
PHYSICAL REVIEW C 72, 035209 (2005)

Nucleon-sigma coupling constant in QCD sum rules
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The external-field QCD sum rules method is used to evaluate the coupling constant of the light isoscalar-scalar
meson (“σ” or ε) to the nucleon. The contributions that come from the excited nucleon states and the response
of the continuum threshold to the external field are calculated. The obtained value of the coupling constant is
compatible with the large value required in one-boson exchange potential models of the two-nucleon interaction.
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I. INTRODUCTION

The values of the meson-baryon coupling constants are
of particular interest in understanding the nucleon-nucleon
(NN) [1,2] and hyperon-nucleon (YN) [3,4] interactions in
terms of, e.g., one-boson exchange (OBE) models. The scalar
mesons play a significant role in such phenomenological
potential models. The structure and even the status of the
scalar mesons have, however, always been controversial [5,6].
In early OBE models for the NN interaction the exchange of
an isoscalar-scalar “σ” meson with a mass of about 500 MeV
was needed to obtain enough medium-range attraction and a
sufficiently strong spin-orbit force. It was only later understood
that the exchange of a broad isoscalar-scalar meson, the ε(760),
simulates the exchange of such a low-mass “σ” [7]. The
ε(760) is difficult to detect because it is broad and hidden
under the strong signal from the ρ0(770). There are strong
arguments from chiral symmetry for the existence of such a
light isoscalar-scalar meson approximately degenerate with
the ρ meson [8].

In the quark model, the simplest assumption for the
structure of the scalar mesons is the 3P0 qq̄ states. In this case,
the scalar mesons might form a complete nonet of dressed
qq̄ states, resulting from, e.g., the coupling of the P-wave
qq̄ states to meson-meson channels [9]. Explicitly, the unitary
singlet and octet states, denoted respectively by ε1 and ε8, read
as follows:

ε1 = (uū + dd̄ + ss̄)/
√

3,
(1)

ε8 = (uū + dd̄ − 2ss̄)/
√

6.

The physical states are mixtures of the pure SU(3)-flavor states
and are written as follows:

ε = cos θs ε1 + sin θs ε8,
(2)

f0 = − sin θs ε1 + cos θs ε8.
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For ideal mixing holds that tan θs = 1/
√

2 or θs � 35.3◦, and
thus one would identify

ε(760) = (uū + dd̄)/
√

2,
(3)

f0(980) = −ss̄.

The isotriplet member of the octet is a
±,0
0 (980), where

a0
0(980) = (uū − dd̄)/

√
2. (4)

An alternative and arguably more natural explanation for
the masses and decay properties of the lightest scalar mesons is
to regard these as cryptoexotic q2q̄2 states [10]. In the MIT bag
model, the scalar qq̄ states are predicted around 1250 MeV,
while the attractive color-magnetic force results in a low-lying
nonet of scalar q2q̄2 mesons [10,11]. This nonet contains a
nearly degenerate set of I = 0 and I = 1 states, which are
identified as the f0(980) and a

±,0
0 (980) at the K̄K threshold,

where

a0
0(980) = (sds̄d̄ − sus̄ū)/

√
2,

(5)
f0(980) = (sds̄d̄ + sus̄ū)/

√
2,

with the ideal-mixing angle tan θs = −√
2 or θs � −54.8◦ in

this case. The light isoscalar member of the nonet is as follows:

ε(760) = udūd̄. (6)

The nonet is completed by the strange member κ(880), which
like the ε(760) is difficult to detect because it is hidden under
the strong signal from the K∗(892) [5,6]. In keeping with other
recent works [12–14] we use in this article the nomenclature
(a±,0

0 , f0, σ, κ) for the scalar-meson nonet, where one should
identify σ = ε(760), but we do not rely on a particular
theoretical prejudice about the quark structure of the light
scalar mesons.

One way to make progress with the scalar mesons is to
study their role in the various two-baryon reactions (NN, YN,
YY). Our aim in this article is to calculate the nucleon-σ
coupling constant gNNσ by using the QCD sum rules (QCDSR)
method [15]. QCDSR links the hadronic degrees of freedom
with the underlying QCD parameters and serves as a powerful
tool to extract qualitative and quantitative information about
hadron properties [16,17]. In this framework, one starts with a
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correlation function that is constructed in terms of hadron inter-
polating fields. On the theoretical side, the correlation function
is calculated using the operator product expansion (OPE) in the
Euclidian region. This correlation function is matched with
an Ansatz that is introduced in terms of hadronic degrees of
freedom on the phenomenological side. The matching provides
a determination of hadronic parameters like baryon masses,
magnetic moments, coupling constants of hadrons, and so on.

The QCDSR method has been extensively used to inves-
tigate meson-baryon coupling constants. One usually starts
with the vacuum-to-vacuum matrix element of the correlation
function that is constructed with the interpolating fields of two
baryons and one meson. However, this three-point function
method has as a major drawback that at low momentum
transfer the OPE fails. Moreover, when the momentum of the
meson is large, the latter is plagued by problems with higher
resonance contamination [18]. A method that can be used
at low momentum transfer is the external-field method [19].
There are two formulations that can be used to construct
the external-field sum rules: The first one is to start with a
vacuum-to-vacuum transition matrix element of the nucleon
interpolating fields. In this approach, no vacuum-to-meson
matrix elements occur, but one has to know the response of the
various condensates in the vacuum to the external field, which
can be described by a susceptibility χ . This method has been
used to determine the magnetic moments of baryons [19–22],
the nucleon axial coupling constant [22,23], the nucleon sigma
term [24], and baryon isospin mass splittings [25]. In the
second approach, one starts with a vacuum-to-meson transition
matrix element of the nucleon interpolating fields, where some
other transition matrix elements should be evaluated [16].
(This is also the starting point of the light-cone QCDSR
method.) In Ref. [26], the pion-nucleon coupling constant
was calculated in the soft-meson limit using this approach.
Later it was pointed out that the sum rule for the pion-nucleon
coupling constant in the soft-meson limit can be reduced to
the sum rule for the nucleon mass by a chiral rotation, so the
coupling was calculated again with a finite meson momentum
[27]. These calculations were improved by considering the
coupling schemes at different Dirac structures and beyond
the chiral-limit contributions [28–31]. This coupling constant
has also been calculated using the vacuum-to-vacuum method
[32,33]. It was pointed out that the sum rule constructed for
the coupling is independent, and it does not reduce to the
nucleon-mass sum rule by a chiral rotation.

In this article, we calculate the nucleon-σ coupling constant
gNNσ by using the external-field QCDSR method. We evaluate
the vacuum-to-vacuum transition matrix element of the two-
nucleon interpolating fields in an external isoscalar-scalar
field and construct two sum rules, one of which leads to a
stable result with respect to variations in the Borel mass. We
also compute the contributions that come from the excited
nucleon states and the response of the continuum threshold
to the external field. Previously, the strong and weak (parity-
violating) pion-nucleon coupling constants [32,34] and the
coupling constants of the vector mesons ρ(770) and ω(782) to
the nucleon [35] were calculated by using this method.

We will compare our result for the coupling constant with
the value from a successful OBE model of the NN interaction,

the Nijmegen soft-core potential [1,2], which was originally
derived from Regge-pole theory. (The coupling constants of
this OBE model were analyzed from the point of view of the
large-Nc expansion of QCD in Ref. [36].) It is then important
to realize that in NN potential models the coupling constants
of the heavy mesons to the nucleon are determined by the
(“nonperipheral”) S, P , and D waves. Therefore, the fits to
the scattering data are sensitive to, e.g., the volume integral
of the OBE potentials, which is proportional to the coupling
at t = 0 [37] (t = −p2, where p is the four-momentum of the
meson). The coupling constants obtained from the external-
field QCDSR method are also defined at t = 0, and therefore
the comparison to the OBE model is appropriate.

Our article is organized as follows: In Sec. II we present the
formulation of QCDSR with an external isoscalar-scalar field
and construct the relevant sum rules. We give the numerical
analysis of the sum rules and discuss the results in Sec. III.
Finally, we arrive at our conclusions in Sec. IV.

II. NUCLEON SUM RULES IN AN
EXTERNAL SCALAR FIELD

In the external-field QCDSR method one starts with the
correlation function of the nucleon interpolating fields in
the presence of an external constant isoscalar-scalar field σ ,
defined by the following:

�σ (q) = i

∫
d4xeiq·x〈0|T [ηN (x)η̄N (0)]|0〉σ , (7)

where ηN is the Ioffe nucleon interpolating field [38]

ηN = εabc

[
uT

a Cγµub

]
γ5γ

µdc. (8)

Here a, b, and c denote the color indices and T and C
denote transposition and charge conjugation, respectively. The
external scalar field contributes to the correlation function
in Eq. (7) in two ways: First, it directly couples the quark
field in the nucleon current and, second, it modifies the
condensates by polarizing the QCD vacuum. In the presence
of an external scalar field there are no correlators that
break Lorentz invariance, such as 〈q̄σµνq〉 which appears in
the case of an external electromagnetic field Fµν . However,
the correlators already existing in the vacuum are modified
by the external field, viz.

〈q̄q〉σ ≡ 〈q̄q〉 + gσ
q χσ 〈q̄q〉,

(9)
〈gcq̄σ · Gq〉σ ≡ 〈gcq̄σ · Gq〉 + gσ

q χGσ 〈gcq̄σ · Gq〉,
where g

q
σ is the quark-σ coupling constant and, χ and χG

are the susceptibilities corresponding to quark and mixed
quark-gluon condensates, respectively. We have assumed that
the responses of the up and the down quarks to the external
(isoscalar) field are the same.

In the Euclidian region, the OPE of the product of two
interpolating fields can be written as follows:

�σ (q) =
∑

n

Cσ
n (q)On, (10)

where Cσ
n (q) are the Wilson coefficients and On are the local

operators in terms of quark and gluon fields. At the quark level,
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we have the following:

〈0|T [ηN (x)η̄N (0)]|0〉σ =2iεabcεa′b′c′
Tr

{
Sbb′

u (x)γνC
[
Saa′

u (x)
]T

×Cγµ

}
γ5γ

µScc′
d (x)γ νγ5. (11)

To calculate the Wilson coefficients, we need the quark propa-
gator in the presence of the external sigma field. In coordinate
space the full quark propagator takes the following form:

Sq(x) = S(0)
q (x) + S(σ )

q (x), (12)
where

iS(0)ab
q ≡ 〈0|T [qa(x)q̄b(0)|0〉0

= iδab

2π2x4
x̂ − iλn

ab

32π2

gc

2
Gn

µν

1

x2
(σµνx̂ + x̂σµν)

− δab

12
〈q̄q〉 − δabx2

192
〈gcq̄σ · Gq〉, (13)

and

iS(σ )ab
q ≡ 〈0|T [qa(x)q̄b(0)|0〉σ

= gσ
q σ

[
− δab

4π2x2
− 1

32π2
λn

abgcG
n
µνσ

µν ln(−x2)

− δab
〈
g2

cG
2
〉

29 × 3π2
x2 ln(−x2) + iδab

48
〈q̄q〉x̂ − δabχ

12
〈q̄q〉

+ iδabx2

27 × 32
〈gcq̄σ · Gq〉x̂ − δabx2

192
χG〈gcq̄σ · Gq〉

]
.

(14)

In these expressions, Gµν is the gluon field tensor and g2
c =

4παs is the quark-gluon coupling constant squared. We do
not include terms that are proportional to the quark masses,
because these terms give negligible contributions to the final
result.

Using the quark propagator in Eq. (12), one can compute
the correlation function �σ (q). The diagrams that we use
to calculate the Wilson coefficients of �σ (q) are shown in
Fig. 1. Lorentz covariance and parity imply that �σ (q) takes
the following form:

�σ (q) = (
�1

σ + �q
σ q̂

)
σ + �1

0 + �
q

0 q̂, (15)

where q̂ = qµγµ. Here �1
0 and �

q

0 represent the invariant
functions in the vicinity of the external field, which can be
used to construct the mass sum rules for the nucleon, and �1

σ

and �
q
σ denote the invariant functions in the presence of the

external field. Using these invariant functions, one can derive
the sum rules at the structures 1 and q̂. �q

σ and �1
σ are evaluated

as follows:

�q
σ (q) = gσ

q

1

(2π )4

[
aq ln(−q2) − χ

4

3q2
a2

q

+ m2
0

2q2
aq − (χ + χG)

m2
0

6q4
a2

q

]
, (16)

and

�1
σ (q) = gσ

q

1

(2π )4

[
−q4

2
ln(−q2) − 10

3q2
a2

q − χaqq
2 ln(−q2)

+χG

m2
0

2
aq ln(−q2) + b

8
ln(−q2) − χ

b

24q2
aq

]
,

(17)

where we have defined aq ≡ −(2π )2〈q̄q〉, b ≡ 〈g2
cG

2〉, and
m2

0 ≡ 〈gcq̄σ · Gq〉/〈q̄q〉.
We now turn to the calculation of the hadronic side. We

saturate the correlator in Eq. (7) with nucleon states and write
the following:

�σ (q) = 〈0|ηN |N〉
q2 − M2

N

〈N |σN〉 〈N |η̄N |0〉
q2 − M2

N

, (18)

where MN is the mass of the nucleon. The matrix element of
the current ηN between the vacuum and the nucleon state is
defined as follows:

〈0|ηN |N〉 = λNv, (19)

where λN is the overlap amplitude and v is the Dirac spinor
for the nucleon, normalized as v̄v = 2MN . Inserting Eq. (19)
into Eq. (18) and defining gNNσ via the interaction Lagrangian
density

L = −gNNσ N̄Nσ , (20)

we obtain for the hadronic part

−|λN |2 q̂ + MN

q2 − M2
N

gNNσ

q̂ + MN

q2 − M2
N

. (21)

In addition, there are contributions coming from the
excitations to higher nucleon states which are written as
follows:

−λNλN∗
q̂ + MN

q2 − M2
N

gNN∗σ
q̂ + MN∗

q2 − M2
N∗

, (22)

as well as contributions coming from the intermediate states
because of σ -N scattering, i.e., the continuum contributions.
The term that corresponds to the excitations to higher nucleon
states also has a pole at the nucleon mass, but a single pole
instead of a double one as in Eq. (21). This single-pole term
is not “damped” after the Borel transformation and should be
included in the calculations.

Finally, there is another contribution that comes from the
response of the continuum to the external field, given by the
following: ∫ ∞

0

−�s0b(s)

s − q2
δ(s − s0)ds, (23)

where s0 is the continuum threshold, �s0 is the response of the
continuum threshold to the external field, and b(s) is a function
that is calculated from the OPE. When �s0 is large, this term
should also be included in the hadronic part [39].

The QCD sum rules are obtained by matching the OPE side
with the hadronic side and applying the Borel transformation.
The resulting sum rules are as follows:[

−M4aqE0 + 4

3
χM2a2

q L4/9 − m2
0

2
M2aq L−14/27

− (χ + χG)
m2

0

6
a2

qL
−2/27

]
eM2

N /M2

= −λ̃2
N

MN

gσ
q

gNNσ + B̃q

M2

gσ
q

+
(
s
q

0

)2

2gσ
q

�s
q

0 M2L−4/9e(M2
N −s

q

0 )/M2
,

(24)
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(a) (b1) (b2) (b3) (c1)

(c2) (c3) (d1) (d2) (d3)

(d4) (d5) (d6) (d7) (d8)

(e1) (e2) (e3) (e4) (f1)

(f2) (f3) (g)

FIG. 1. The diagrams that
were used to calculate the Wil-
son coefficients of the correlation
functions �q

σ and �1
σ . The solid,

wavy, and the dashed lines rep-
resent the quark, gluon, and the
external scalar field, respectively.

and[
2 M8 E2 L−4/9 + 20

3
M2 a2

q L4/9 + 2χaqM
6E1 − χGm2

0aq

×M4E0L
−14/27 − b

4
M4E0 L−4/9 + χ

b

12
M2aq

]
eM2

N /M2

= −(
2M2

N − M2) λ̃2
N

gσ
q

gNNσ + B̃1
M2

gσ
q

+ 4

gσ
q

aqs
1
0�s1

0M
2e(M2

N −s1
0 )/M2

, (25)

where M is the Borel mass and we have defined λ̃2
N = 32π4λ2

N .
The continuum contributions are included by the following
factors:

E0 ≡ 1 − e−si
0/M

2
,

E1 ≡ 1 − e−si
0/M

2

(
1 + si

0

M2

)
, (26)

E2 ≡ 1 − e−si
0/M

2

(
1 + si

0

M2
+

(
si

0

)2

2M4

)
,

where si
0 are the continuum thresholds with i = 1, q. In the sum

rules above, we have included the single-pole contributions
with the factors B̃i . The third terms on the right-hand

side (RHS) of Eqs. (24) and (25) denote the contributions
that are explained in Eq. (23). These terms are suppressed
by the factor e−(si

0−M2
N )/M2

as compared to the single-pole
terms. We have incorporated the effects of the anomalous
dimensions of the various operators through the factor L =
ln(M2/�2

QCD)/ ln(µ2/�2
QCD).

III. ANALYSIS OF THE SUM RULES AND DISCUSSION

In this section we analyze the sum rules derived in the
previous section to determine the value of gNNσ . We observe
that the sum rule in Eq. (24) is more stable than the other
sum rule in Eq. (25), so we use only this sum rule for
the numerical analysis. Such a comparison and conclusion
have been made about these sum rules also in some earlier
works [24,25].

To calculate gNNσ , we need to know the values of the scalar
susceptibilities χ and χG. The value of the susceptibility χ

can be calculated by using the two-point function [24]

T (p2) = i

∫
d4xeip·x〈0|T [ū(x)u(x) +d̄(x)d(x), ū(0)u(0)

+ d̄(0)d(0)]|0〉, (27)
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via the relation

χ〈q̄q〉 = 1
2T (0). (28)

The two-point function in Eq. (27) at p2 = 0 has been
calculated in chiral perturbation theory [40] with the result

χ = 〈q̄q〉
16π2f 4

π

(
2

3
�̄1 + 7

3
�̄2 − 11

6

)
, (29)

where fπ = 93 MeV is the pion decay constant and �̄1 and
�̄2 are low-energy constants appearing in the effective chiral
Lagrangian. The values of these low-energy constants have
been estimated previously in various works (see, e.g., Ref. [41]
for a review). A recent analysis of π − π scattering gives �̄1 =
−1.9 ± 0.2 and �̄2 = 5.25 ± 0.04 [41], which is consistent
with earlier determinations, but with smaller uncertainties.
Using these values of �̄1 and �̄2 and taking the quark
condensate aq = 0.51 ± 0.03 GeV3, we find χ = −10 ±
1 GeV−1. The value of the susceptibility χG is less certain.
Therefore, we allow χG to vary in a wider range. We
also adopt b = 4.7 × 10−1 GeV4, λ̃2

N = 2.1 GeV6, and m2
0 =

0.8 GeV2 [19,42]. We take MN = 0.94 GeV, the renormaliza-
tion scale µ = 0.5 GeV, and the QCD scale parameter �QCD =
0.1 GeV. It is relevant to point out that the choice of the
two-point function in Eq. (27) does not imply a theoretical
prejudice about the structure of the scalar mesons. What is
calculated is just the susceptibility pertaining to the response
of the quark condensates 〈q̄q〉 to the scalar qq̄ field, as shown
in Eq. (9).

To proceed to the numerical analysis, we arrange the RHS
of Eq. (24) in the form

f (M2) = Aq + BqM
2 + CqM

2L−4/9e(M2
N −s

q

0 )/M2
, (30)

and fit the left-hand side (LHS) to f (M2). Here we have
defined

Aq ≡ −λ̃2
N

MN

gσ
q

gNNσ ,

Bq ≡ B̃q

gσ
q

, (31)

Cq ≡
(
s
q

0

)2

2gσ
q

�s
q

0 .

In Fig. 2, we present the Borel mass dependence of the
LHS and the RHS of Eq. (24) for s

q

0 = 2.3 and χG ≡ χ =
−10 GeV−1. We choose the Borel window 0.8 GeV2 �
M2 � 1.4 GeV2, which is commonly identified as the fiducial
region for the nucleon mass sum rules [19]. It is seen that
the LHS curve (solid) overlies the RHS curve (dashed). To
estimate the contributions that come from the excited nucleon
states and the response of the continuum threshold, we plot
each term on the RHS individually. We observe that the
single-pole terms (dotted) give very small contribution, but
the response of the continuum threshold (dot-dashed) is quite
sizable. Nevertheless, the summation of these curves with the
line of the double-pole term (small-dashed) gives a stable sum
rule.

CqM2e(M
2
N−s

q
0)/M2
BqM2

Aq

RHS
LHS

M2 (GeV 2)

G
eV

7

1.41.210.8

0

-5

-10

-15

FIG. 2. (Color online) The Borel mass dependence of LHS and
the fitted RHS of Eq. (24) for s

q

0 = 2.3 GeV2 and χG ≡ χ =
−10 GeV−1. We also present the terms on the RHS individually.
Note that the LHS curve (solid) overlies the RHS curve (dashed).

In Fig. 3, we plot the Borel mass dependence of the
four terms on the LHS of Eq. (24) separately, together
with their summation for s

q

0 = 2.3 GeV2 and χG ≡ χ =
−10 GeV−1. This helps us to compare the contributions of
different operators on the OPE side. Here O1 denotes the first
term, O2 denotes the second term, and so on. We observe that
O1 and O3 are small, O4 is sizable, and O2 is large. The term
O4 contributes with different sign with respect to O1 and O3

and so tends to cancel the latter. Therefore gNNσ is mainly
determined by O2 on the LHS.

To see the sensitivity of the coupling constant on the
continuum threshold and the susceptibility χ , we plot in
Fig. 4 the dependence of gNNσ /gσ

q on χ for three different
values s

q

0 = 2.0, 2.3, and 2.5 GeV2 and taking χ ≡ χG. One
sees that gNNσ changes by approximately 8% in the considered
region of the susceptibility χ . The value of gNNσ is not very
sensitive to a change in s

q

0 , which gives an uncertainty of
approximately 6% to the final value. Taking into account the
uncertainty in χ, s

q

0 , and aq , the predicted value for gNNσ /gσ
q

O4

O3

O2

O1

LHS

M2 (GeV 2)

G
eV

7

1.41.210.8

5

0

-5

-10

-15

FIG. 3. (Color online) The four terms on the LHS of Eq. (24)
individually, together with the summation of them for s

q

0 = 2.3 GeV2

and χG ≡ χ = −10 GeV−1. Here O1 denotes the first term, O2

denotes the second term, and so on.
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s0 = 2.5

s0 = 2.3
s0 = 2.0

χ (GeV −1)

g N
N
σ
/g

σ q

-9-10-11

6

5

4

FIG. 4. (Color online) The dependence of gNNσ /gσ
q on the

susceptibility χ for three different values of s
q

0 = 2.0, 2.3, and
2.5 GeV2; here we take χ ≡ χG.

of the sum rule in Eq. (24) reads

gNNσ

/
gσ

q = 3.9 ± 1.0. (32)

In a similar way, one can calculate the other two terms on
the RHS of Eq. (24) as:

Bq = −0.2 ± 1.2 GeV5,
(33)

Cq = −7.9 ± 2.9 GeV5.

As noted above, the value of the susceptibility χG is less certain
than the value of χ . If we let χG change in a wider range, say
6 GeV−1 � − χG � 14 GeV−1, this brings an additional 15%
uncertainty to the value quoted in Eq. (32).

The ratio in Eq. (32) is in agreement with the naive quark
model, which gives gNNσ /gσ

q = 3 based on counting the u
and the d quarks in the nucleon. (Ideal mixing in the scalar
sector is assumed above, that is, the sigma meson is taken
without a strange-quark content.) Another estimate can be
made from the ratio of pion-nucleon to pion-quark coupling
constant, gNNπ/gπ

q . Because the σ meson is the chiral partner
of the pion [8], one expects

gNNσ

/
gσ

q = gNNπ

/
gπ

q . (34)

Using the Goldberger-Treiman relation for both the pion-
nucleon and the pion-constituent quark couplings,

gNNπ = gA
N

MN

fπ

,

(35)
gπ

q = gA
q

mq

fπ

,

where mq is the mass of the constituent quark, gA
N and gA

q are
the nucleon and the quark axial couplings, respectively, one
obtains [43]

gNNπ

gπ
q

= 5

3

MN

mq

. (36)

With a constituent-quark mass of 340 MeV [43], Eq. (36)
yields gNNπ/gπ

q = 4.6. Using Eq. (34) we find that this agrees
nicely with the QCDSR result in Eq. (32).

To determine gNNσ , one next has to adopt some value for the
quark-σ coupling constant gσ

q . Taking the value gσ
q = 3.7 as

estimated from the sigma model [44], we obtain the following:

gNNσ = 14.4 ± 3.7. (37)

The coupling constant in Eq. (37) is defined at t = 0, i.e.,
gNNσ ≡ gNNσ (t = 0). As stressed above, also in NN potential
models the heavy-meson coupling constants are determined
at t = 0. The (large) value of gNNσ obtained in Eq. (37) is
in agreement with the value gNNσ = 16.9 from the Nijmegen
soft-core NN potential model [1], obtained from a fit to the
NN scattering data.

IV. CONCLUSION

We have calculated the coupling constant gNNσ of the
isoscalar-scalar meson, which plays a significant role in OBE
models of the NN and YN interactions, to the nucleon, using
the external-field QCDSR method. Our main result is the
ratio gNNσ /gσ

q in Eq. (32), which is determined purely from
QCDSR. The value of gNNσ is dependent on gσ

q , the value of
which we use as estimated in the sigma model. The obtained
value of gNNσ is in agreement with the large value found in
OBE models. We have also computed the contributions that
come from the excited nucleon states and the response of the
continuum threshold to the external field. We observe that
although the single-pole contributions are small, the response
of the continuum threshold is sizable. We plan to extend
the external-field QCDSR method to the hyperons and the
complete scalar-meson nonet, to address the SU(3)-flavor
structure of the scalar-meson coupling constants to the baryon
octet [45].
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