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Dynamical response of the nuclear “pasta” in neutron star crusts
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The nuclear pasta—a novel state of matter having nucleons arranged in a variety of complex shapes—is
expected to be found in the crust of neutron stars and in core-collapse supernovae at subnuclear densities of
about 1014 g/cm3. Owing to frustration, a phenomenon that emerges from the competition between short-range
nuclear attraction and long-range Coulomb repulsion, the nuclear pasta displays a preponderance of unique
low-energy excitations. These excitations could have a strong impact on many transport properties, such as
neutrino propagation through stellar environments. The excitation spectrum of the nuclear pasta is computed via
a molecular-dynamics simulation involving up to 100,000 nucleons. The dynamic response of the pasta displays
a classical plasma oscillation in the 1- to 2-MeV region. In addition, substantial strength is found at low energies.
Yet this low-energy strength is missing from a simple ion model containing a single-representative heavy nucleus.
The low-energy strength observed in the dynamic response of the pasta is likely to be a density wave involving
the internal degrees of freedom of the clusters.
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Baryonic matter is organized as a result of short-range
nuclear attraction and long-range Coulomb repulsion. Often
the corresponding nuclear and atomic length scales are well
separated, so nucleons bind into atomic nuclei that are
themselves segregated into a crystal lattice. However, at the
enormous densities present in astrophysical objects—densities
that exceed that of ordinary matter by 14 orders of magnitude—
these length scales become comparable and complex new
phenomena emerge. Complexity arises because it is impossible
for the constituents to be simultaneously correlated from
nuclear attraction and anticorrelated from Coulomb repulsion.
Competition among these interactions plays a fundamental
role in the organization of matter and results in Coulomb
frustration. Frustration—a ubiquitous behavior in complex
systems ranging from magnetism to protein folding to neural
networks—develops from the inability of a system to simulta-
neously satisfy all of its elementary interactions. For example,
the Ising antiferromagnet on a triangular lattice is frustrated
because not all of the nearest neighbor spins can be antiparallel
to each other. Frustrated systems have unusual dynamics owing
to the preponderance of low-energy excitations [1].

At subnuclear densities of about 1014 g/cm3 (normal nuclear
matter saturation density is 2.5 × 1014 g/cm3) Coulomb
frustration is expected to promote the development of complex
shapes. These shapes follow from the competition between
surface tension and Coulomb energies. Whereas surface
tension favors spherical shapes, Coulomb interactions often
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favor nonspherical configurations. Therefore, a variety of
complex structures with a diversity of shapes—such as
spheres, cylinders, and plates—have been predicted. The many
phases of nuclear matter displaying this variety of shapes are
known collectively as nuclear pasta. The complex dynamics
of the nuclear pasta is of relevance to the structure of the inner
crust of neutron stars and to the dynamics of core-collapse
supernovae [2].

There have been several calculations of the ground-state
shapes of the nuclear pasta [3]. However, to our knowledge
there have been almost no calculations of the dynamical
properties of the nuclear pasta. Some dynamical aspects of
nuclei in the inner crust of neutron stars were considered
by Magierski and Bulgac [4] while Khan, Sandulescu, and
Van Giai have calculated the excitation spectrum of pasta
in a random-phase approximation (RPA) [5]. They find a
low-energy collective oscillation of the neutron-rich skin of
the pasta. We note, however, that their use of a spherical
Wigner-Seitz unit cell may be a serious drawback in the
case of long-wavelength collective modes that can extend
across many unit cells. Here we are interested in the low-
momentum (long-wavelength) dynamic response of the pasta,
which we compute from a semiclassical molecular-dynamics
simulation containing up to 100,000 nucleons. As the response
of the nuclear pasta at low momentum transfers is dominated
by heavy clusters, their thermal de Broglie wavelength is
very small compared to the intercluster separation. This fact
motivates our semiclassical approach.

The nuclear pasta is a unique hybrid state consisting of
both atomic and nuclear matter. Therefore, the excitation
spectrum involves both atomic and nuclear modes that may
occur at similar energies. This allows for a unique mixing
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between atomic and nuclear excitations. For example, a
dense system of charged particles displays plasma oscillations
whereas nuclei exhibit collective density oscillations known
as giant resonances. Such a novel excitation spectrum may
strongly impact on a variety of transport properties, such as
thermal conductivity, viscosity, diffusion, and opacity. These
are all important for many neutron-star observables and could
influence the dynamics of core-collapse supernovae. Indeed,
in core-collapse supernovae—the giant explosions of massive
stars—99% of the energy of the explosion is radiated in
the form of neutrinos. In a previous work [6,7] we have
computed the static structure factor of the pasta and the
resulting neutrino mean free path that is dominated by coherent
scattering from the various pasta shapes. Here we extend our
previous work to study the excitation spectrum of the pasta
by computing its dynamical response. This may influence the
energy equilibration between matter and µ and τ neutrinos.
We note that many complex fluids, such as polymers, colloids,
water-surfactant-oil solutions, microemulsions, and liquid
crystals, display similar complex shapes (see, for example [8]).
Neutron and x-ray scattering from these systems probe these
complex shapes in a manner that is analogous to neutrino
scattering from nuclear pasta.

The nuclear pasta is described through a simple semiclas-
sical model that we have used earlier to compute its static
structure factor [6,7]. Here we are interested in computing its
dynamical response to neutrino scattering at low momentum
transfers. We model the nuclear pasta as a charge-neutral
system of neutrons, protons, and electrons. At the relevant den-
sities and temperatures of our simulations, the electrons form a
degenerate, relativistic Fermi gas that is not modeled explicitly.
Rather, the electrons modify the Coulomb interaction between
the protons through a screening length λ. Neutrons and protons
are described by the following semiclassical Hamiltonian:
H = K + ∑

i<j vij , where K represents the kinetic energy
for nucleons of mass m and the two-body potential is
given by

vij (r) = ae−r2/� + bij e−r2/2� + eiej

e−r/λ

r
. (1)

Here ei is the electric charge of the ith nucleon and the
parameters of the model are as follow: a = 110 MeV, bij =
−2 MeV for the interaction between either two neutrons or
two protons, bij = −50 MeV for the interaction between a
neutron and a proton, and � = 1.25 fm2. These parameters
have been fitted so that molecular dynamics simulations at
a temperature of 1 MeV reproduce a saturation density ρ =
0.16 fm−3 and a binding energy near −16 MeV [6]. These
are appropriate values for symmetric nuclear matter near zero
temperature. This is enough to reproduce the main features of
pasta formation, that matter clumps into clusters of appropriate
density. However, the clusters cannot be too large because of
the Coulomb interaction. Note that our semiclassical model
is not directly applicable at zero temperature. We keep the
value of the screening length fixed at λ = 10 fm to compare
with our earlier calculations. (This value is slightly smaller
than the Thomas-Fermi screening length of the electron gas.)
Watanabe and collaborators have computed static properties of
the nuclear pasta by performing quantum-molecular-dynamics

simulations with a more complicated interaction [9]. Our aim
here is to employ a “minimal model” that, by incorporating
both nuclear saturation and Coulomb repulsion, may capture
the essential features of frustration in a transparent fashion.

The differential cross section for neutrino scattering from
the nuclear pasta may be written as follows [6]:

dσ

d�dE
= G2

F E2
ν

4π2

[
c2
a(3 − x)SA(q, ω) + c2

v(1 + x)SV (q, ω)
]
,

(2)

where GF is the Fermi constant, Eν is the neutrino energy,
x = cos θ (with θ the scattering angle), and the weak vector
charge of a nucleon is cv = −1/2 for a neutron and cv ≈ 0
for a proton. Further, the dynamic response is probed at
a momentum transfer q and at an energy transfer ω. The
axial term involving ca = ±1.26/2 and the dynamical spin
response SA(q,w) will be discussed in a later work. Here we
focus exclusively on the vector (density) response S(q, ω) ≡
SV (q, ω), which should be greatly enhanced by coherent
effects.

The dynamical response of the system to a density pertur-
bation is given by

S(q, ω) = 1

π

∫ Tmax

0
S(q, t) cos(ωt)dt. (3)

Here S(q, t) represents the ensemble average of the density-
density correlation function that is computed as the following
time average:

S(q, t) = 1

N

1

Tave

∫ Tave

0
ρ(q, t + s)ρ(−q, s)ds. (4)

In this expression N is the number of neutrons in the system
and we discuss choices for Tmax and Tave in the following. Note
that to improve statistics, an angle average of Eq. (4) over
the direction of q has been performed. Finally, the one-body
neutron density is given by ρ(q, t) = ∑N

i=1 exp[iq · ri(t)] with
ri(t) the position of the ith neutron at time t. Note that because
cv ≈ 0 for protons, the sum over i runs only over neutrons.
Further, the static structure factor computed in Ref. [7] is
easily recovered from S(q) ≡ S(q, t = 0) = ∫ ∞

0 S(q, ω)dω.
S(q, ω) is now computed for conditions studied in an

earlier publication [7]. These include a fixed temperature
of T = 1 MeV, a proton-to-baryon fraction of Yp = 0.2, and
baryon densities of ρ = 0.01 fm−3 and ρ = 0.05 fm−3 (these
represent about 1/15 and 1/3 of normal nuclear density). Note
that during core-collapse supernovae, the proton fraction starts
near 1/2 and drops to about 0.1 owing to electron capture, so
Yp = 0.2 is a representative value. To fit a 10-MeV neutrino
with a 120-fm wavelength into the simulation volume, we must
include up to 100,000 nucleons in our molecular-dynamics
simulations. We start the first simulation by distributing
80,000 neutrons and 20,000 protons at random within the
simulation volume and with their velocities selected according
to a Maxwell-Boltzmann distribution at a temperature of
T = 1 MeV. At each time step of �t = 1−2 fm/c, Newton’s
equations of motion are integrated using a standard velocity
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FIG. 1. (Color online) The 0.03 fm−3 proton density isosurface
for one configuration of 100,000 nucleons at a baryon density of
0.05 fm−3. The simulation volume is a cube of 126 fm on a side.

Verlet algorithm [10]. This time step typically conserves
energy to at least one part in 104. The system is thermalized by
evolving for a time (28,000 fm/c), during which the velocities
are periodically rescaled to maintain the temperature fixed
at T = 1 MeV. To calculate S(q, ω) the system is evolved,
without any velocity rescaling [11], for a further time of
388, 000 fm/c= Tave + Tmax [see Eq. (4) and the following for
Tmax] during which the spatial configurations of all 100,000
nucleons are written to disk every 20 fm/c—for a total of
19,400 configurations. The simulations were performed on
four special-purpose accelerated MDGRAPE-2 boards [7,12]
with a combined performance of roughly 500 times that of a
single conventional CPU.

At any time during the simulation one may examine the
spatial correlations of the nuclear pasta. A typical proton
density is displayed in Fig. 1 at a density of ρ = 0.05 fm−3.
Although protons are seen to cluster into complex elongated
shapes, it is difficult to discern a single underlying structure
(e.g., spheres, cylinders, etc.). Although not shown, most of
the neutrons also cluster into these complex shapes. However,
in addition, there is a low-density neutron gas between the
clusters. The resulting dynamical response of the nuclear pasta
is shown in Fig 2. The choice of Tmax in Eq. (3) involves a
tradeoff. Tmax should be large enough to avoid truncation errors
and small enough to minimize statistical errors from S(q, t) at
large t. A Tmax of the order of 20,000 fm/c was used. We note
that at low momentum transfers the dynamical response shows
a peak just below ω = 1 MeV. This peak becomes broader with
increasing q. Further, there is substantial strength near ω = 0.
To interpret these peaks we calculate S(q, ω) at a lower density
and compare it to the corresponding response of a simplified
ion model [7].

A simulation at the lower density of ρ = 0.01 fm−3 (with
Yp = 0.2 and T = 1 MeV) reveals nucleons clustered into
more conventional neutron-rich nuclei rather than in complex
pasta shapes. At this density, thermalization is slower because
of the Coulomb barrier; it may take a long time to add protons
to a cluster. Therefore, a system of 40,000 nucleons initially
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FIG. 2. (Color online) The dynamical response function S(q, ω)
versus excitation energy ω at a density of ρ = 0.05 fm−3 and
momentum transfers of q = 0.05, 0.11, and 0.19 fm−1.

distributed at random had to be evolved for the very long
time of 1,287,000 fm /c. During this time the temperature of
the system was first raised and then lowered to the target
temperature of T = 1 MeV. Even so, we cannot rule out
a further increase in cluster size from evolution on even
longer time scales. To compute the dynamical response, the
system was evolved for another 720,000 fm/c while writing
configurations to disk every 20 fm/c, for a total of 36,000
configurations.

In Fig. 3 the response of the nuclear pasta is compared to
that of an ion model where the composition of the system is
assumed to be 28% free neutrons and Xh = 72% of a single
representative heavy ion of average mass A = 100 and charge
Z = 28. These numbers were obtained from counting nucleons
in the different clusters using a procedure described in Ref. [7].

FIG. 3. (Color online) The dynamical response function S(q, ω)
versus excitation energy ω at a density of ρ = 0.01 fm−3 and
momentum transfers of q = 0.04, 0.09, and 0.15 fm−1. The solid
lines show results for a 40,000-nucleon simulation; the dashed lines
are results for an ion model [see Eq. (5)] simulation with 288 ions.
For clarity the q = 0.09 fm−1 results have been multiplied by 10 and
the q = 0.15 fm−1 results by 100.
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The dynamical response is modeled as

Smodel(q, ω) = Xh〈N〉F (q)2Sion(q, ω), (5)

where Sion(q, ω) is the response of Z = 28 ions with only
screened Coulomb interactions, 〈N〉 = 72 is the average
number of neutrons in a cluster, and F (q) is the cluster form
factor, which is approximated as a uniform density sphere of
radius 6.68 fm and normalized to F (0) = 1 [7]. Sion(q, ω)
is computed from a molecular-dynamics simulation for a
system of 288 ions in the same volume as the 40,000-nucleon
simulation. The model response in Fig. 3 shows a single peak
from plasma oscillations with a width that increases with q.
This peak is also visible in the full nucleon response at low
q and as a broad shoulder at q = 0.15 fm−1. The location of
the peak is approximately described by the following known
expression for the plasma frequency [13]:

ωpl ≈ (4πZ2e2ρi/Mi)
1/2(1 + (qλ)−2)−1/2, (6)

where ρi is the ion density and Mi is the ion mass. The second
factor appearing in Eq. (6) is a crude RPA estimate of the
decrease in the plasma frequency resulting from the screening
length λ appearing in Eq. (1). However, note that the width
of the plasma oscillation in the nucleon simulation is much
larger than the width in the ion model. This may reflect a
coupling of the plasma oscillation to the internal degrees of
freedom of the clusters and/or failure of the single heavy-ion
approximation.

In addition, the full nucleon simulation shows a peak at
ω = 0 that is absent from the ion model. We speculate that
this mode may be associated with density fluctuations. A
liquid vapor coexistence region has large density fluctuations
as vapor is converted to or from liquid. Note that the energy
associated with transferring a neutron from the vapor to a
cluster is zero because the vapor is in equilibrium with the
condensed phase. Therefore, the system can support a density
wave with low excitation energy. In the nuclear pasta—a
system with two conserved quantities (baryon number and
electromagnetic charge)—these fluctuations are constrained
at long wavelengths by charge neutrality. However, the
system may still experience density fluctuations at finite q as
nucleons condense and evaporate from the individual clusters.
This density wave may represent a hallmark of frustrated,
multicomponent systems having more than one conserved
charge. Therefore, it is important to verify our semiclassical
results with full quantum calculations. The interpretation of
this ω = 0 mode as a density wave should also be verified in

future work. We believe our speculation is reasonable but this
needs to be checked.

Finally, we compare our results at ρ = 0.05 and 0.01 fm−3.
It is difficult to apply our ion model directly at a density of
ρ = 0.05 fm−3 because the masses and charges of the inter-
connected clusters are not well defined. The full simulation
results at ρ = 0.05 have a higher frequency plasma oscillation
compared to ρ = 0.01. Note, although the plasma frequency
depends on density, it may not be strongly modified by the
nonspherical cluster shapes that are present at high density.
The low omega mode, which is present at ρ = 0.01, is more
pronounced at ρ = 0.05.

Between densities of 0.01 and 0.05 fm−3, nonspherical
shapes appear. It is natural to ask how these shapes impact the
excitation spectrum. Plasma oscillations involve long-distance
classical physics. The electrostatic restoring force depends
only on the charge density. Therefore the plasma frequency
depends on the ratio of the ion charge density to mass as
indicated in Eq. (6). This ratio is independent of the shape
of the clusters. Extended shapes such as long rods could
also have nuclear contributions to the restoring force. This
could raise the oscillation frequency. However, between 0.01
and 0.05 fm−3 we find the ratio of the frequency of the q =
0.04 fm−1 peak in Fig. 3 to the q = 0.05 fm−1 peak in Fig. 2
to be in good agreement with Eq. (6). This suggests that the
nuclear contributions to the restoring force at a density of
0.05 fm−3 are small. Thus the plasma oscillations we find in the
pasta simulation are consistent with an electrostatic restoring
force only.

In conclusion, we have modeled the complex nuclear-pasta
phase via a semiclassical model that reproduces nuclear
saturation and includes Coulomb repulsion. The dynamical
response of the nuclear pasta is computed from molecular-
dynamics simulations with 40,000 and 100,000 nucleons.
We find that the nuclear pasta supports a plasma oscillation
with a frequency in the 1- to 2-MeV range. In addition,
the dynamical response displays a substantial amount of
strength at low energies, which we identify as a coherent
density wave involving the internal degrees of freedom of the
clusters.
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