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Number of states with given spin J of n fermions in a j orbit
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A recursion formula for the number of states with a given value of total spin J of n identical fermions in a
j orbit, N (J, j, n), is derived. That number is expressed in terms of the number of states with some values of J,
of n, n − 1, and n − 2 fermions in a (j − 1) orbit. This formula may be used in calculating N (J, j, n). In this
paper the formula is used to prove some interesting results that were found empirically by Zhao and Arima [1].
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Zhao and Arima [1] found empirical formulas for the
number of states with a given angular momentum obtained
by antisymmetric coupling of individual spins of three and
four identical fermions in a j orbit. There were attempts
to find general expressions for the number of states of n j
fermions with spin J. In their paper [1], Zhao and Arima list
some of the references and point out that no explicit formulas
were obtained before, even for n = 3 and n = 4. They tested
the formulas that they obtained to very high j values. More
recently Zhao and Arima [2] used group theoretical methods
to prove their results for n = 4.

In the present paper, a recursion relation is derived relating
the number of J states in the jn configuration to the number
of some states in the configuration of (j − 1) fermions whose
numbers are n, n − 1, and n − 2. This relation may be used
for calculating successively the number of states with a given
value of J. Here, it will be used to prove the results of Zhao
and Arima for the n = 3 case.

A special case of the formulas of Ref. [1] is the number
of J = j states of three fermions with spin j. This number
[(2j + 3)/6], the largest integer not exceeding (2j + 3)/6, is
equal to the number of J = 0 states obtained by Ginocchio
and Haxton [3] for the case of four fermions. This equality has
physical significance, since it was shown [4] that a necessary
and sufficient condition for a two-body interaction to be
diagonal in the seniority scheme is to have vanishing matrix
elements between the v = 1, J = j state and all v = 3, J =
j states of the j 3 configuration. It was later shown [5] that
an equivalent condition is to have vanishing matrix elements
between the v = 0, J = 0 state and all v = 4, J = 0 states of
the j 4 configuration. The number of independent conditions
must be the same in both cases. Very recently, an alternate
derivation of this number was published [6]. These numbers
for n = 3 and n = 4 will simply follow from special cases of
the recursion relation for any n, to be derived below.

The simplest way to find the number of states with given J
is to use the m scheme. The number of states with given J is
obtained by subtracting the number of states with projection
M = J + 1 from the one with M = J [4]. For identical
j fermions, the m states are defined by the projections of
the individual spins of the fermions, m1,m2, . . . , mn onto
the z axis. According to the Pauli principle, they should
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be different and it is convenient to choose the arrangement
m1 > m2 > · · · > mn. The projection of the total spin J onto
the z axis is equal to M = m1 + m2 + · · · + mn. The number
of states with a given value of M in the jn configuration will
be denoted D(M, j, n).

Starting with the highest possible value of J,

Jmax = Mmax = j + j − 1 + j − 2 + · · · + j − n + 1

= n(2j + 1 − n)/2,

there are states for which m1 = j and the absolute values of all
other m values are not larger than j − 1. This is guaranteed by
the condition mn > −j . The number of such states with given
M is the same as the number of states with M − j because
there are n − 1 fermions in the (j − 1) orbit, D(M − j, j − 1,

n − 1). There may be states with m1 = j and mn = −j ; their
number is equal to the number of states with the same value
of M, with n − 2 fermions of spin j − 1, D(M, j − 1, n − 2).
There are also states where m1 < j,mn > −j ; their number
is simply D(M, j − 1, n). The other type of state in which the
j orbit is evident is when m1 < j but mn = −j . The number
of those is equal to D(M + j, j − 1, n − 1). The sum of these
four numbers is equal to the total number of states with given
M of the jn configuration,

D(M, j, n) = D(M, j − 1, n) + D(M + j, j − 1, n − 1)

+ D(M, j − 1, n − 2)

+ D(M − j, j − 1, n − 1). (1)

The total number of states with M � 0 is equal to the sum
of numbers of all states with given J � M ,

D(M, j, n) =
∑

N (J, j, n), J � M.

On the other hand, for M � 0,

D(M, j, n) =
∑

N (J, j, n), J � |M|.
Hence, if M � 0, we obtain

N (J, j, n) = D(M = J, j, n) − D(M = J + 1, j, n). (2)

If, however, M < 0 and M + 1 � 0, the difference is equal to

D(M = −J, j, n)−D(M = −J + 1, j, n) = −N (J −1, j, n).

(3)

A special case is when M < 0 while M + 1 > 0, which occurs
If M = −1/2. In such a case, the number of M = −1/2 states
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is equal to the number of M = 1/2 states, and, hence,

D(M = −1/2, j, n) − D(M = 1/2, j, n) = 0. (4)

Using these expressions for spin j − 1, we can express
N (J, j, n) by subtracting the expressions on the right-hand
side (r.h.s.) of Eq. (1) for M = J + 1 from the one where we
set M = J .

Taking M to be non-negative, the projections in the first
three terms on the r.h.s. of Eq. (1), M and M + j, are also non-
negative. This is true for M = J and certainly for M = J + 1.
When the subtraction is carried out, Eq. (2) may be safely used.
In the last term, however, the situation depends on the value
of J. If J � j , then the projection J − j is also non-negative
and Eq. (2) may be used. If J < j , then the projection J − j

is negative, and Eq. (3) or (4) should be applied.
These considerations lead to the following recursion rela-

tions.
For J � j

N (J, j, n) = N (J, j − 1, n) + N (J + j, j − 1, n − 1)

+ N (J, j − 1, n− 2)

+ N (J − j, j − 1, n− 1). (5)

For J = j − 1/2

N (J = j − 1/2, j, n) = N (J = j−1/2, j−1, n)

+ N (J = 2j − 1/2, j−1, n−1)

+ N (J = j − 1/2, j−1, n−2).

(6)

For J � j − 1

N (J, j, n) = N (J, j − 1, n) + N (J + j, j − 1, n − 1)

+N (J, j − 1, n − 2)

−N (j − J − 1, j − 1, n − 1) (7)

By its definition, N (J, j, n) vanishes if there is no state with
the given value J in the jn fermion configuration. The recur-
sion relations (5)–(7) also hold for n = 2 and n = 1 (and trivially
for n = 0) provided we define N (J, j, n) = 0 for n < 0 and
N (J, j, n = 0) = δJ0. To calculate the number of states, it is
sufficient to limit the value of n to (2j + 1)/2. That number for
n fermions is equal to the one for n holes, i.e., 2j + 1 − n

fermions. The recursion relations derived above hold for any
value of n, and they satisfy the condition N (J, j, 2j + 1 −
n) = N (J, j, n). This is easily verified by using the particle-
hole symmetry of fermions in the (j − 1) orbit.

A simple result of Eq. (7) is obtained for J = 1/2, n = 3. It
is well known that there are no J = 1/2 states in the fermion
j 3 configuration (see, e.g., Ref. [4] or [7]). Setting J = 1/2 and
n = 3, we obtain for this number the expression

N (J = 1/2, j, 3) = N (1/2, j − 1, 3)

+ N (j + 1/2, j − 1, 2)

+ N (1/2, j − 1, 1) − N (j − 3/2, j − 1, 2). (8)

The vanishing of this expression may be proved by induction
with respect to j. For j = 7/2, n = 3, there is no J = 1/2 state.
There is a J = 1/2 state neither in the n = 3 case nor in the n = 1
case of j = 5/2. The two other terms cancel each other, as will

be shown below, for any value of j. If the nonexistence of
J = 1/2 state in states with three spin j − 1 fermions is
assumed, then this property follows also for the configuration
of three j fermions. Since it is assumed that the first and
third terms in Eq. (8) vanish, it is necessary to show that
the sum of the other terms is also zero. In a two-fermion
configuration, only states with even values of J exist. Thus,
the sum considered is equal to

[1 + (−1)j+1/2]/2 − [1 + (−1)j−3/2]/2 = 0 for any j.

Equation (8) is also consistent for j = 3/2, since the first term
is not present for j − 1 = 1/2; the second term vanishes while
the third term is equal to 1, but it is canceled by the last term,
which is also equal to 1.

It is more interesting to use the recursion relations obtained
above to prove, by induction with respect to j, some of the re-
sults of Zhao and Arima [1]. In their paper, they use the
notation D(3, J)j for the number of states with spin J in the
j 3 configuration. For states with J � j , they found the ex-
pression N (J, j , 3) = [(2 J + 3)/6], the largest integer not
exceeding (2 J + 3)/6. Their conclusion can be directly verified
for j = 5/2, and from its validity for j − 1 we will show that
it is also valid for spin j. Using the recursion relations, we
obtain in this case

N (J, j, 3) = N (J, j − 1, 3) + N (J + j, j − 1, 2)

+ N (J, j − 1, 1) − N (j − J − 1, j − 1, 2). (9)

The first term on the r.h.s. of Eq. (9) is equal, according to
the assumption, to [(2 J + 3)/6]. Since it is independent of j, it
is necessary to show that the sum of the other terms vanishes.
The third term vanishes unless J is equal to j − 1, δ(J, j − 1).
The second term vanishes if J + j is odd and is equal to 1 if it
is even. Similarly, the last term vanishes if j − J − 1 or j +
J + 1−2j is odd, and it contributes −1 otherwise. Thus,

N (J, j, 3) = [(2J + 3)/6] + [1 + (−1)J+j ]/2

+ δ(J, j − 1) − [1 + (−1)j−J−1]/2.

If J < j − 1, the contributions of the second and fourth terms
on the r.h.s. either vanish (if J + j is odd) or cancel each other,
which completes the proof. The vanishing of the last three
terms on the r.h.s. of Eq. (9) also holds for J = j − 1. In that
case, the second term does not contribute, since there is no state
of two (j − 1) fermions with total spin j − 1 + j = 2j − 1.
The last two terms cancel each other.

In the other case, if J � j , Zhao and Arima found the
number of states N (J, j , 3) to be given by [(Jmax − J )/6] =
[(3j − 3 − J )/6] plus another term. The other term is equal to
0 if r, the remainder of dividing 3j − 3 − J by 6, is equal to 1
and is equal to 1 otherwise. The remainder may be defined by
6{(Jmax − J )/6 − [(Jmax − J )/6]}. It is the smallest integer r
defined by r ≡ Jmax − J (mod 6). The formula of Zhao and
Arima may thus be expressed by

[(3j − 3 − J )/6] + 1 − δ(6{(Jmax − J )/6

− [Jmax − J )/6]}, 1). (10)
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In the special case of J = j, Jmax − J = 2j − 3 is an even
number for any value of j, and Eq. (10) reduces to

[(2j − 3)/6] + 1 = [(2j − 3)/6 + 6/6] = [(2j + 3)/6],

as found by Ginocchio and Haxton [3].
Formula (10) will be now proved by induction with respect

to j. It holds for j = 3/2 as well as for several higher j values.
We assume that it holds for fermions with spin j − 1 and prove
that it holds also for fermions with spin j. This will prove it
for all values of j. In the case of n = 3, J > j , the recursion
relation (5) has only two terms with nonvanishing contribu-
tions. The second term on the r.h.s. of Eq. (5) vanishes, since
there is no state with spin J + j of two (j − 1) fermions. This
is the case also for the third term, since J is certainly higher
than a single fermion spin of j − 1. Hence,

N (J, j, 3) = N (J, j − 1, 3) + N (J − j, j − 1, 2).

The first term is equal, according to the assumption, to

[(3j − 6 − J )/6]

+ 1 − δ(6{(3j − 6 − J )/6 − [(3j − 6 − J )/6]}, 1)

= [(3j − J )/6] − δ(6{(3j − J )/6 − [(3j − J )/6]}, 1).

The second term is equal to 1 if J − j is even and to 0 if it is
odd, (1 + (−1)J−j )/2. The r.h.s. of Eq. (5) is then equal to

[(3j − J )/6] − δ(6{(3j − J )/6

− [(3j − J )/6]}, 1) + (1 + (−1)J−j )/2. (11)

To prove the equality of Eq. (11) and the Zhao and Arima
result (10), we define Jmax − J = 3j − 3 − J = 6k + r with
r < 6. The number of states (10) is then given by k + 1 −
δ(r, 1), which is equal to k for r = 1 and to k + 1 for all other
values of r. Since J − j may be expressed as 2j − 3 − 6k − r ,
the term (−1)J−j in Eq. (11) may be written as (−1)r , and
expression (11) can be written as

[1 + (−1)r ]/2 + k + [(r + 3)/6]

− δ(6{(r + 3)/6 − [(r + 3)/6]}, 1).

It is now possible to calculate Eq. (11) for the values r = 0
to r = 5 and to compare them with those obtained from
Eq. (10). This rather inelegant procedure yields the following
results. For r = 0 and r = 2 we obtain 1 + k. For r = 1 the
result is k. For r = 3 and r = 5 we get k + 1, and for k = 4,
1 + k + 1 − 1 = k + 1. These numbers are equal to those that
Eq. (10) yields, and, hence, expressions (10) and (11) are equal
in spite of their different appearance.

In their paper [1], Zhao and Arima also presented formulas
obtained empirically for states of four j fermions. In a recent
paper [2], they proved them. Using the recursion relations for
n = 4 and the formulas of Zhao and Arima for n = 3, the
explicit formulas for n = 4 may be obtained. Here, only the
case of J = 0 states will be discussed, and the value of N(0, j,
4) calculated. This is presented just as a simple application of
the recursion relation derived above. In view of Ref. [6], there
is no need for another derivation of this number, which was
first obtained by Ginocchio and Haxton [3].

Also here, we will use induction to show that, as mentioned
above,

N (0, j, 4) = N (j, j, 3) = [(2j + 3)/6]. (12)

This relation holds for j = 3/2 and, assuming that it holds for
j − 1, it will be shown to hold for j also. This will prove it for
any value of j. The recursion relation (7) becomes in this case

N (0, j, 4) = N (0, j − 1, 4) + N (j, j − 1, 3)

+ N (0, j − 1, 2) − N (j − 1, j − 1, 3).

According to the assumption, the first term is canceled by the
last one. The third term is equal to 1, while the second term, as
found in Ref. [1] and proved above, is equal to [(2j − 6)/6] +
1 − δ(6{2j/6 − [2j/6]}, 1). Thus,

N (0, j, 4) = [2j/6] + 1 − δ(6{2j/6 − [2j/6]}, 1).

To show that this expression is indeed equal to the r.h.s. of
Eq. (12), we define, as above, 2j = 6k + r, r < 6. With this
definition we obtain

N (0, j, 4) = k + 1 + [r/6] − δ(r, 1) = k + 1 − δ(r, 1).

(13)

The value of Eq. (13) for r = 1 is k, and for the other possible
values of r, which are 3 and 5, it is k + 1. The r.h.s. of Eq. (12)
is k + [(r + 3)/6], which is equal to k if r = 1 and to k + 1 if
r = 3 or r = 5. This proves equality (12) for all j values.

In any jn configuration there are higher J states that cannot
be present in the (j − 1)n configuration. These are states
with Jmax = n(2j + 1 − n)/2 and other states down to the
maximum J of n (j − 1)-fermions, which is equal to n(2j −
1 − n)/2. The number of such states may be obtained from
Eq. (5), where only the last term need not vanish. The rather
trivial result that there is only one state with Jmax is a direct
consequence of it. The value of Jmax − j is equal to the maxi-
mum value of J in the (j−1)n−1 configuration, namely, (j−1)n

n(2j + 1 − n)/2 − j = (n − 1)(2j − n)/2

= (n − 1){2(j − 1) + 1 − (n − 1)}/2.

This relation holds for any n < 2j . Since there is only one
state with Jmax in the case j = 1/2, this follows for all values
of j and n. Another trivial fact, the nonexistence of a state with
Jmax − 1 follows in the same way from Eq. (5) due to the states
nonexistence in the case j = 3/2.

More interesting is the result that two other states lower
than Jmax − 1 and higher than n(2j − 1 − n)/2 are unique in
jn configurations. These are the states with spins Jmax − 2 and
Jmax − 3. To prove this fact by induction, we limit n to be no
larger than (2j + 1)/2. The results hold for any value of n,
but the proof is simpler with this limitation [the middle of the
j orbit is different from the middle of the ( j − 1) orbit]. Also,
for these states only the last term in Eq. (5) may not vanish,
and if it is equal to 1 for the J − j state in the (j − 1) orbit, it is
also equal to 1 for the state with J in the j orbit. By inspection
we see that these states are unique in configurations with
n = 4 for any j (it is true also for n = 3, but for the state
with Jmax − 3 the first term in Eq. (5) equals 1, while the last
term vanishes). From Eq. (5) this fact follows for any value of
j and for any n value up to n = 2j + 1 − 3.
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In their paper [1], Zhao and Arima proved a very interesting
general result. The number of states with a high J with given
value of Jmax − J of n j fermions is equal to that of n bosons
with spin l, of states with total spin L with the value of Lmax −
L (Lmax = nl) equal to Jmax − J . In both cases this number
is independent of j or l. In the present paper it turned out to
be simpler to carry out the derivations by using fermions. The
results can also be applied to bosons for values of L that satisfy
the conditions determined in Ref. [1].

In the present paper a recursion relation is derived for the
number of antisymmetric states with a given value of J due
to coupling of states of n identical fermions in the j orbit.
Some applications of this relation were presented above. This
relation may be used to calculate these numbers in terms of
the numbers of states of fermions with spin j − 1. Starting
from these numbers of states with various J values in all (j −
1)n configurations, the recursion relations (5), (6), and (7)
determine these numbers for all jn configurations.
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