
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 72, 041304(R) (2005)

Low momentum shell model effective interactions with all-order core polarizations
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An all-order summation of core-polarization diagrams using the low-momentum nucleon-nucleon interaction
Vlow−k is presented. The summation is based on the Kirson-Babu-Brown (KBB) induced interaction approach
in which the vertex functions are obtained self-consistently by solving a set of nonlinear coupled equations. It
is found that the solution of these equations is simplified using Vlow−k , which is energy independent, and using
the Green’s functions in the particle-particle and particle-hole channels. We have applied this approach to the
sd-shell effective interactions and find that the results we calculated to all orders by using the KBB summation
technique are remarkably similar to those of second-order perturbation theory, the average differences being less
than 10%.
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Since the early works of Bertsch [1] and Kuo and Brown
[2], the effect of core polarization (CP) in nuclear physics
has received much attention. CP is particularly important
in the shell-model effective interactions, where this process
provides the long-range internucleon interaction mediated by
excitations of the core [3]. In microscopic calculations of
effective interactions, CP has played an essential role, as
illustrated by the familiar situation in 18O. There the spectrum
calculated with the bare G matrix was too compressed
compared with experiment, while the inclusion of CP had
the desirable effect of both lowering the 0+ ground state and
raising the 4+ state, leading to a much-improved agreement
with experiment [1,2]. As pointed out by Zuker [4], the
Kuo-Brown matrix elements, although developed quite some
time ago, continue to be a highly useful shell-model effective
interaction. It should be noted that the CP diagrams associated
with the above interactions were all calculated to second order
(in the G matrix) in perturbation theory. However, what are
the effects of CP beyond second order, and how can they be
calculated? In this communication we address these questions
and present an all-order summation of CP diagrams for the
sd-shell interactions.

There have been a number of important CP studies beyond
second order. Third-order CP diagrams, including those with
one fold, were studied in detail by Barrett and Kirson [5]
for the sd-shell effective interactions. Hjorth-Jensen et al. [6]
have carried out extensive investigations of the third-order CP
diagrams for the tin region. A main result of these studies is that
the effect of the third-order diagrams is generally comparable
with that of the second order; the former cannot be ignored
in comparison with the latter. As is well known, high-order
CP calculations are difficult to perform, largely because the
number of CP diagrams grows rapidly as one goes to higher
orders in perturbation theory. The number of diagrams at third
order is already quite large, though still manageable. Primarily
because of this difficulty, a complete fourth-order calculation
has never been carried out. It was soon realized that an order-
by-order calculation of CP diagrams beyond third order is not

practicable. To fully assess the effects of CP to high order, a
nonperturbative method is called for.

The nonperturbative method we use is based on the elegant
and rigorous induced interaction approach of Kirson [7] and
Babu and Brown [8], hereafter referred to as KBB. Other
successful nonperturbative summation methods have also been
developed, such as the parquet summation [9] and coupled
cluster expansion [10]. In the KBB formalism one obtains the
vertex functions by solving a set of self-consistent equations,
thereby generating CP diagrams to all orders. Using this
approach, Kirson has studied 18O and 18F by using a G-matrix
interaction, and Sprung and Jopko [11] have carried out a
model study of this approach by using a separable interaction.
A main conclusion of both studies is that when CP diagrams
are included to all orders the effective interaction is very
close to that given by the bare interaction alone. In contrast,
Sjöberg [12] applied the Babu-Brown formalism to nuclear
matter and found that the inclusion of CP diagrams to all
orders has a significant effect on the Fermi liquid parameters
in comparison with those given by the bare interaction. These
conflicting results for CP studies of finite nuclei and infinite
nuclear matter have served as a primary motivation for our
present reexamination of the CP effect.

Our application of the KBB formalism to shell-model
effective interactions is similar to that of Kirson, but our
treatment is different in a number of important regards. As we
discuss, the particle-core and hole-core coupling vertices used
in the present work include a larger class of diagrams than
has been previously studied. We show how the inclusion of
these diagrams is facilitated by using the recently developed
low-momentum nucleon-nucleon interaction Vlow−k [13–19]
instead of the previously used G matrix. This is primarily
because the G matrix [6,20] depends on both starting energy
and the Pauli exclusion operator, while Vlow−k depends on
neither. It is noted that the S-wave interactions calculated from
the Moszkowski-Scott separation method gave essentially
the same matrix elements as Vlow−k [21]. We now turn our
attention to the formal aspects of our approach then discuss
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FIG. 1. Self-consistent diagrammatic expansion of the ph vertex
function f, where � is defined in the text.

the application of these methods to the sd-shell effective
interactions.

The KBB induced interaction approach provides a very
appealing way for summing up planar diagrams to all orders.
Its fundamental requirement is that the irreducible vertex
functions be calculated self-consistently. This means that any
CP term contained in a vertex function must be generated
self-consistently from the same vertex function. We note that it
is this requirement that plays the essential role of generating CP
diagrams to all orders. To see this point, it may be convenient to
first consider the particle-hole ( ph) vertex function f. (We shall
consider the particle-particle vertex a little later.) As shown in
Fig. 1, f is generated by summation of the driving term V and
CP terms, the latter being dependent on f. This then gives the
self-consistent equation for f:

f = V + �gph� + �gphfgph� + �gphfgphfgph� + · · · ,
(1)

where gph is the free ph Green’s function and � denotes the
vertex for particle-core and hole-core coupling. The second-
order CP diagram of Fig. 1 is the lowest-order term contained
in �gph�. We note that, for simplicity, the bra and ket indices
have been suppressed in the above equation as well as in
the following equations. For example, in Eq. (1) the f on the
left-hand side represents 〈12−1|f |34−1〉, whereas the fifth and
sixth �s on the right-hand side represent 〈1ph−1|�|3〉 and
〈2−1|�|p′h′−14−1〉, respectively.

The generation of high-order CP diagrams may be seen
easily for the special case � = V . In this case Eq. (1) becomes

f = V + VgphV + VgphfgphV + VgphfgphfgphV + · · · .
(2)

Since f appears on both sides of this equation, it is clear
that an iterative solution for f will yield CP diagrams to all
orders, including those with “bubbles inside bubbles,” like
those shown in diagram (a) of Fig. 2.

For nuclear many-body calculations in general, we also
need the particle-particle ( pp) vertex function �. Like f, �

is given by a driving term plus CP terms. Furthermore, the
diagrammatic representation of � is identical to Fig. 1 except

1 2

3 4
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FIG. 2. Higher-order terms contributing to the vertex functions f
and �, including (a) nested bubbles in bubbles and (b) particle-core
and hole-core couplings.

that the hole lines 2 and 4 are replaced with corresponding
particle lines. This gives the self-consistent equation for �:

� = V + �gph� + �gphfgph� + �gphfgphfgph� + · · · .
(3)

To clarify our compact notation, we note that the external
lines of the � vertices in � are different than those shown
in Fig. 1. The upper � vertex, for example, now represents
〈2|�|ph−14〉. These different � vertices can be related to
each other, however, by means of appropriate particle-hole
transformations.

Finally, the vertex functions f and � are coupled together
by means of the coupling vertex �. In the present work we
choose

� = V + �ph + �pp,

�ph = VgphV + VgphfgphV + VgphfgphfgphV + · · · ,
�pp = VgppV + Vgpp�gppV + Vgpp�gpp�gppV + · · · ,

(4)

where gpp is the free pp Green’s function.
The self-consistent vertex functions f and � are determined

from Eqs. (1), (3), and (4). These are similar to the equations
used by Kirson [7], except that our � includes both �ph

and �pp, while the equivalent term in Kirson’s calculations
includes only �ph [7,22]. To see the role of the � vertices, let
us consider diagram (b) of Fig. 2. Here the lower particle-core
vertex, which contains repeated particle-particle interactions,
belongs to �pp, while the upper one, which contains repeated
particle-hole interactions, belongs to �ph. It is, of course,
necessary to include �pp in order to have such CP diagrams
in the all-order sum. Our equations are equivalent to those of
Kirson when �pp is set to zero, and in this case � does not
enter the calculation of f.

Solving the above equations for f and � may seem
complicated, but we have found their solution can be simplified
significantly through use of the true ph and pp Green’s
functions:

Gph = gph + gphf Gph,
(5)

Gpp = gpp + gpp�Gpp.

When these Green’s functions are used to partially sum and
regroup our series, the self-consistent Eqs. (1), (3), and (4)
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assume a much simpler form

f = V + �Gph�,

� = V + �Gph�, (6)

� = V + V GphV + V GppV.

The above simplifications also aid our numerical efforts, and,
using the following iterative method, we find that our coupled
equations can be solved rather efficiently. For the nth iteration,
we start from f (n) and �(n) to first calculate G

(n)
ph and G(n)

pp

followed by �(n), as seen from Eqs. (5) and (6). We then obtain
the vertex functions for the subsequent iteration by taking
f (n+1) = V + �(n)G

(n)
ph�

(n) and �(n+1) = V + �(n)G
(n)
ph�

(n).
The entire iterative process begins from the initial f (0) =
V + VgphV and �(0) = V + VgphV and typically converges
after just a few iterations.

In the present work, we have included folded diagrams to
all orders. As detailed in [23], we use this method to reduce
the full-space nuclear many-body problem H�n = En�n to
a model-space problem Heffχm = Emχm, where H = H0 +
V,Heff = H0 + Veff , and V denotes the bare NN interaction.
The effective interaction Veff is given by the folded-diagram
expansion

Veff = Q̂ − Q̂′
∫

Q̂ + Q̂′
∫

Q̂

∫
Q̂ − · · · . (7)

We consider the effective interactions for valence nucleons,
and in this case Q̂ is the irreducible pp vertex function that
we shall calculate by using the KBB equations. In Ref. [7],
the effect of higher-order CP diagrams to the nonfolded Q̂

term was extensively studied. In the present work, we first
calculate Q̂ including CP diagrams to all orders. Then we sum
the above folded-diagram series for Veff to all orders by using
the Lee-Suzuki iteration method as discussed in Ref. [6]. In
this way, folded CP diagrams are included to all orders.

For the present calculation we have chosen to use the
low-momentum nucleon-nucleon interaction, Vlow−k . Since
the vertex functions f and � both depend on the starting
energy, there would be off-energy-shell effects present in
many CP diagrams if the G-matrix interaction were chosen.
This would make the calculation very complicated. Vlow−k , on
the other hand, is energy independent, so no such difficulties
are encountered. Because detailed treatments of Vlow−k have
been given elsewhere [13–19], here we provide only a brief
description. We define Vlow−k through the T-matrix equiva-
lence T (p′, p, p2) = Tlow−k(p′, p, p2); (p′, p) � �, where T
is given by the full-space equation T = VNN + VNNgT and
Tlow−k is given by the model-space (momenta ��) equation
Tlow−k = Vlow−k + Vlow−kgTlow−k . Here VNN represents some
realistic NN potential and � is the decimation momentum
beyond which the high-momentum components of VNN are
integrated out. Vlow−k preserves both the deuteron binding
energy and the low-energy scattering phase shifts of VNN .
Since empirical nucleon scattering phase shifts are available
up to only the pion production threshold (Elab ∼ 350 MeV),
beyond this momentum the realistic NN potentials can-
not be uniquely determined. Accordingly, we choose � ≈
2.0 fm−1, thereby retaining only the information from a given
potential that is constrained by experiment. In fact, for this �,

the Vlow−k derived from various NN potentials [24–27] are
all nearly identical [17]. Except where noted otherwise, in
our calculations we employ the Vlow−k derived from the
change-dependent (CD) Bonn potential [24].

As an initial study, we carried out a restricted all-order CP
calculation for the sd-shell effective interactions. In particular,
we summed only the TDA diagrams for the Green’s functions
Gpp and Gph, leaving a study of RPA diagrams to a future
publication. We used two choices for the shell-model space:
One with four shells (10 orbits from 0s1/2 to 1p1/2) and the
other with five shells (15 orbits from 0s1/2 to 3s1/2), both
with oscillator constant h̄ω = 14 MeV. Only core excitations
within this space are included. Vary, Sauer, and Wong [28]
have pointed out that for CP diagrams one needs to include
intermediate states of high excitation energies (up to ∼10h̄ω)
in order for the second-order CP term to converge. In their
work a G matrix derived from the Reid soft-core potential
was used, and our use of Vlow−k may yield different results
as it has greatly reduced high-momentum components. We
found that the difference between our five-shell and four-shell
calculations was minimal; the results differing by about 2% or
less. This finding is supported by recent studies that show
desirable convergence properties of Vlow−k [29]. We plan
to study this convergence problem for Vlow−k in the near
future.

With these restrictions, we calculated Veff from Eqs. (5)–(7).
A large number of angular-momentum recouplings are in-
volved in calculating the CP diagrams. In this regard, we
followed closely the diagram rules in [30]. Previous second-
order calculations [6,13] included in the Q̂ box the first-order
pp diagram, the second-order pp and hh ladder diagrams,
and the second-order CP diagram. Our all-order calculation
includes these same diagrams except the second-order CP
diagram is replaced with the all-order CP diagrams from KBB.
In Fig. 3 we compare the sd-shell Veff matrix elements we
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FIG. 3. (Color online) A comparison of the second-order CP
matrix elements with those of the all-order KBB calculation.
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FIG. 4. Spectra for the 18O system calcu-
lated to different orders in perturbation theory.
Dashed lines for the experimental levels [31]
indicate levels with large intruder state mix-
ing [32,33]. All calculations were performed
with the experimental single-particle energies
of 17O.

calculated from the second-order and all-order Q̂ boxes just
described, both by using the five-shell space mentioned above.
A least-squares fit was applied to the data, and it is apparent
that the effect of including CP to all orders in our calculation
is a mild suppression of the second-order contributions. This
conclusion is further born out in the calculation of the 18O and
18F spectra, the results of which are shown in Figs. 4 and 5.
Here we observe a weak suppression of the second-order
effects in 18O but a moderate suppression in 18F. In the same
figures we also observe that the spectra for different Vlow−k

derived from the CD Bonn and Nijmegen bare potentials are
nearly identical.

In summary, we have presented a method based on the KBB
induced interaction formalism for efficiently summing CP
diagrams to all orders in perturbation theory. This summation is
carried out by way of the KBB self-consistent equations whose
solution is significantly simplified by the use of the true pp and
ph Green’s functions, and by the use of the energy-independent
Vlow−k . Although our calculation was restricted in several im-
portant aspects, we find that our final renormalized interaction
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FIG. 5. Spectra for the 18F system calcu-
lated to different orders in perturbation theory.
See the caption to Fig. 4 for details.
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is remarkably close to that of second-order perturbation theory.
This is of practical importance and a welcoming result, for it
allows one to use the results from a second-order calculation
to approximate the contributions resulting from a large class
of higher-order diagrams. In the future we intend both to
expand our treatment by including additional diagrammatic
contributions (RPA) and to generalize our method to study the

all-order CP effects for effective operators such as magnetic
moments.
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[12] O. Sjöberg, Ann. Phys. (NY) 78, 39 (1973).
[13] S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and

N. Itaco, Phys. Rev. C 65, 051301(R) (2002).
[14] T. T. S. Kuo, S. K. Bogner, and L. Coraggio, Nucl. Phys. A704,

107c (2002).
[15] L. Coraggio et al., Phys. Rev. C 66, 021303(R) (2002).
[16] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo,

Phys. Rev. C 66, 064311 (2002).
[17] S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386, 1

(2003).

[18] J. D. Holt, T. T. S. Kuo, G. E. Brown, and S. K. Bogner, Nucl.
Phys. A733, 153 (2004).

[19] J. D. Holt, T. T. S. Kuo, and G. E. Brown, Phys. Rev. C 69,
034329 (2004).

[20] E. M. Krenciglowa, C. L. Kung, T. T. S. Kuo, and E. Osnes,
Ann. Phys. (NY) 101, 154 (1976).

[21] J. W. Holt and G. E. Brown, nucl-th/0408047.
[22] P. J. Ellis and E. Osnes, Rev. Mod. Phys. 49, 777 (1977).
[23] T. T. S. Kuo and E. Osnes, in Lecture Notes in Physics (Springer-

Verlag, New York, 1990), Vol. 364.
[24] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[25] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[26] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de

Swart, Phys. Rev. C 49, 2950 (1994).
[27] D. R. Entem, R. Machleidt, and H. Witala, Phys. Rev. C 65,

064005 (2002).
[28] J. P. Vary, P. U. Sauer, and C. W. Wong, Phys. Rev. C 7, 1776

(1973).
[29] S. K. Bogner, A. Schwenk, R. J. Furnstahl, and A. Nogga, nucl-

th/0504043.
[30] T. T. S. Kuo, J. Shurpin, K. C. Tam, E. Osnes, and P. J. Ellis,

Ann. Phys. (NY) 132, 237 (1981).
[31] D. R. Tilley, H. R. Weller, C. M. Cheves, and R. M. Chasteler,

Nucl. Phys. A595, 1 (1995).
[32] B. H. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984).
[33] B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part. Sci.

38, 29 (1988).

041304-5


