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Mass of the nucleon in a chiral quark-diquark model
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The mass of the nucleon is studied in a chiral quark-diquark model. Both scalar and axial-vector diquarks are
taken into account for the construction of the nucleon state. After the hadronization procedure is used to obtain
an effective meson-baryon Lagrangian, the quark-diquark self-energy is calculated to generate the baryon kinetic
term as well as determine the mass of the nucleon. It turns out that both the scalar and axial-vector parts of the
self-energy are attractive for the mass of the nucleon. We investigate the range of parameters that can reproduce
the mass of the nucleon.
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I. INTRODUCTION

An effective Lagrangian approach is an useful method for
the description of hadron properties at low energies. Such a
Lagrangian contains various terms and parameters expressing
not only structures of mesons and baryons but also their
interactions. A microscopic description for such terms is
desired, especially when we consider, for instance, character
changes of hadrons at finite temperatures and densities, which
is one of the interesting topics of current hadron physics.

Eventually, QCD should address this issue, but the present
situation is not very satisfactory. If we start, however, from an
intermediate QCD-oriented theory, we can make reasonably
good progress. One such approach is the Nambu-Jona-Lasinio
(NJL) model [1–3] for mesons and the quark diquark model
for mesons and baryons [4,5]. The models have been tested
to a great extent for the description of various meson and
baryon properties. It has been shown that the hadronization
method based on the path-integral formalism is useful, because
it can incorporate hadron structure in terms of quarks and
diquarks while respecting important symmetries such as the
gauge and chiral symmetries. This idea was first investigated
by Cahill [6] and Reinhardt [7], and then by Ebert and Jurke in
a simplified framework [4], which was later elaborated upon by
Abu-Raddad et al. [5]. Recently, the method was applied also
to the nuclear force by the present authors [8]. Nonetheless,
these previous studies were done only with the scalar diquark,
though the construction of the baryon requires two types of
diquarks: scalar and axial-vector ones. The inclusion of the
axial-vector diquarks is crucially important for the description
of spin-isospin quantities, such as the axial coupling constant
gA and isovector magnetic moment µ of the nucleon, and also
the nuclear force.

In this paper, we extend our previous study and calculate
the nucleon mass with the inclusion of the axial-vector
diquark. This is a necessary step to complete the program
of the hadronization method. It is shown that, by choosing
suitable parameters, the mass of the nucleon is reproduced
with the same significant amount of the axial-vector diquark
component, which will help improve observables such as gA

and isovector magnetic moment.

The paper is organized as follows. In Sec. II, we con-
struct a microscopic (quark-diquark) Lagrangian and derive
the macroscopic (meson-baryon) Lagrangian through the
hadronization of the microscopic Lagrangian. In Sec. III, we
study the quark-diquark self-energy and calculate the mass of
the nucleon. In Sec. IV, we present numerical results. The final
section is devoted to summary and conclusions.

II. LAGRANGIAN

We briefly review the method to derive the effective meson-
baryon Lagrangian following the work of Abu-Raddad et al.
[5]. Let us start from the SU(2)L × SU(2)R NJL Lagrangian

LNJL = q̄(i/∂ − m0)q + G

2
[(q̄q)2 + (q̄iγ5 �τq)2], (2.1)

where q is the current quark field, τa(a = 1, 2, 3) is the flavor
Pauli matrices, G is the NJL coupling constant with dimension
of (mass)−2, and m0 is the current quark mass. In this paper, we
set m0 = 0 for simplicity. The NJL Lagrangian is bosonized
by introducing collective meson fields as auxiliary fields in
the path-integral method. As an intermediate step, we find the
following Lagrangian:

L′
qσπ = q̄(i/∂ − g(σ + iγ5 �τ · �π)) q − g2

2G
(σ 2 + �π2). (2.2)

Here σ and �π are properly normalized scalar-isoscalar sigma
and pseudoscalar-isovector pion fields as generated from σ ∼
q̄q and �π ∼ iq̄ �τγ5q, respectively, and g is a meson-quark
coupling constant.

For our purpose, it is convenient to work in the nonlinear
basis [4,9,10]. First, the meson fields are expressed as

σ + iγ5 �τ · �π = f exp

(
− i

Fπ

γ5 �τ · ��
)

, (2.3)

where f and � are new meson fields in the nonlinear basis
and f 2 = σ 2 + �π2. Spontaneous breaking of chiral symmetry
is realized when f takes a nonzero vacuum expectation value
〈f 〉 = Fπ , which is identified with the pion decay constant
∼93 MeV, generating the constituent quark mass dynamically,
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mq = gFπ [11]. The nonlinear Lagrangian is, then, achieved
by chiral rotation from the current (q) to constituent (χ ) quark
fields:

χ = ξ
†
5q, ξ5 = exp

(
i

2Fπ

γ5 �τ · ��
)

. (2.4)

Thus we find

L′
χσπ = χ̄(i/∂ − mq − /v − /aγ5)χ − 1

2G
f 2, (2.5)

where

vµ = 1
2i

(ξ †∂µξ + ξ∂µξ †), aµ = 1
2i

(ξ †∂µξ − ξ∂µξ †) (2.6)

are the vector and axial-vector currents written in terms of the
chiral field

ξ = exp

(
i

2Fπ

�τ · ��
)

. (2.7)

The Lagrangian (2.5) describes not only the kinetic term of the
quark but also quark-meson interactions such as the Yukawa
and the Weinberg-Tomozawa types among others.

For the description of baryons, we introduce diquarks and
their interactions with quarks. We assume local interactions
between a quark and a diquark to generate the nucleon field.
As suggested previously [12], we consider two diquarks; one
is a Lorentz scalar, of isoscalar color 3̄, denoted by D, and
the other is an axial-vector, of isovector color 3̄,Dµ. The
ground-state nucleon is then described as a superposition of the
bound state of a quark and scalar diquark (≡ scalar channel)
and the bound state of a quark and axial-vector diquark (≡
axial-vector channel). Hence, our microscopic Lagrangian for
quarks, diquarks, and mesons is given by [5]

L = χ̄ (i/∂ − mq − /v − /aγ5)χ − g2

2G
f 2 + D†(∂2 + M2

S

)
D

+ �D† µ
[(

∂2 + M2
A

)
gµν − ∂µ∂ν

] �Dν

+ G̃(sin θχ̄γ µγ 5 �τ · �D†
µ + cos θ χ̄D†)

× (sin θ �Dν · �τ γ νγ 5χ + cos θDχ ). (2.8)

In the last term G̃ is a coupling constant for the quark-diquark
interaction and an angle θ controls the mixing ratio of the scalar
and axial-vector channels in the nucleon wave function. In this
construction, we have assumed a local interaction between the
quark and diquarks. This stems from, for instance, the static
limit of a quark exchange between a quark and a diquark as
shown in Fig. 1. In this case, owing to the spin-flavor-color
structure, the interactions become attractive both for the scalar
and axial-vector diquark channels. In Eq. (2.8), a positive

1
/ q − m

m >> q
1
m

FIG. 1. The quark exchange diagram (left) in the Faddeev
approach [13,14] and its static limit (right).

G̃ guarantees an attractive interaction, which is the case we
consider.

The hadronization procedure is straightforward: First, a
baryon field is introduced as an auxiliary field B ∼ sin θ �Dν ·
�τγ νγ5χ + cos θDχ , then the quark and diquark fields in
Eq. (2.8) are eliminated. The final result is written in a compact
form as [5]

Leff = − 1

2G
f 2 − i tr ln(i/∂ − mq − /v − /aγ5)

− 1

G̃
B̄B + i tr ln(1 − �), (2.9)

where traces are taken over space-time, color, flavor, and
Lorentz indices, and the operator � is defined by

� =
( A F2

F1 S

)
, (2.10)

with

Aµi, νj = sin2θB̄ γργ
5 τk �̃ρk, µi Sτ jγ νγ 5B, (2.11a)

S = cos2θ B̄ �SB, (2.11b)

(F1)νj = sin θ cos θ B̄�Sτjγ νγ 5B, (2.11c)

(F2)µi = sin θ cos θ B̄ �̃ρk,µi γργ
5τkSB. (2.11d)

The S,�, and �̃ are the quark, scalar diquark, and axial-vector
diquark propagators, respectively. The tr log can be expanded
as

tr ln(1 − �) = −tr

(
� + �2

2
+ · · ·

)
. (2.12)

The first term on the right-hand side describes one-particle
properties of the nucleon, as it contains the nucleon bilinear
form B̄
B; higher order terms describe interactions for two,
three, and more nucleons.

Finally, we comment on the properties of the nucleon field.
Since we take the nonlinear representation, the transforma-
tion properties of baryons under chiral SU(2)L× SU(2)R are
simple. Baryons transform in the same way as quarks do:

χ → χ ′(x) = h(x)χ (x), B(x) → B ′(x) = h(x)B(x),
(2.13)

where h(x) is the nonlinear function of the chiral transforma-
tions and of the chiral field at a point x [10]. Here we note
that the baryon field B(x), in terms of quarks and diquarks, is
related to the nucleon wave function in the constituent quark
model by way of

Dχ = 2φρχρ, (2.14)

�Dν · �τγ νγ5χ = 6φλχλ, (2.15)

in the nonrelativistic limit, where φρ, φλ and χρ, χλ are the
standard three-quark spin and isospin wave functions [10].
If we take tan θ = 1/3, we realize the SU(4) spin-flavor
symmetry of the constituent quark model.
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FIG. 2. A diagrammatic representation of the quark-diquark self-
energy. The single, double, and triple lines represent the quark,
diquark, and nucleon, respectively.

III. THE QUARK-DIQUARK SELF-ENERGY

In the first-order term with respect to � of Eq. (2.12), the
quark-diquark self-energy corresponding to Fig. 2 is given by

L0 = −i tr
[
S + Aµν

ij

] − 1

G̃
B̄B. (3.1)

Using the interaction terms in Eqs. (2.11), we obtain

L0 = cos2 θB̄(p)�S(p)B(p)

+ sin2 θB̄(p)�A(p)B(p) − 1

G̃
B̄B, (3.2)

where �S(p) and �A(p) are the nucleon self-energies cor-
responding to the scalar and axial-vector diquark channels,
respectively,

�S(p) = −iNc

∫
d4k

(2π )4

1

k2 − M2
S

/p − /k + mq

(p − k)2 − m2
q

, (3.3a)

�A(p) = −iNc

∫
d4k

(2π )4

kµkν
/
M2

A − gµν

k2 − M2
A

× δij γνγ5τj

/p − /k + mq

(p − k)2 − m2
q

τiγµγ5. (3.3b)

These are divergent; �S(p) is logarithmically and �A(p)
quadratically divergent. In the previous works, we employed
the Pauli-Villars regularization to keep the divergences finite.
In the present work, however, we shall employ the three-
momentum cutoff method, since the Pauli-Villars method is
not appropriate to regularize the quadratic divergence in �A.
The quadratic nature necessarily requires two independent
cutoff parameters in the Pauli-Villars method, whereas it
is sufficient to introduce a single cutoff parameter in the
three-momentum cutoff scheme.

In the rest frame of the nucleon [i.e., p = (p0, �0)], the self-
energies as functions of p0 can be written as, after integrating
Eqs. (3.3) over k0,

�S(p0) = �0
S(p0) + �1

S(p0)γ0,
(3.4)

�A(p0) = �0
A(p0) + �1

A(p0)γ0,

where the coefficients are given as

�0
S(p0) = −Nc

∫ �

0

k2dk

2π2

{
mq

2e1
[
(p0 + e1)2 − e2

2

]
+ mq

2e2
[
(p0 − e2)2 − e2

1

]
}

,

�1
S(p0) = −Nc

∫ �

0

k2dk

2π2

{
−e1

2e1
[
(p0 + e1)2 − e2

2

]
+ (p0 − e2)

2e2
[
(p0 − e2)2 − e2

1

]
}

(3.5)

and

�0
A(p0) = −Nc �τ 2

M2
A

∫ �

0

k2dk

2π2

{
3mqM

2
A

2e3
[
(e3 − p0)2 − e2

1

]
+ 4mqM

2
A − mq[(p0 + e1)2 − �k2]

2e1
[
(p0 + e1)2 − e2

3

]
}

,

(3.6)

�1
A(p0) = −Nc �τ 2

M2
A

∫ �

0

k2dk

2π2

{
−3e3M

2
A + p0M

2
A + 2e2

3p0

2e3
[
(e3 − p0)2 − e2

1

]
+ −2e1M

2
A − e1(p0 + e1)2 + (2p0 + e1)�k2

2e1
[
(p0 + e1)2 − e2

3

]
}

.

In these equations Nc is the number of colors, and e1 =√
�k2 + m2

q, e2 =
√

�k2 + M2
S, e3 =

√
�k2 + M2

A .
Physical nucleon fields are defined such that the self-energy

becomes the nucleon propagator on the nucleon mass shell.
This condition is implemented by expanding the self-energy
around p0 = MN :

B̄

(
cos2 θ�S(p0) + sin2 θ�A(p0) − 1

G̃

)
B

= Z−1B̄(p0γ
0 − MN )B

= B̄phys(p0γ
0 − MN )Bphys, (3.7)

where Bphys =
√

Z−1B is the properly normalized physical
nucleon field. The parameters Z and MN are the wave-function
renormalization constant and the mass of the nucleon. The
parameters Z,MN , and G̃ are determined by the following
conditions:

Z−1 = ∂�(p0)

∂p0

∣∣∣∣
p0→MN

= cos2 θ
∂�S(MN )

∂p0
+ sin2 θ

∂�A(MN )

∂p0
, (3.8)

G̃ = (cos2 θ�S(MN ) + sin2 θ�A(MN ))−1. (3.9)

Therefore, we obtain the mass of the physical nucleon by
solving Eqs. (3.8) and (3.9).

IV. RESULTS

To begin, we briefly discuss our parameters, which are
listed in Table I. We use the values in Ref. [5] for the mass
of the constituent quarks, mq , the NJL coupling constant G,
and the cutoff mass �. Then mq,G, and � are determined
self-consistently in the NJL model by solving the gap equation
and reproducing the pion decay constant fπ = 93 MeV
[2,11,15]. The masses of the scalar and axial-vector diquarks,
MS and MA, may be determined, for instance, in the NJL
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TABLE I. Model parameters. All
parameters are in units of GeV.

mq MS MA �

0.39 0.60 1.05 0.6

model by solving the Bethe-Salpeter (BS) equation in the
corresponding diquark channels [3,16]. These masses have
been also calculated by QCD oriented methods [17–19].
Results are, however, somewhat dependent on the methods.
Here, instead of solving the BS equation rigorously, we simply
choose a reasonable set of diquark masses. These parameters
can reproduce, for instance, the mass splitting between the
nucleon and delta [3,17].

In Fig. 3, we plot the real parts of the self-energies,
Eqs. (3.5) and (3.6), as functions of p0.

We find that both scalar and axial-vector channels are
positive, meaning that both channels contribute to the mass of
the nucleon attractively, or decrease the mass of the nucleon.
Obviously the contributions of the axial-vector diquark part
is considerably larger than that of the scalar diquark part,
reflecting the stronger (quadratic) divergence of the former. In
Fig. 3 we also explicitly show a threshold mq + MS . Above
the threshold, the mass of the nucleon takes a complex value,
which is not a physical consequence due to the absence of
confinement in the present model. Recently, several studies
including the mimic effects of the confinement have been
made [20–22]. Although we continue this simple treatment,
we should confine this model in the region MN < mq + MS .

In this paper, the mass of the nucleon, MN , is treated as a
function of G̃ and the mixing angle θ . In Fig. 4, we show the
contour plot for the nucleon mass as a function of G̃ and θ .
One finds that both of the scalar and axial-vector parts of the
self-energy contribute attractively to the mass of the nucleon
and that the attraction from the axial part is larger than that
from the scalar part. At θ = 0, where only �S contributes to the
mass of the nucleon, the experimental value MN = 0.94 GeV
is obtained when G̃ ∼ 17. In making comparisons, we note that
in the present calculation the pion cloud effect is not included,
its inclusion might make a substantial contribution to nucleon
properties at the quantitative level [23–25]. Nevertheless, for
the qualitative discussions in the present paper, we simply
compare the results with experiments directly.

θ [degree]

G
 [

G
eV

-1
] 0.9

MN=0.85

0.94

FIG. 4. Contour plot of the nucleon mass MN as a function of the
coupling constant G̃ and the mixing angle θ . Lines are for MN = 0.94,
0.90, 0.85 GeV from bottom to top.

At θ = 30 degrees, for instance, the mass of the nucleon is
reproduced when G̃ ∼ 9.5. As the mixing angle θ increases,
or the axial-vector component in the nucleon wave function
becomes larger, the mass of the nucleon decreases. This
behavior is also shown in Fig. 5, where θ dependence is shown
for fixed values of G̃. One sees that, for larger values of θ,MN

is reproduced for smaller values of G̃, showing once again
that the attraction from the axial-vector part is larger than the
attraction in the scalar part. Although we do not discuss it
in this paper, a finite value of θ is favored when explaining
the isovector magnetic moments µ and isovector axial-vector
coupling constant gA.

V. SUMMARY

In this paper, we have studied the nucleon state in terms of a
microscopic model for hadrons, namely, a chiral quark-diquark
model. The nucleon was constructed as a superposition of
the two quark-diquark channels including the scalar and
axial-vector diquarks. The quark-diquark model was then
hadronized in the path-integral method to obtain an effective
Lagrangian for the mesons and nucleon. The present work is
an extension of previous ones including only a scalar diquark
channel. Here, to test the validity of the method and to ascertain
the role the axial-vector diquark channel plays, we investigated
the mass of the nucleon, which was calculated through the
renormalization conditions of the nucleon self-energies.

p
0
 [GeV]

ΣΑ
1

ΣS
1

p
0
 [GeV]

ΣΑ
0

ΣS
0

FIG. 3. Real parts of the self-energies �1
S,A

(left) and �0
S,A (right). The vertical dashed lines

represent the threshold (= mq + MS) for the
quark and scalar diquark channel.
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θ [degree]

M
N
 [

G
eV

]

20

17

G=10

FIG. 5. The mixing angle θ dependence of the mass of the nucleon
MN for several values of the quark-diquark coupling constant G̃. The
three curves are for G̃ = 20, 17, 10 GeV−1 from bottom to top as
indicated. The dashed horizontal line is the threshold = mq + MS .

We found that the mass of the nucleon is reproduced by
choosing the mixing angle θ and the coupling constant G̃

appropriately. Our result is consistent with previous work that
involved solving the Faddeev equations for the three-quark
system in the NJL model [14].

The present result suggests that determining a solution to
the quark-diquark model is simpler than solving the three-
quark system directly; it is also a practically useful model
for the description of the nucleon. As advocated previously,

an advantage of the present method is to be able to work
out to a large extent in an analytic way preserving important
symmetries such as gauge and chiral symmetries.

Naturally, it is a further extension to apply the present
method to various hadronic properties such as electromagnetic
couplings and the nuclear force. For some quantities such
as isovector magnetic moments and axial-vector coupling
constants, it is expected that the axial-vector channel plays
an important role [26,27]. Furthermore, this is necessary to
describe the octet and decuplet baryons. In addition, the
axial-vector channel may play another role that we did not
consider explicitly in the present work, for only a single state
of the nucleon was constructed. If both channels are treated as
independent degrees of freedom, then the two-nucleon states
may be described as bound states of the quark and diquarks.
This is investigated in a separate paper [28].
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