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Target normal spin asymmetry of the elastic ep scattering at resonance energy

Dmitry Borisyuk and Alexander Kobushkin∗
Bogolyubov Institute for Theoretical Physics Metrologicheskaya ulitsa 14-B, 03143, Kiev, Ukraine

(Received 31 May 2005; published 26 September 2005)

We study the target normal spin asymmetry for the reaction ep → ep at electron laboratory energy up to
2 GeV. The asymmetry is proportional to the imaginary part of the reaction scattering amplitude. To estimate
the imaginary part of the amplitude we use the unitarity relation and saturate the intermediate hadron states by
the proton and resonances from the first, second, and third resonance regions. The resonance electromagnetic
transition amplitudes, which are needed to evaluate the asymmetry, are taken from experiment.
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I. INTRODUCTION

A study of elastic ep scattering is an important source of
information about the internal structure of the proton. Because
of the smallness of the fine-structure constant, α ≈ 1/137,
the first-order perturbation term (the one-photon exchange) is
assumed to give the main contribution to the electromagnetic
transition amplitude. In the one-photon approximation the
elastic ep scattering is described by two quantities, the electric
GE(Q2) and the magnetic GM (Q2) form factors.

The form factors GE and GM are usually extracted from
cross-section data by the Rosenbluth separation method. The
database for GE and GM obtained by this method shows
that the ratio GE/GM is approximately constant. Recently
new precise measurements of the ratio GE/GM were done at
Jefferson Lab [1–3] by the recoil polarization method [4,5]
that yielded significantly different results from those of the
Rosenbluth separation method [6].

Because both measurements are based on the one-photon
exchange approximation it is natural to assume that this dis-
crepancy may be explained by the second-order perturbation
term in the α expansion. The α2 perturbation term should
result in many effects. Its real part contributes to the cross
section and destroys the Rosenbluth formula. The imaginary
part appears in one-particle polarization observables of the
elastic ep scattering, the target and beam spin asymmetries,
which vanish in the one-photon approximation. The present
experimental technique makes it possible to measure such
observables and thus to take under control effects beyond the
one-photon approximation.

The aim of this paper is a calculation of the target
normal spin asymmetry in the elastic ep scattering at electron
laboratory energy Elab <∼ 2 GeV.

The imaginary part of the scattering amplitude, which
determines the asymmetry, is simply related (through the
unitarity condition) to the electroproduction amplitudes of
different hadronic states. The so-called “elastic” contribution
(i.e., in which the hadronic intermediate state, entering the
unitarity condition, is the proton) to the asymmetry was
calculated in Ref. [7]. In Ref. [8] authors obtained strict bounds
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on the “inelastic” part of the asymmetry by using the Schwartz
inequality. However, as the authors noted themselves, those
bounds highly overestimate the actual values of the asymmetry,
especially at high scattering angles.

In a recent work [9] the asymmetry was calculated with
N and πN intermediate states. Such an approach gives
a reasonable approximation at low electron energies, but
becomes worse as the energy increases.

Contrary to [9], here we calculate the contribution of
the resonances in the intermediate states, namely, P33(1232),
D13(1520), S11(1535), F15(1680), and P11(1440), by using
their experimental electroproduction amplitudes. Such an
approach may be justified at intermediate energy, Elab <∼
2 GeV. For the large momentum-transfer region, Parton model
calculations would be more adequate [10].

It was noted in Ref. [9] that the single-spin asymmetry is
sensitive to electroproduction amplitudes in a wide range of
photon virtualities, and this may be a new way of obtaining
resonance transition form factors. The results of this work may
be useful in the planning of such experiments.

The paper is organized as follows. In Sec. II we derive
a general formalism for the asymmetry; in Secs. III and IV
we explain how we describe the resonances and fit their
electromagnetic transition amplitudes. Numerical results and
conclusions are given Sec. V.

II. GENERAL FORMULAS

A. Notation

We denote the initial electron and proton momenta as k
and P, respectively, and the final momenta as k′ and P ′. The
transferred momentum is q = k − k′ (q2 < 0), and the c.m.
energy squared is s = (P + k)2 = (P ′ + k′)2. Time and space
components of four-momenta are denoted as P = (εP , �P ).
M is the proton mass; the electron mass is neglected. We
denote Dirac matrices as γµ and use the shorthand notation
â for aµγ µ.

Proton spinors with definite helicity λ and momentum P
are

uλ(P ) =
[ √

εP + Mwλ√
εP − M(�n�σ )wλ

]
,
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FIG. 1. Definition of transition amplitudes.

where

wλ =
[
e−iϕ/2 cos θ+π(1/2−λ)

2

eiϕ/2 sin θ+π(1/2−λ)
2

]
, (1)

where θ and ϕ are spherical angles of the vector �n = �P/| �P |
and �σ are Pauli matrices.

Electromagnetic current matrix elements for the proton read

〈P ′λ′|Jµ|Pλ〉 = ūλ′ (P ′)	µuλ(P )

= ūλ′ (P ′)
[
2M(GE−GM )

P
µ
+

P 2+
+GMγ µ

]
uλ(P ),

(2)

where |Pλ〉 is the proton state with momentum P and helicity
λ, P+ = P + P ′, and GE ≡ GE(q2) and GM ≡ GM (q2) are
the proton elastic form factors.

Current matrix elements between the proton (with momen-
tum P) and other hadronic states (with momentum P ′′ =
P + q) can be expressed by means of three independent
invariant amplitudes. In the rest frame of the hadronic state
(see Fig. 1) we have

ε(λ)
µ 〈h�|Jµ|P 1/2〉 = f

(h)
λ (q2)δ�,λ+1/2,

(3)
ε(−λ)
µ 〈h −�|Jµ|P − 1/2〉 = ηhf

(h)
λ (q2)δ�,λ+1/2 .

Here ηh = πhe
iπ(sh−1/2), h is some hadronic state, sh and πh are

its spin and parity, respectively, and � is the spin projection
onto the vector �P . The quantities f

(h)
λ can be considered as

helicity amplitudes of the process γ ∗p → h.
Polarization vectors of a virtual (spacelike) photon εµ are

defined according to [11]. In the coordinate frame of Fig. 1
they are

ε(0)
µ = 1√

−q2
(|�q |, 0, 0,−q0), ε(±1)

µ = 1√
2

(0,∓1,−i, 0),

(4)

where the superscript of ε shows the spin projection onto the
z axis.

If the coordinate system is oriented arbitrarily, so that �n =
−�q/|�q | = (cos ϕ sin θ, sin ϕ sin θ, cos θ ), then

ε(0)
µ = 1√

−q2
(|�q |,−q0�n),

ε(±1)
µ = 1√

2
(0, i sin ϕ,−i cos ϕ, 0) (5)

∓ [(0, cos ϕ cos θ, sin ϕ cos θ,−sin θ )].

Orthogonality relations∑
λ

(−1)λε(λ)
µ

∗
ε (λ)

ν = gµν−qµqν

q2
, gµνε(λ)

µ

∗
ε (λ′)

ν = (−1)λδλλ′ .

(6)

B. Asymmetry

The term “target normal asymmetry” corresponds to the sit-
uation in which the target proton is polarized along the normal
to the reaction plane and other particles are unpolarized. Under
such conditions the proton spin has two possible directions,
say, above and below the reaction plane. Its invariant spin
four-vector should be either collinear or anticollinear with the
four-vector

Sµ = 2ενµστ kνPσP ′
τ√

−q2[sq2 + (s − M2)2]
, (7)

which is orthogonal to all momenta and satisfies S2 = −1.
The corresponding cross sections, σ↑ and σ↓, are equal in the
one-photon approximation, so the difference between them
is due to higher-order perturbative terms. The target normal
asymmetry is defined as the dimensionless ratio

An = σ↑ − σ↓
σ↑ + σ↓

. (8)

The asymmetry is proportional to the imaginary part of the
scattering amplitude. The imaginary part, in turn, can be
expressed through the unitarity condition, which reads

i(Tf i−
∗
T if ) =

∑
n

Tf n

∗
T in, (9)

where i and f are initial and final states, respectively, n is the
so-called intermediate state, and Tf i are T-matrix elements. In
our case we can, as the first approximation, use one-photon
exchange amplitudes in the right-hand side of Eq. (9). Then
we obtain

. (10)
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We denote q1 = k − k′′, q2 = k′ − k′′, and the mass of
hadronic intermediate state W =

√
P ′′2.

As was shown in Ref. [8], with Eq. (10) and the time-
reversal symmetry of the electromagnetic interaction, the
asymmetry can be written as [12]

An = iαq2

2π2D

∫ s

M2

s − W 2

8s
dW 2

∫
d�k′′

1

q2
1q2

2

Lαµν

×
∑
λp,λ′

p

Wµν(P ′λ′
p; Pλp) ūλp

(P )(−γ 5Ŝ	α)uλ′
p
(P ′) (11)

in the first nonvanishing order of α, where 	α is defined in
Eq. (2),

D = 4

[
(2s + q2 − 2M2)2

4M2 − q2

(
4M2G2

E − q2G2
M

)
+ q2

(
4M2G2

E + q2G2
M

)]
, (12)

Lαµν = Tr(k̂′γ µk̂′′γ νk̂γ α), (13)

and the hadronic tensor Wµν is defined as

Wµν(P ′λ′
p; Pλp) =

∑
h

(2π )4δ(P + k−P ′′ − k′′)

×〈P ′λ′
p|Jµ|h〉〈h|Jν |Pλp〉. (14)

Here |h〉 are all possible hadronic states, which we refer to as
“intermediate states.” They can be N,πN, ππN, ηN , and so
on.

∑
h is the short-hand notation for

∑
N

∑
spins

∫ N∏
a=1

d3pa

(2π )32εpa

, (15)

where N is the total number of particles and pa are their
momenta.

Now we express the hadronic tensor Wµν through the
electroproduction helicity amplitudes f

(h)
λ .

Consider this tensor in the rest frame of the hadronic state
|h〉, i.e., at �P ′′ = 0. We choose a coordinate system such that
both vectors �P and �P ′ lie in the yz plane (see Fig. 2) and the
angle between them is β; 0 � β � π .

The sum
∑

h can be split into two parts: first, the sum over
total angular momentum (=spin) projections, and second, the
sum over all remaining quantum numbers, which we denote
as

∑
h
′. The behavior of the state |h〉 with respect to spatial

X

Z

Y

�P

�P ′

β θ

FIG. 2. Derivation of the hadronic tensor.

rotation is completely described by its spin and spin projection
and does not depend on any other quantum numbers. Thanks to
this fact, the sum over spin projections can be done explicitly:

Wµν(P ′λ′
p; Pλp) =

∑
h

′ ∑
�′′

(2π )4δ(P + q1 − P ′′)

×〈P ′λ′
p|Jµ|h�′′(�ez)〉〈h�′′(�ez)|Jν |Pλp〉

=
∑

h

′
(2π )4δ(P + q1 − P ′′) (16)

×
∑

�,�′,�′′
〈P ′λ′

p|Jµ|n�′( �P ′)〉

× 〈h�′( �P ′)|h�′′(�ez)〉〈h�′′(�ez)|h�( �P )〉
× 〈h�( �P )|Jν |Pλp〉.

Here |h�(�a)〉 denotes the state with the spin projection onto
vector �a equal to �.

Wave functions of these states are related by Wigner D
functions [11]:

〈h�′′(�ez)|h�( �P )〉 = ∗
D (sh)

��′′(ϕ, θ, 0), (17)

where ϕ and θ are polar angles of the vector �P and sh is the spin
of the state |h〉. Using Eq. (17) and properties of D functions,
we have∑

�′′
〈h�′( �P ′)|h�′′(�ez)〉〈h�′′(�ez)|h�( �P )〉

=
∑
�′′

D(sh)
�′�′′

(π

2
, θ − β, 0

) ∗
D (sh)

��′′

(π

2
, θ, 0

)

= D(sh)
��′(0, β, 0). (18)

Using amplitude definition (3), we obtain

Wµν(P ′λ′
p; Pλp) =

∑
λ,λ′

(−1)λ+λ′
ε

(2λpλ)
1ν

∗
ε

(2λ′
pλ′)

2µ

×
∑

h

′
(2π )4δ(P + q1−P ′′)f (h)

λ

(
q2

1

) ∗
f

(h)
λ′

(
q2

2

)

× η
λp−λ′

p

h D(sh)
λp(2λ+1),λ′

p(2λ′+1)(0, β, 0), (19)

where ε1 and ε2 are polarization vectors of the first (q1) and
second (q2) photons of Eq. (10), defined according to Eqs. (5).

After that the asymmetry becomes

An = αq2

πD

∫ s

M2

s − W 2

8s
dW 2

∫
d�k′′

1

q2
1q2

2

×
∑

h

′
(2π )3δ(P + k − P ′′ − k′′)

×
∑
λ,λ′

f
(h)
λ

(
q2

1

) ∗
f

(h)
λ′

(
q2

2

)
X

(h)
λλ′

(
W, q2

1 , q2
2

)
, (20)
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where

X
(h)
λλ′

(
W, q2

1 , q2
2

)
= i

∑
λp,λ′

p

(−1)λ+λ′
η

λp−λ′
p

h D(sh)
λp(2λ+1),λ′

p(2λ′+1)(0, β, 0)

×Lαµνε
(2λpλ)
1ν

∗
ε

(2λ′
pλ′)

2µ ūλp
(P )(−γ 5Ŝ	α)uλ′

p
(P ′). (21)

The quantities X
(h)
λλ′ can be calculated explicitly (provided

the proton form factors are known), and the only unknowns
in Eq. (20) are electromagnetic transition amplitudes
f

(h)
λ .

III. THE MODEL FOR TRANSITION AMPLITUDES

Obviously it is practically impossible to take into account
all allowed intermediate states. To proceed further, we need to
restrict these states somehow. The authors of [9], for example,
included only N and πN states. Although below the ππN

threshold (Elab ≈ 0.3 GeV) such an approach gives an exact
result, one can expect that, as the energy increases, this
approximation becomes worse, as more intermediate states
(e.g., ηN, πππN ) will be possible.

In this paper we use another way to model the intermediate
states. We treat them as a number of resonances and neglect
the nonresonant continuum contribution. At present we cannot
estimate the nonresonant contribution well enough, but we can
give a qualitative arguments that it is small.

At a glance one may conclude that the relative size of the
nonresonant contribution will be approximately the same as
in inelastic cross sections or structure functions. Actually
it is likely to be much smaller for the following reason.
Contrary to strictly positive quantities, such as cross sections,
asymmetry can have either sign. Thus the contributions from
different nonresonant states will mostly cancel each other. This
is similar to the fact that the average of many uncorrelated
random quantities has a much smaller dispersion than any of
them.

At P ′ = P the hadronic tensor Wµν(P ′λ′
p; Pλp), which

was introduced in previous section, turns into the hadronic
tensor of inelastic ep scattering. It is natural to assume that
the qualitative properties of both tensors are similar, so we
should first look at what resonances contribute to the inelastic
ep scattering.

There are three prominent resonant peaks in the inelastic ep
cross section: the so-called first, second, and third resonance
regions.

The first resonance peak is due to the � resonance
[P33(1232)], and the second peak consists of D13(1520) and
S11(1535). There are many resonances that contribute to
the third resonance region, but there are serious arguments
(see, e.g., Ref. [13]) that the dominant contribution comes
from F15(1680). Moreover, it is the only one for which
the transition amplitudes are known. Although the Roper
resonance P11(1440) does not contribute significantly to
the inelastic ep scattering [13], we also include it in our
calculations.

For the proton in the intermediate state we have

∑
h

′
(2π )3δ(P + q1 − P ′′) =

∫
d3P ′′

2εP ′′
δ(P + q1 − P ′′)

(22)
= δ(W 2 − M2).

The resonance, however, has a mass MR �= M and some finite
width 	R , so we “spread” the δ function with the relativistic
Breit-Wigner formula:

δ
(
W 2 − M2

R

) → 	RMR

π

1(
W 2 − M2

R

)2 + M2
R	2

R

. (23)

After that the expression
∑

h
′(2π )3δ(P + q − P ′′)f (h)(q2

1 )
∗
f (h)(q2

2 ), entering the formula for asymmetry, will take the
form

f (p)
(
q2

1

) ∗
f (p)

(
q2

2

)
δ(W 2 − M2) +

∑
R

f (R)
(
q2

1

) ∗
f (R)

(
q2

2

)

× 	RMR

π

1(
W 2 − M2

R

)2 + M2
R	2

R

. (24)

The first part is the “elastic” (proton) contribution; in the
second part the sum runs over all resonances taken into
account. The quantities f (R) depend only on q2 but do not
depend on W. They are related to commonly used [14]
A3/2, A1/2, and S1/2 as

f1 = κA3/2, ηRf−1 = κA1/2,

and

f0 = 2q2MR√
4M2q4 − q2

(
M2

R − M2 − q2
)2

κS1/2, (25)

where κ =
√

M(M2
R−M2)
πα

, whereas for the proton they are

f
(p)
1 (q2) ≡ 0, f

(p)
0 (q2) = 2MGE(q2),

(26)
f

(p)
−1 (q2) = −GM (q2)

√
−2q2,

which is easy to derive by a comparison of Eqs. (2) and (3).
For our calculation we use experimental data on AH (i.e.,

A3/2, A1/2, S1/2) given in [14]. Unfortunately, there are no data
on S1/2 for D13(1520) and F15(1680), so in our calculations
we set it to zero.

To evaluate the asymmetry we need to fit these data
somehow. The fitting procedure is described in the next section.

IV. FITTING PROCEDURE

Masses and widths of resonances were taken from the work
of the Particle Data Group [15]. The proton form factors were
modeled with the well-known dipole fit

GM (q2)/µp = GE(q2) = 1(
1 + Q2

/
Q2

0

)2 , (27)
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FIG. 3. Fit of the transition amplitudes A3/2 (solid curves and filled circles), A1/2 (dashed curves and open circles), and S1/2 (dash-dotted
curves and crosses) for resonances (a) P33(1232), (b) S11(1535), (c) D13(1520), (d) F15(1680) and (e) P11(1440). Experimental points are from
a compilation of Ref. [14].

where Q2 ≡ −q2,Q2
0 = 0.71 GeV2, and µp ≈ 2.79 is the

proton magnetic moment.
Now consider the fit of electroproduction amplitudes.

According to quark model prediction, the high-Q2 behavior
of the transition amplitudes should be like A1/2 ∼ S1/2 ∼ Q−3

and A3/2 ∼ Q−5 [16].
For the proton we have

A1/2 ∼
√

−q2GM (q2) ∼ Q(
1 + Q2

/
Q2

0

)2 ∼ Q−3. (28)

The denominator (dipole formula) is entirely due to quark
structure, whereas the numerator is just a kinematical factor.
However, the fact that A1/2 tends to zero as Q2 → 0 is the
specific feature of the proton. For the other hadronic states
A1/2(0) �= 0, so, as in [16] and for the same reasons, we
introduce the factor

√
(MR − M)2 + Q2 and assume, instead

of Eq. (28),

A1/2 ∼
√

(MR − M)2 + Q2(
1 + Q2

/
Q2

0

)2 . (29)

So, to obtain correct asymptotic behavior of A1/2 at Q2 → 0
and Q2 → ∞, it is useful to fit the function

Ã1/2 =
(
1 + Q2

/
Q2

0

)2√
(MR − M)2 + Q2

A1/2, (30)

which has finite values at both Q2 = 0 and Q2 = ∞. The same
can be stated for S1/2. On the other hand, A3/2 has another
asymptotic behavior (∼Q−5); therefore we could have used
(1 + Q2/Q2

0)3 instead of (1 + Q2/Q2
0)2 in expressions (29)

and (30) for A3/2.
However, the Q2 values needed for our calculation are

not too high. Because Q2 = [(s − M2)2]/s sin2(θ/2), where
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θ is the c.m. scattering angle, we obtain Q2
max ∼ 3 GeV2 at

Elab = 2 GeV. Trying different parametrizations, we found
that better agreement with the experimental data in the range
Q2 <∼ 3 GeV2, especially for the δ resonance, is achieved if we
use the same formulas,

AH ∼
√

(MR − M)2 + Q2(
1 + Q2

/
Q2

0

)2 , (31)

for all amplitudes. Thus we fit the functions

ÃH =
(
1 + Q2

/
Q2

0

)2√
(MR − M)2 + Q2

AH . (32)

To describe high-Q2 behavior better, we treat ÃH as a function
of ξ = 1 − [1/(1 + Q2/Q2

0)] instead of Q2. At low Q2 it does
not matter, because ξ ∼ Q2, but the advantage is that ξ is finite
at Q2 → ∞, so we can use a simple linear or polynomial fit
for all ξ values.

In our calculations we restrict ourselves to the linear least-
squares fit of the form

ÃH (ξ ) = a + bξ. (33)

Results of the fit are summarized in Table I. The corresponding
dependence of amplitudes AH versus Q2 for all considered
resonances is shown in Fig. 3 together with experimental
points.

TABLE I. Fit of the transition amplitudes. All values are in inverse
giga-electron-volts.

State Ã3/2 Ã1/2 S̃1/2

P33(1232) −0.929 +
0.264 ξ

−0.485 + 0.130 ξ 0.069 +
0.022 ξ

D13(1520) 0.318 − 0.273 ξ −0.029 − 0.474 ξ No data
S11(1535) 0 0.123 + 0.416 ξ 0.212 −

0.614 ξ

F15(1680) 0.185 − 0.052 ξ −0.033 − 0.199 ξ No data
P11(1440) 0 −0.351 + 0.787 ξ 0.236 −

0.134 ξ

V. NUMERICAL RESULTS AND CONCLUDING REMARKS

Figure 4 displays the contribution of separate resonances
to the target normal asymmetry An versus the c.m. scattering
angle θ at different electron laboratory energies, Elab. One sees
that globally the �(1232) contribution is dominant. This is
due to its large transition amplitudes in comparison with other
resonances and the lowest mass among them. The contribution
of the Roper resonance was obtained to be not negligible.
Moreover at Elab ∼0.9 GeV it becomes comparable with the
�(1232) contribution (the upper-right-hand panel of Fig. 4).
This is a very nontrivial fact because the Roper contribution
in inelastic eN scattering is very small. Nevertheless it can
be studied in precise measurements of An under special
kinematical conditions.
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FIG. 4. The contribution of resonances to the asymmetry at different electron laboratory energies: (a) 0.57 GeV, (b) 0.855 GeV,
(c) 1.4 GeV, (d), 2 GeV. Solid curves, P33(1232); long-dashed curves, D13(1520); short-dashed curves, S11(1535); dash-dotted curves, F15(1680);
and dotted curves, P11(1440).
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FIG. 5. Target normal spin
asymmetry for different electron
laboratory energies: (a) 0.57 GeV,
(b) 0.855 GeV, (c) 1.4 GeV,
(d) 2 GeV. The dashed curves are
the elastic contributions, the dash-
dotted curves are the inelastic
contributions, and the solid curves
are the totals.

One sees also that the contributions from the � and other
resonances have mostly opposite signs and tend to cancel each
other, especially at high beam energy. This is clearly seen
from Fig. 5, in which we plot the elastic (proton) and inelastic
(resonance) parts of the asymmetry and the total asymmetry.
The elastic contribution dominates at low energies (Elab <

0.3 GeV) and at energies higher than 1.3 GeV. It is quite
obvious for the low energies, because the energy is insufficient
for resonances to be produced. However, at high energies it
is a nontrivial result that has interesting consequences. As
was discussed in the introduction, the asymmetry depends
on the imaginary part of the amplitude. However, because
the real and imaginary parts are connected (by means of the
dispersion relations), we may expect that the real part will
also be defined mostly by proton contribution. This is im-
portant for the proper interpretation of the proton form-factor
measurements.

In summary, we have calculated the target normal asymme-
try An for the e−p → e−p reaction at the electron beam energy

up to few giga-electron-volts. This quantity gives direct infor-
mation on the imaginary part of the reaction scattering ampli-
tude and comes from the second- and higher-order perturbative
terms.

To calculate the imaginary part of the amplitude we
used unitarity and saturated the intermediate hadron states
by the proton (the so-called elastic contribution) and the
resonances from the first, second, and third resonance regions
(the inelastic contribution). We neglected the nonresonant
inelastic contribution, which we expected to be small (see
Sec. III). Besides that, the calculated contributions of separate
resonances are interesting alone.

Our calculations demonstrate that, under special kine-
matical conditions (the electron laboratory energy near
0.9 GeV), the contribution of the Roper resonance P11(1440)
becomes comparable with the �(1232) contribution and
affects significantly the target asymmetry. It turn, this opens the
possibility of studying P11(1440) electromagnetic transition
amplitudes in precise measurements of the asymmetry.
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