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Reappearance of the pairing correlations at finite temperature
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Rotational and deformation dependence of isovector and isoscalar pairing correlations at finite temperature
are studied in an exactly solvable cranked deformed shell model Hamiltonian. It is shown that isovector pairing
correlations, as expected, decrease with increasing deformation and the isoscalar pairing correlations remain
constant at temperature, T = 0. However, it is observed that at finite temperature both isovector and isoscalar
pairing correlations are enhanced with increasing deformation. It is also demonstrated that the pair correlations,
which are quenched at T = 0 and high rotational frequency reappear at finite temperature. The changes in the
individual multipole pairing fields as a function of rotation and deformation are analyzed in detail.
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The interplay between the deformation forces and the
pairing correlations plays a fundamental role in our under-
standing of rotational nuclei [1,2]. The deformation leads to
regular band structures and can be measured from the observed
transition probabilities. Most of the nuclei with more than a
few valance neutrons and protons are known to be deformed.
The importance of the pairing correlations is inferred, for
instance, from the odd-even mass differences and the moments
of inertia of the rotational states. These correlations are known
to decrease with increasing rotational frequency along the yrast
line. The deformation and the pairing forces are understood to
have opposite tendencies.

The dependence of the pairing correlations on temperature
is mainly derived from the mean-field grand-canonical en-
semble theory. The experimental data at finite temperature
(excitation energy) are difficult to analyze because of the
quasicontinuum γ -ray spectrum [3]. The mean-field models
demonstrate that the pairing correlations drop with increasing
temperature and depict a phase transition from the paired to
the unpaired configuration, where the pairing has completely
vanished. The mean-field based approach is appropriate for a
macroscopic system, for example, a metallic superconductor.
The experimental data for a bulk superconductor quite clearly
depict a sharp transition as a function of temperature as
predicted by the mean-field models. The application of the
mean-field theory to finite mesoscopic systems also predict a
sharp phase transition [4–6] as in the case of macroscopic
systems. However, the experimental data and the exact
solutions of some toy models do not depict any sharp transition
and show a smooth phase transition from the paired to the
unpaired phase [7,8]. The application of the mean-field theory
to finite mesoscopic systems is quite inadequate as it does
not contain the fluctuations. The fluctuations, as is known
from statistical mechanics [9], are inversely proportional to the
square root of the particle number and become important for a
finite system. In particular, at finite temperature, the mean-field
Slater determinant is a mixture of both even and odd particle
numbers and the fluctuations become exceedingly important.
At zero temperature, the mean-field wavefunction is mixture

of only even or odd particle numbers. There has been some
effort to investigate the effects of thermal fluctuations on the
pairing energy and the quadrupole shape [10,11].

The projected mean-field theory, which incorporates fluctu-
ations, is now available at zero temperature [12–14]. Recently,
there has been an attempt to formulate the projection theory at
finite temperature [15]. A partial particle number projection
at finite temperature in which the particle number parity
projection (even or odd particle number is projected out) has
been recently studied in Ref. [16]. It has been shown, for a
system with odd particle number, that the pairing correlations
which are quenched at zero temperature and finite magnetic
field (rotational frequency) reappear at finite temperature.
This interesting and quite unexpected observation was further
investigated in an exactly solvable model [8]. It was found that
the pair correlations which were quenched at zero temperature
either by an external magnetic field in a small superconductor
or by rapid rotation in a nucleus, reappear at finite temperature.
These “temperature induced pair correlations” were noted
both for even and odd particle numbers. In Refs. [8,16] the
temperature dependence of only the monopole pairing field
has been investigated. It is quite interesting to study the
temperature dependence of the higher multipole pair fields for
nuclei, where these higher fields are known to be important. In
particular, it is quite instructive to investigate the temperature
and rotational dependence of the isoscalar pairing field, which
has attracted considerable interest in recent years [17,18].

The purpose of the present work is to study the rotational
and deformation dependence of isovector and isoscalar pairing
correlations at finite temperature in an exactly solvable model.
It is demonstrated that the isovector pairing correlations de-
crease with increasing deformation at T = 0 and the isoscalar
pairing field remains constant with increasing deformation.
However, at finite temperature the pairing correlations depict
an increase with increasing deformation, which is totally
unexpected and contradict the mean-field predictions for the
specific model investigated in this paper.

The exactly solvable model Hamiltonian employed in the
present study consists of a deformed one-body term (hdef) and
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a scalar two-body delta-interaction (V2) [19]. The one-body
term is the familiar Nilsson mean-field potential which takes
into account of the long-range part of the nucleon-nucleon
interaction. The residual short-range interaction is specified
by the delta-interaction. The model Hamiltonian is given by

Ĥ = ĥdef + V̂2, (1)

where,

ĥdef = −4κ

√
4π

5

∑
i,j

〈j |Y20|i〉δτiτj
δmimj

c
†
j ci, (2)

and

V̂2 = 1

4

∑
ijkl

〈ij |va|kl〉c†i c†j clck

= 1

2
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vJ tA
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†
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JM;t tz )
†. The

labels i, j, . . . . in the above equations denote the magnetic
quantum number and the isospin projection quantum number
τ (τ = 1/2 for neutrons and τ = −1/2 for protons). For the
antisymmetric-normalized two-body matrix-element (vJ t ), we
use the delta-interaction, which for a single j-shell is given
by [20]

vJ t = −G
(2j + 1)2

2(2J + 1)

{[
j j J
1
2 − 1

2 0

]2

+ 1

2
[1 + (−1)t ]

[
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1
2 − 1

2 0

]2 }
, (4)

where the symbol [ ] denotes the Clebsch-Gordon coefficient.
The deformation energy κ in Eq. (2) is related to the
deformation parameter β [19]. For the case of f7/2 shell,
κ = 2.4 approximately corresponds to β = 0.25. It is to
be noted that the maximum angular-momentum possible
for valance particles in this shell is 16h̄ with four-protons
and four-neutrons. For states with large angular frequencies
studied in the present work, the total angular-momentum has
predominantly core (rotor) component. The present model
is, therefore, applicable to rotational bands with low-K. For
high-K bands, the valance particle contribution is quite
significant.

In the present work, the pairing correlations have been
calculated using canonical ensemble since the exact solutions
have well-defined particle number. The average value of a
physical quantity “F” in canonical ensemble is given by [9]

〈〈F 〉〉 =
∑

i

Fie
−Ei/T /Z, (5)

where

Z =
∑

i

e−Ei/T

Ĥ |i〉 = Ei |i〉 (6)

Fi = 〈i|F̂ |i〉.
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FIG. 1. (Color online) Results of the total isovector (�t=1) and
isoscalar (�t=0) pair gaps are plotted as a function of rotational
frequency for three different temperatures of T = 0, 3, and 6 MeV.
The results for spherical (κ = 0 MeV) and deformed (κ = 3 MeV)
nuclei are shown in upper and lower panels, respectively.

The pairing correlations for the (J t) multipole field is
calculated in the canonical ensemble as

EJt (pair) = vJ t

√
(2J + 1)(2t + 1)(〈〈(A†

J t × ÃJ t )00;00〉〉
− 0〈〈(A†

J t × ÃJ t )00;00〉〉0), (7)

where the uncorrelated contribution denoted by 0 ��0 has
been subtracted [8]. The pair gap for the multipole field (J t)
is then calculated through the expression

EJt (pair) = �Jt�
∗
J t

vJ t

. (8)

The model Hamiltonian has been solved exactly for protons
and neutrons in f7/2 subshell. We have considered this subshell
as in our earlier studies [19], since the dimensions of the
matrices to be diagonalized are tractable. The results of the
total t = 1 and 0 pair gaps as a function of rotational frequency
for four-protons and four-neutrons are presented in Fig. 1.
For temperature, T = 0, both �t=1 and �t=0 depict changes
as a function of rotational frequency. The decrease in the
pair gaps occur in steps for κ = 0 and for κ = 3 the drop
occurs in a smoother manner. This decrease in the pairing
correlations is due to crossing of the aligned configurations
with the ground-state band. The yrast band at low frequencies
is a paired state and this band is crossed by the aligned
bands which have reduced pairing correlations. These aligned
bands become favored with increasing rotational frequency.
For higher temperatures, it is noted that the pairing drops
smoothly. The reason for the smooth decrease is that at higher
temperatures there are crossings of many bands that occur at
slightly different frequencies. The average of these crossings
then gives rise to a smoother drop [8].

The drop in the t = 1 channel in Fig. 1 is similar to what
was found in Ref. [8] for the monopole pairing among identical
particles. As discussed below, the decrease of the total t = 1
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FIG. 2. (Color online) Results of the total isovector (�t=1) and
isoscalar (�t=0) pair gaps are plotted as a function of temperature for
three different rotational frequencies of h̄ω = 0, 2, and 4 MeV. The
upper panel shown the results for κ = 0 and the lower panel depicts
the results for κ = 3 MeV.

gap reflects decrease of the monopole term, which is the
dominating part. The pair correlations in t = 0 channel, on
the other hand, are only moderately reduced. This has been
discussed before [18,21,22], and is expected as the t = 0
pairing should be favored by rotation (the isoscalar pairs carry
angular momenta). However, we shall demonstrate below that
the dipole field (J = 1) of t = 0 pairing channel is reduced
by the rotational alignment as the monopole field (J = 0)
of t = 1 pairing, which results in the moderate decrease of
the total t = 0 pair correlation. For the J = 1 pair field, the
angular momenta of the nucleons are nearly anti-parallel and,
therefore, rotational alignment of a pair of nucleons breaks
both the dipole J = 1 and the monopole J = 0 pairs.

It is also evident from Fig. 1 that with increasing temper-
ature, the pairing correlations at higher frequencies become
stronger. This is quite unexpected since mean-field theory
predicts vanishing of pair correlations both with increasing
rotational frequency and temperature. In order to demonstrate
it more clearly, the pair gaps are plotted in Fig. 2 as a function
of temperature for three different values of the rotational
frequency. The upper panel of Fig. 2 gives the results of pairing
correlations for the spherical case with κ = 0. For h̄ω = 0, the
pair correlations drop with increasing temperature, but it is to
be noticed that this drop is very smooth and they do not tend
to zero with increasing temperature. In the mean-field BCS
theory, the pair correlations depict a sudden transition from
finite � to zero �. The nonvanishing of the total pair gap
will be shown later due to nonzero values of higher-multipole
pairing fields. For the h̄ω = 2 and 4, it is seen from Fig. 2
that the pair gaps increase with increasing temperature. The
pairing correlations, which are quenched for these cases at
low temperatures, reappear at finite temperature. This result
contradicts the notion based on the mean-field models that pair
correlations are quenched with increasing temperature for a
similar model Hamiltonian [5] considered in the present work.

It has first been reported in Ref. [16] that the number-parity
projection leads to reappearance of the pairing correlations
for an odd-particle system at finite temperature. In the case
of even-particle system, however, no such reappearance was
found. This result appears difficult to comprehend as it is
expected that the pair correlations should be stronger for an
even system as compared to an odd-system and, therefore, the
reappearance should be more pronounced in an even system.
The reason for this inconsistency is due to the approximate
partial particle-number projection (number-parity) performed
in Ref. [16]. Studying the exact solutions of a system of
fermions in a single j-shell interacting via a monopole pair
force, Ref. [8] found that the pair correlations that are quenched
at zero temperature by rotation or a magnetic field reappear at
finite temperature both for even and odd particle numbers.

The reason for the above reappearance of the pairing corre-
lations at finite temperature can be understood by first noting
that only the occupations of the time-reversed states close to
the Fermi level contribute to the pairing correlations. At higher
rotational frequencies, the particles near the Fermi surface
occupy aligning states, which have large angular-momenta
along the rotational axis. The occupation of these aligning
states close to the Fermi surface block the pairing correlations.
However, with increasing temperature these aligning particles
are promoted to higher excited states and the states close
to the Fermi surface can now be occupied in time-reversed
form and consequently increasing the pairing correlations with
temperature.

In order to critically investigate the behavior of the pair
gaps as a function of rotational frequency and temperature, the
results of the individual multipole pair-fields are presented in
Figs. 3 and 4. In Fig. 3, the results are shown for the individual
pairing fields as a function of the rotational frequency at zero
temperature, T = 0. It is evident from this figure that for
κ = 0, the changes in the total isovector pair gaps (t = 1)
noted in Fig. 1 are primarily due to the changes in the
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FIG. 3. (Color online) Results of the individual contributing pair
fields of J = 0(1), 2(3), 4(5), and 6(7) for the isovector (isoscalar)
are plotted as a function of the rotational frequency for temperature,
T = 0.
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FIG. 4. (Color online) Results of the individual contributing pair
fields of J = 0(1), 2(3), 4(5), and 6(7) for the isovector (isoscalar)
are plotted as a function of temperature for the rotational frequency
of h̄ω = 4 MeV.

monopole pairing-field (�t=1(J = 0)). The other contributing
pair multipoles of J = 2, 4, and 6 are quite small and do
not depict any changes as a function of rotational frequency.
For the higher multipoles the two nucleons are not in nearly
or in fully antiparallel states and, therefore, these pairs are
comparatively less affected by rotational alignment. For the
case of isoscalar pairing gap, it is seen that the dipole field
drops with rotational frequency. This drop is quite similar to
that seen on the left hand side of the figure for the monopole
case. However, the magnitude of the changes for the dipole
field are lower than the monopole field. It is also noted from
the figure that the J = 7 multipole field of the isoscalar pair
gap increases with rotational frequency which is expected,
because the angular momenta of the two nucleons are parallel.
The net result is that the total �t=0 shows lesser variation with
rotational frequency as compared to the t = 1 pair field. This
strong reduction of the t = 1 correlations and the weak change
of the t = 0 correlations has also been found in a realistic
cranked shell model Monte Carlo (CSMMC) study for 74Rb
[17]. In this study, the pair correlations were studied at zero
temperature and it would be interesting to perform CSMMC
calculation at finite temperature to confirm the reappearance
of the pairing correlations as obtained in the present model
study.

For the deformed case, shown in the lower panel of
Fig. 3, there is a smoother drop with increasing rotational
frequency. The reason for this smoother drop is that the wave
functions in the deformed case do not have well defined
angular-momentum, which leads to a smoothing out of the
band crossings. In the spherical case, the band crossings
are sharp, since the wave function has well defined angular
momentum. As a consequence, the pairing field depicts sudden
changes with rotational frequency. It is also noted from
Fig. 3 that the t = 1 pair field is smaller in the deformed
case as compared to the spherical case. However, the t = 0
pairing field is quite similar in the two cases.
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FIG. 5. (Color online) Deformation dependence of the total
isovector and isoscalar pair correlations for three temperatures of
T = 0, 3, and 6 MeV, shown by solid, long dashed, and dot-dashed
lines, respectively.

The results for h̄ω = 4 are shown in Fig. 4. It is now clearly
evident from this figure, that the reappearance of the pairing
correlations apparent in Fig. 2 are due to the reemergence of the
monopole (dipole) pair-correlations in the t = 1(0) channel.
The monopole field is zero at low temperatures and becomes
nonzero at about T = 0.6 MeV and then shows a smooth
increase with temperature. The dipole field on the right hand
panel of Fig. 4 is almost constant at lower temperatures, but
starts increasing at around T = 3 MeV. For finite deformation,
the monopole pair-field is constant till T = 3 MeV and then
shows an increase.

In our single j-shell model, the single particle levels spread
out with increasing deformation. For a given interaction
strength, the pair correlations are expected to decrease with
increasing distance between the time-reversed states among
which the pairs can scatter. In order to investigate it, the pair
correlations are presented in Figs. 5 and 6 as a function of
the deformation parameter, κ . The pair gaps in Fig. 5, show
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FIG. 6. (Color online) Deformation dependence of the individual
contributing pair fields of J = 0(1), 2(3), 4(5), and 6(7) for the total
isovector (isoscalar) correlations at temperatures of T = 0, 3, and
6 MeV. J = 0(1) is shown by solid line, J = 2(3) by dashed line,
J = 4(5) by long dashed line, and J = 6(7) by dot-dashed line.
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the expected deformation dependence at temperature T = 0.
The isovector correlations drop with increasing deformation
and the isoscalar pair correlations remain constant. However,
for finite temperature, both the isovector and the isoscalar pair
correlations slightly increase with deformation. For example,
the isovector, �t=1 increases from 4.4 MeV at κ = 0 to
a value of 5.0 MeV at κ = 8 MeV. This increase in the
pair correlations with deformation is quite unexpected and
contradicts the mean-field analysis for the specific model
studied in the present work. The mean-field studies predict
vanishing of pair correlations both with temperature [5] and
deformation [23] for the single j-shell model.

The dependence of individual pair fields as a function of
deformation is presented in Fig. 6. It is evident from this
figure that the increase and decrease in the isovector pair
field is essentially determined by the monopole component.
The monopole pair field decreases with deformation at
temperature, T = 0 and shows an increasing trend for T = 3
and 6 MeV. The other multipole components J = 2, 4, and 6
are quite small and do not depict any significant changes with
deformation. For the isoscalar pair field, it is noted that all
the components are constant with deformation at temperature,
T = 0. At higher temperatures of T = 3 and 6, the isoscalar
pair fields of J = 1 and 7 slightly increase with deformation.

It is to be noted that the real deformation dependence of
the pair correlations may be different from our simple model,
for which the the deformation leads only to an increase of
the distance between the single particle levels. In a realistic

potential, the level density is an oscillating function of the
deformation and the strength of the interaction matrix elements
also depends on the deformation. The important result of the
present analysis that the pair correlations may be enhanced
at finite temperature as compared to zero temperature is thus
applicable to specific models for which the level density is
low and deformation leads only to an increase of the distance
between the levels. Furthermore, it is emphasized that at higher
temperatures, the particles get excited to higher single-particle
states. This in the present model would correspond to the core
polarization, which is not considered in the present work. Thus,
the present results for higher temperatures may be unrealistic.
As a matter of fact, the results from a realistic Hamiltonian
and model space indicate that the particle evaporation occurs
at about 3 MeV [24,25]. Nevertheless, the main inference of
the present work that the pairing correlations reappear occurs
even at very low temperature for which the present model is
applicable.

In conclusion, we have investigated in an exactly solvable
model the rotational and the deformation dependence of the
isovector and isoscalar pair correlations at finite temperature.
The results at higher temperatures have been shown to be
quite surprising. It has been noted that the pair correlations
reappear at finite temperature after they have been quenched at
zero temperature and high rotational frequency. It has shown
that the monopole and the dipole pair fields are responsible
for this reappearance. It has been also observed that the pair
correlations increase with deformation at finite temperature.
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