ and that it thus makes no net contribution to the
excitation, when no flux is absorbed from the excited mode and
ground-state depletion is negligible. These are the assumptions
used in the usual perturbative calculation of the asymptotic
amplitude. When the dipole mode decays, however, this term
does contribute to the occupation of the residual state, with the
asymptotic occupation probability of that state being

Pdec(b) = �

h̄

∫ ∞

−∞
dt |a1‖(b, t)|2

≈ βγ

b

�V 2
0

(h̄c)3
. (7)

Using this perturbative probability, we can estimate the cross
section for production of the decay product to be at least

σdec ≈ 2π

∫ bmax

bmin

Pdec(b)bdb = 2πβγ
�V 2

0

(h̄c)3
(bmax − bmin),

(8)
where bmin is the minimum value of the impact parameter
at which the perturbative approximation is valid and bmax =
γ v/ω0 is determined by limiting the impact parameter to
values for which the adiabaticity parameter ξ = ω0b

γ v
is less

than one [6], with h̄ω0 the minimum value of the excitation
energy considered as contributing to the dipole mode. The
resulting cross section thus grows with energy as γ 2.

The absurd result furnished by the above estimate is
confirmed by the full coupled-channels calculations given
in Table I. The calculations were performed for the system
208Pb + 208Pb using the three channels described above, with a
dipole excitation energy of h̄ω = 13.4 MeV, a reduced matrix
element in accord with the giant dipole resonance sum rule
and a minimum excitation energy of h̄ω0 = 8 MeV. We have
labeled the cross sections of the table as dipole-mode excitation
cross sections. In the case of zero-width, they are in fact the
cross sections for excitation of this mode. In the case of finite
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width, the values represent the flux that was excited to the
dipole mode to later decay to the residual state.

Similar calculations were reported in Ref. [22]. Comparison
of their zero-width results with ours and with those of Ref. [24]
leads us to conclude that they performed the calculations with
the pure field form that we are advocating. The trend of their
finite-width results also leads us to infer that they took the
width into account in the decay of the dipole mode but not in
its excitation.

We thus conclude that the spurious potential term in the
interaction produces absurdly large cross sections when decay
of the excited state is taken into account. Even when the
width of the state is zero, this term, abetted by depletion of
the ground-state, introduces contributions that increase with
incident energy and also lead to absurdly large cross sections,
such as those at 10 GeV/nucleon shown in the last column of
the table. The unphysical results in both cases are attributable
to the unphysical 1/b term in the truncated coupled-channels
calculations. We can also argue against such a term on simple
physical grounds: we expect the polarization that produces the
excitation of the target nucleus to depend on the gradient of
the potential, that is the electric field, rather than the potential
itself. In the following, we will show how the electromagnetic
interaction Hamiltonian can be recast in a more physical form.

We want to obtain the first few terms contributing to the
interaction in the expansion of the electromagnetic fields about
the center of the target nucleus, �x = 0. Such an expansion is
reasonable if the fields are slowly varying over the extent of
the nucleus.

We thus take∫
d3x ρ(�x, t)ϕ(�x, t) ≈

∫
d3x ρ(�x, t)

×
(

ϕ0(t) + �x · ∇ϕ0(t) + 1

2
�x �x · ∇∇ϕ0(t) + · · ·

)
(9)

and ∫
d3x �J (�x, t) · �A(�x, t) ≈

∫
d3x �J (�x, t)

· ( �A0(t) + �x · ∇ �A0(t) + · · ·), (10)

where the subscript 0 on the fields and their derivatives denotes
the evaluation of these quantities at the point �x = 0.

Evaluation of the scalar potential terms is straightforward.
Evaluation of the vector potential terms requires a bit more
work. We use the continuity equation,

∇ · �J + ∂ρ

∂t
= 0, (11)

to obtain two supplementary identities [23]:∫
d3xJk =

∫
d3x [∇ · (xk

�J ) − xk∇ · �J ]

=
∫

d3xxk

∂ρ

∂t
, (12)

where the integral of the exact divergence is zero due to the
finite extent of �J , and, after a similar calculation,∫

d3x (Jkxi + Jixk) =
∫

d3xxkxi

∂ρ

∂t
. (13)

Using the first of these, we can write∫
d3x �J (�x, t) · �A0(t) =

∑
k

∫
d3xJk(�x, t)A0k(t)

=
∑

k

∫
d3x

∂ρ

∂t
xkA0k(t) (14)

=
∫

d3x
∂ρ

∂t
�x · �A0(t).

Using the second, we find, with a bit more work,∫
d3x �J (�x, t) · (�x · ∇) �A0(t)

= 1

2

∫
d3x

∂ρ

∂t
�x · (�x · ∇) �A0(t)

+ 1

2

∫
d3x (�x × �J ) · (∇ × �A0(t)). (15)

Putting all the pieces together, we have

V (t) =
∫

d3x

(
ρ(�x, t)ϕ(�x, t) − 1

c
�J (�x, t) · �A(�x, t)

)

=
∫

d3x ρ(�x, t)

(
ϕ0(t) + �x · ∇ϕ0(t)

+ 1

2
�x �x · ∇∇ϕ0(t) + · · ·

)

− 1

c

∫
d3x

∂ρ

∂t
�x ·

(
�A0(t) + 1

2
(�x · ∇) �A0(t) + · · ·

)

− 1

2c

∫
d3x (�x × �J ) · (∇ × �A0(t)) + · · · . (16)

The unphysical long-range contribution to the excitation
interaction of Ref. [9] can be traced to the term containing
the time derivative of the charge density, ∂ρ/∂t .

We would now like to eliminate the terms containing the
time derivative of the charge density, ∂ρ/∂t , in Eq. (16). We
can do this by making the gauge transformation �(�x, t) given
by the factor multiplying this term

�(�x, t) = −�x ·
(

�A0(t) + 1

2
(�x · ∇) �A0(t) + · · ·

)

= −
∫ 1

0
du �x · �A(u�x, t). (17)

The vector potential that results from the gauge transformation
can be expanded as

�A′(�x, t) = �A(�x, t) + ∇�(�x, t)

= − 1
2 �x × (∇ × �A0) + · · · , (18)

while the transformed scalar potential can be expanded as

ϕ′(�x, t) = ϕ(�x, t) − 1

c

∂�

∂t

= ϕ0(t) + �x ·
(

∇ϕ0(t) + 1

c

∂ �A0

∂t

)

+ 1

2
�x �x · ∇

(
∇ϕ0(t) + 1

c

∂ �A0

∂t

)
+ · · · . (19)
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We can then rewrite the interaction as

V (t) ≈
∫

d3x ρ(�x, t)

(
ϕ0(t) + �x ·

(
∇ϕ0(t) + 1

c

∂ �A0

∂t

)

+ 1

2
�x �x · ∇

(
∇ϕ0(t) + 1

c

∂ �A0

∂t

)
+ · · ·

)

− 1

2c

∫
d3x (�x × �J ) · (∇ × �A0(t)) + · · · , (20)

which we can express in terms of the electromagnetic fields
�E0 and �B0 at �x = 0 as

V (t) ≈
∫

d3x ρ(�x, t)

(
ϕ0(t) − �x · �E0(t)

− 1

2
�x �x · ∇ �E0(t) + · · ·

)

− 1

2c

∫
d3x (�x × �J ) · �B0(t) + · · · . (21)

If we assume as well that the field-producing charge does
not overlap with the nuclear one, we can write the electric
quadrupole term as

�x �x · ∇ �E0 =
∑
i,j

xixj ∂jE0i

(22)
=

∑
i,j

(xixj − �x2δij /3)∂jE0i ,

since, in that case, ∇ · �E0 = 0.
We can then write the interaction in a form that parallels

the classical (Cartesian) multipole expansion [23], as

V (t) = qϕ(t) − �d · �E0(t) − 1

2

∑
i,j

Qij ∂jE0i(t)

− �m · �B0(t) + · · · , (23)

where q is the charge,

q =
∫

d3x ρ(�x, t), (24)

�d is the electric dipole operator,

�d =
∫

d3x �x ρ(�x, t), (25)

the Qij are the traceless electric quadrupole operators,

Qij =
∫

d3x (xixj − �x2δij /3) ρ(�x, t), (26)

and �m is the magnetic dipole operator,

�m = 1

2c

∫
d3x �x × �J (�x, t). (27)

The multipole expansion does not depend on whether we
have included magnetization currents, exchange contributions
or other corrections that determine the detailed structure of
the target charge and current densities. The only property of
these densities that we have used is the continuity equation,
Eq. (11), which should be valid in any case.

The multipole expansion given here can be extended to all
orders without great difficulty. It can be expressed compactly
as

V (t) = qϕ(t) −
∫

d3x ρ(�x, t) �x ·
∫ 1

0
du �E(u�x, t)

− 1

c

∫
d3x (�x × �J ) ·

∫ 1

0
du u �B(u�x, t). (28)

It satisfies the gauge condition �x · �A(�x, t) = 0, which can be
rewritten as ∫ 1

0
du �x · �A(u�x, t) = 0, (29)

[see Eq. (17)] and is known as the multipolar or Poincaré
gauge [20]. A drawback to our formulation is that it has
been performed in a Cartesian rather than a spherical basis.
However, the expansion in the spherical basis should be
directly deducible from the Cartesian one, since the two are
equivalent.

In the physically intuitive form given above, the electromag-
netic interaction poses no problem, even when the excitation
and decay of resonant states is considered. As an example,
we take the Liénard-Wiechert potential due to a relativistic
nucleus of charge Z passing on a straight-line trajectory with
velocity v in the ẑ direction at a distance b0 from the center of
the charge/current distribution of the target. We then have [23]

ϕ(�b, z, t) = γ
Ze√

(�b − �b0)2 + γ 2(z − vt)2

and

�A(�b, z, t) = v

c
ẑ ϕ(�b, z, t). (30)

The transverse and longitudinal components of the electric
field, which induce dipole excitation, are

�E0⊥(t) = −γ �b0
Ze(�b2

0 + (γ vt)2
)3/2

and

E0||(t) = −γ vt
Ze(�b2

0 + (γ vt)2
)3/2 , (31)

and tend to zero as b−2
0 and b−3

0 , respectively, as the impact
parameter increases. At high energies, the excitation is
dominated by the transverse modes, which produce a cross
section that grows as ln(bmax/bmin), as expected [6].

Bayman and Zardi [24] have observed that the mixed
representation of the interaction given in Ref. [9] neglects
relativistic corrections to the quadrupole and higher multipole
terms, which become important at high energies. These are
included and discussed in their work and in Ref. [10]. They
are also taken into account correctly (and automatically) when
the pure field representation is used.

As mentioned earlier, Bayman and Zardi have also recently
compared calculations of relativistic Coulomb excitation in
the Lorentz and Coulomb gauges [11]. They find that the
cross sections in the Lorentz gauge increases dramatically with
respect to those in the Coulomb gauge at energies above about
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2 GeV/nucleon. Although the Coulomb gauge is not equivalent
to the one we present here, we suspect that it too might include
only physical contributions to coupled-channels cross sections.
We are of the opinion, however, that the optimal form of the
interaction in such calculations is the one given here, in which
the excitation interaction is expressed in terms of the physical
fields and their derivatives.

We have shown that, through an appropriate gauge transfor-
mation, the Coulomb excitation component of the semiclassi-
cal form of the electromagnetic interaction can be expressed in
terms of the electromagnetic fields and their derivatives. Aside

from making a satisfying parallel with the classical case, the
pure field representation of the excitation interaction, known
as the multipolar or Poincaré gauge, provides physically
reasonable cross sections, even when resonance excitation and
decay is taken into account.
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