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We analyze coherent �+�(1520) photoproduction in the γ d interaction near the threshold. We demonstrate
that the effect of the coherent production becomes manifest in a comparison of the nK+ invariant mass distribution
when the pK− system is on the �(1520) mass. Our model calculations indicate a sizable contribution of resonant
and nonresonant background processes in the γ d → npK+K− reaction that generally exceeds the contribution
of the coherent resonance channel. However, we find that coherent �+�(1520) photoproduction is enhanced
relative to the background processes in the forward hemisphere of pK− pair photoproduction. Moreover, the
coherence effect does not depend on the �+ photoproduction amplitude and is defined by the probabilities of
�(1520) photoproduction and the �+ → NK transition. Therefore, this effect may be used as an independent
method for studying the production mechanism and properties of �+ .
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I. INTRODUCTION

The first evidence for the pentaquark hadron �+ discovered
by the Laser Electron Photon at SPring-8 (LEPS) Collabo-
ration [1] was subsequently confirmed in other experiments
[2]. However, some other experiments failed to find the �+
signal (for a review see Refs. [3,4]). Since then the situation
concerning the existence of the pentaquarks has remained
controversial. Independent studies of the manifestation of a
�+ state in different processes are, therefore, urgently desired.

�+ photoproduction in the reaction γ d → npK+K−
seems to be very interesting and important [5,6]. First, it
allows one to study simultaneously the γp → �(1520)K+ and
γ n → �+K− subreactions characterized by the similarity in
the production mechanisms; i.e., both processes are described
by the same set of the tree level Feynman diagrams [7–9].
Therefore, one hopes to define the ratio of �+ to �(1520)
photoproduction with minimal uncertainty of the production
mechanisms, which is important for understanding the nature
of �+. Second, in case of the γ d interaction one can
qualitatively study a new basic process—coherent �+�(1520)
photoproduction. This reaction has its own physics interest and
will unambiguously shed new light on pentaquark properties
and the mechanism of �+ photoproduction.

It is commonly supposed now that the total width of the
�+ is as small as �� ∼ 1 MeV [10], much smaller than the
total �∗ decay width, ��∗ � 15.6 MeV [11]. (Throughout
this paper, for simplicity, we use the notation �∗ ≡ �(1520).)
This means that the most promising way to study coherent
�∗�+ production is to analyze the invariant nK+ mass, MnK+ ,
distribution at fixed invariant mass of the pK− pair, MpK− .
Enhancement of �+ photoproduction when MpK− is in the
vicinity of the �∗ mass would indicate the manifestation
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of coherent �∗�+ photoproduction. This particular channel
will appear in strong competition with the resonant and
nonresonant background processes. By “resonant process” we
mean, for example, �∗ photoproduction from the proton inside
the deuteron, when the neutron is a spectator, and similarly
�+ photoproduction from a neutron, when the deuteron’s
proton is a spectator. The term “nonresonant ” process denotes
K+K− photoproduction from a nucleon without excitation
of �∗ or �+. It is clear that coherent photoproduction
and the background processes must be analyzed together by
using the same theoretical approaches. This allows one to
define the kinematic conditions under which the coherent
channel manifests itself clearly above strong background
processes.

Our aim in the present paper is to discuss these important
topics. Our model includes the elementary subprocesses of
γN → �∗K and γN → �+K̄ reactions. For the latter we use
a model based on the effective Lagrangian approach of Ref. [8],
which is, generally speaking, similar to the models developed
by other authors in Refs. [12–22]. All these approaches
predict the approximate equality of the cross sections of
the γ n → �+K− and γp → �+K̄0 reactions. This equality
may be changed into a suppression of the γp → �+K̄0

transition [7,23]. However, we are going to demonstrate
that the amplitude of the coherent �∗�+ photoproduction,
when �∗ is produced in the forward hemisphere in the γ d

center of mass system, is defined by the product of the �∗
photoproduction amplitude in the γN interaction and the
amplitude of the �+ → NK transition. In other words, the
coherence effect of �∗�+ photoproduction in the forward
hemisphere does not depend on the �+ photoproduction
amplitude and remains finite even if the cross section of the
γp → �+K̄0 reaction is vanishing. The coherence effect in the
backward hemisphere is sensitive to the �+ photoproduction
amplitude, and it is suppressed in parallel with the suppression
of the γp → �+K̄0 reaction.
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Our paper is organized as follows. In Sec. II, we discuss
resonant �+ and �∗ photoproduction from a nucleon. In
Sec. III, we consider the coherent γ d → �∗�+ reaction.
Our model is similar to the approach of Ref. [24], developed
for coherent �+�(�0) photoproduction from a deuteron.
In Sec. IV, we discuss the background processes. We start
therefore from an analysis of the nonresonant background in
elementary γN → �+K̄ and γN → �∗K reactions. Then
we apply these subprocesses to an analysis of the background
spectator channels. Finally, we estimate the contribution of the
coherent semiresonant processes, which differ from coherent
photoproduction by the replacement of one hyperon with
NK or NK̄ pairs. The results of our numerical calculations
are presented in Sec. V. The summary is given in Sec. VI.
In Appendix A, we show an explicit form of the transition
operators for the resonance amplitude.

II. PHOTOPRODUCTION FROM A NUCLEON

A. �+ photoproduction

The main diagrams for the amplitude of the resonance
�+ photoproduction in the reaction γN → NKK̄ are shown
in Fig. 1. We neglect here the contribution resulting from
photons interacting with the final decay vertex [12]. In
view of the chosen kinematics, where the invariant mass of
the final KN pair is near the resonance position, this is a
good approximation, since in the neglected graphs the �+
is far offshell and the graphs of Figs. 1(a)–1(d) dominate
the resonance contribution. From a formal point of view
gauge invariance is lost without contributions arising from
the electromagnetic interaction in the decay vertex. However,
following Ref. [25] for the initial photoproduction process,
we construct an overall conserved current by an appropriate
choice of the contact term of Fig. 1(d).

In this section k, p, q, q̄, and p′ denote the four-momenta
of the incoming photon, the initial nucleon, the outgoing
K and K̄ mesons, and the recoil nucleon, respectively. The
standard Mandelstam variables for virtual �+ photoproduc-
tion are defined by t = (q̄ − k)2 and s ≡ W 2 = (p + k)2. The
K̄ meson production angle θ in the center-of-mass system
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FIG. 1. Tree level diagrams for the reaction γN → �+K̄ →
NKK̄ .

(c.m.s.) is given by cos θ = k · q̄/(|k||q̄|), and the correspond-
ing solid angle is �. We consider the integrated �+ decay
distribution. The differential cross section γN → �+K̄ →
NKK̄ as a function the K̄ meson production angle and
NK invariant mass, MnK+ , at the resonance position with
MnK+ = M� = 1.54 GeV is related to the cross section of
�+ photoproduction in the γN → �+K̄ reaction as

dσR
f i

d�dMnK+

∣∣∣∣∣
MnK+ =M�

= 1

π��

dσ�+
f i

d�
, (1)

with �� denoting the �+ decay width and

dσ�+
f i

d�
= 1

64π2s

pout

pin

1

4

∑
mi,mf ,λγ

∣∣A�+
mf ;mi,λγ

∣∣2
. (2)

Here, A�+
is the �+ photoproduction amplitude in the

γN → �+K̄ reaction, mi and mf are the nucleon and �+ spin
projections, respectively, and λγ denotes the incoming photon
helicity; pin and pout are the relative momenta in the initial
and the final states in the c.m.s., respectively. Further below
we will concentrate on the calculation of A�+

. For simplicity,
in this analysis we limit our consideration to the isoscalar,
spin-1/2 �+. Generalization for higher spin [9] may be done
in a straightforward manner.

The effective Lagrangians that define the Born terms for
the diagrams shown in Figs. 1(a)–1(d) are discussed in many
papers (for references see Ref. [8]). Note that different phase
conventions are often employed. Therefore, for the sake of
definiteness, we list here the effective Lagrangians used in the
present work:1

LγKK = ie(K−∂µK+ − K+∂µK−)Aµ, (3a)

Lγ�� = −e �̄

(
γµ − κ�

2M�

σµν∂
ν

)
Aµ�, (3b)

LγNN = −e N̄

(
eNγµ − κN

2MN

σµν∂
ν

)
AµN, (3c)

L±[PV]
�NK = ∓ g�NK

M� ± MN

�̄�±
µ (∂µK)N + h.c., (3d)

L[PV]
γ�NK = −i

eg�NK

M� ± MN

�̄�±
µ AµKN + h.c., (3e)

L±[PS]
�NK = −ig�NK�̄�± KN + h.c., (3f)

LγKK∗ = egγKK∗

MK∗
εαβµν∂αAβ∂µK̄∗

ν K + h.c., (3g)

L±
�NK∗ = −g�NK∗ �̄ �∓

(
γµ − κ∗

M� + MN

σµν∂
ν

)
×K̄∗µN + h.c., (3h)

where Aµ, �,K , and N are the photon, �+, kaon, and the
nucleon fields, respectively; K∗ stands for the vector kaon
field; �±

µ ≡ �±γµ (with �+ = γ5 and �− = 1 for positive
and negative parity, respectively), ep = 1, en = 0, and κN

1Throughout this paper, isospin operators will be suppressed in all
Lagrangians and matrix elements for simplicity. They can be easily
accounted for in the corresponding coupling constants.
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denotes the nucleon anomalous magnetic moment (κp = 1.79
and κn = −1.91), κ� stands for the anomalous magnetic
moment of �+, and κ∗ denotes the tensor coupling of
nucleon and strange vector mesons. The superscripts PS
and PV correspond to the pseudo-scalar and pseudo-vector
�+NK coupling schemes. Equation (3e) describes the contact
(Kroll-Ruderman) interaction in the pseudo-vector coupling
scheme [see Fig. 1(d)], which does not appear in the case of
pseudoscalar coupling [cf. Eq. (3f)].

In calculating the invariant amplitudes, we dress the vertices
by form factors. In the present treelevel approach and within
our chosen kinematics, only the lines connecting the electro-
magnetic vertex with the initial �+KN vertex correspond
to off-shell hadrons. We describe the product of both the
electromagnetic and the hadronic form-factor contributions
along these off-shell lines by the covariant phenomenological
function

F (M,p2) = �4

�4 + (p2 − M2)2
, (4)

where p is the corresponding off-shell four-momentum of the
virtual particle, M denotes its mass, and � stands for the
cutoff parameter. The electromagnetic current of the complete
amplitude is conserved by making the initial photoproduction
process gauge invariant. To this end, we apply the gauge in-
variance prescription by Haberzettl [25] with the modification
by Davidson and Workman [26] to construct a contact term
for the initial process γN → �+K̄ that is free of kinematical
singularities. We emphasize that contributions of the latter type
are necessary even for pure pseudo-scalar coupling.

Since the coupling scheme and the �+ parity are unknown,
one has to define the corresponding parameters in such a way
to get the corresponding cross sections independently of �+
parity and the coupling scheme. We follow Ref. [8], where
parameters of the model are fixed by a comparison of the
resonant �+ photoproduction cross section and nonresonant
background with experiment, and it is shown that one can find
such a parameter set that parallels the prediction for PS and
PV couplings and for positive and negative �+ parity states
as well, at least for the unpolarized and single and double
polarization spin observables. Therefore, we can limit the
present analysis to the PS coupling and a positive �+ parity.

The resonance amplitudes obtained for the γ n and γp

reactions read as

A�+
f i (γ n) = ū�(p�)

[
Ms

µ + Mt
µ + Mu

µ + Mc
µ

+Mt
µ(K∗)

]
un(p) εµ, (5a)

A�+
f i (γp) = ū�(p�)

[
Ms

µ + Mu
µ + Mc

µ

+Mt
µ(K∗)

]
up(p) εµ. (5b)

The explicit forms of the transition operators Mi
µ for the

γ n → �+K− and γp → �+K̄0 reactions are presented in
Appendix.

For a positive �+ parity the coupling constant g�NK is
found from the �+ decay width as

�� = [g�NK ]2pF

2πM�

(√
M2

N + p2
F − MN

)
. (6)

We choose a small width, �� = 1 MeV [10], assuming that the
observed width in the invariant mass distribution is determined
by the experimental resolution. The magnitude of the coupling
constant gγKK∗ is extracted from the width of the K∗ → γK

decay [11]. Its sign is fixed by SU(3) symmetry. This delivers
egγK0K∗0 = −0.35 and egγK±K∗± = 0.23. The contribution of
the s channel [Fig. 1(b)] is small, causing a rather weak
dependence of the total amplitude on the tensor coupling κ� in
the γ�� vertex within a reasonable range of 0 <∼ |κ�| <∼ 0.5
[27]. Therefore, we can choose κ� = 0. The coupling constant
g�NK∗ is written as g�NK∗ = α�g�NK , where the parameter
α� depends on the choice of the tensor coupling κ∗ in
Eq. (3h) and cutoff parameters �K∗ in the form factors of the
K∗ exchange amplitude. Increasing the value of �K∗ leads to
a decreasing α�. Following Ref. [8], we use �K∗ = 1.5 GeV
and α� = 1.875 at κ∗ = 0. This value of α� is close to the
quark model estimates α� = √

3 [28].
Another cutoff parameter, �B , defines the Born terms of

the s, u, and t channels and the current-conserving contact
terms. Note that the inclusion of the � and � photoproduction
processes [29] results in a larger ambiguity in the choice of
�B , which varies from 0.5 to 2 GeV depending on the coupling
scheme, the method of conserving the electromagnetic current,
etc. Analysis of the vector meson photoproduction [30] and
γ n → �+K− favors a small value of the cutoff, �B �
0.5 GeV. For the γp → �+K̄0 reaction the K∗ exchange
channel remains dominant at �B � 1.5 GeV, and, therefore,
in this paper we use a universal value, �B � 0.5 GeV, for all
Born terms.

In Fig. 2 we show the differential cross sections of
the reactions γ n → �+K− [Fig. 2(a)] and γp → �+K̄0

[2(b)] in the c.m.s. at Eγ = 2 GeV. One can see that
the t-channel K∗ exchange depicted in Fig. 1(e) gives the
dominant contribution compared with the Born terms shown in
Fig. 1(a)–1(d) in both reactions.

B. �(1520) photoproduction

The main diagrams for the amplitudes of the excitation of
the � hyperon in the γN → NKK̄ reaction at low energies
are shown in Fig. 3. As for the �+ photoproduction, we neglect
the photon interaction within the decay vertex and restore the
gauge invariance by a proper choice of the contact terms. The
Mandelstam variables for the virtual �∗ photoproduction are
defined by t = (q − k)2, s ≡ W 2 = (p + k)2. The K meson
production angle θ (in γp c.m.s.) is given by cos θ =
k · q/(|k||q|).

For the description of the �∗ excitation with JP = 3
2

−
we

use the following effective Lagrangians [30,31]:

L�∗NK = g�∗NK

M�∗
�̄∗

µ θµν(Z) (∂νK̄) γ5N + h.c., (7a)

Lγ�∗NK = −i
eg�∗NK

M∗
�

�̄∗
µγ5A

µK̄N + h.c., (7b)

L±
�∗NK∗ = i

g�∗NK∗

M�∗
�̄∗

µ θµν(Y )γ λFK̄λνN + h.c., (7c)

where �∗ is the �(1520) field, M�∗ denotes the �∗
mass, and F

µν

K is related to the vector K∗ meson field as
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– FIG. 2. Differential cross section of the re-
action γ n → �+K− (a) and γp → �+K̄0 (b)
at Eγ = 2 GeV. The label “Born” corresponds
to the coherent sum of the t, s, u-exchange
diagrams and the contact term, shown in
Fig. 1(a)–1(d), respectively. Solid curves indi-
cate the total of all contributions. The contri-
bution of K∗ exchange is indicated and shown
as dashed-dotted curves that almost overlap the
solid curves.

F
µν

K = ∂νK∗µ − ∂µK∗ν . The operator θµν(X) is a function
of the off-shell parameter X: θµν(X) = gµν − ( 1

2 + X)γµγν . In
this paper we consider a kinematical region where the invariant
mass of the outgoing NK̄ pair is close to M�∗ ,�∗ is almost on-
shell, and, therefore, the contribution from terms proportional
to γµγν in θµν(X) disappears. This means that θµν(X) may
be replaced with gµν . We assume a vanishing value of the
anomalous magnetic moment of �∗ and, therefore, neglect
the �∗γ interaction and, correspondingly, the contribution of
the u channel shown in Fig. 3(c). All vertices are dressed by the
form factors similarly to the case of the �+ photoproduction
with the same cutoff parameters. The amplitudes for the
γp → �∗K+ and γ n → �∗K0 reactions read as

A�∗
f i(γp) = ūσ

�∗ (p∗
�)

[
Ms

σµ + Mt
σµ + Mc

σµ

+Mt
σµ(K∗)

]
up(p) εµ, (8a)

A�∗
f i(γ n) = ūσ

�∗ (p∗
�)

[
Ms

σµ + Mt
σµ(K∗)

]
un(p)εµ. (8b)

The explicit transition operators Mi
σµ for these reactions are

listed in Appendix.
The coupling constant g�∗NK is found from the �∗ decay

width,

��∗→NK̄ = [g�∗NK ]2p3
F

6πM3
�∗

(√
M2

N + p2
F − MN

)
, (9)

where pF is �∗ → NK̄ decay momentum. Taking ��∗→NK̄ �
0.45 × 15.6 MeV [11], one finds |g�∗NK | = 32.6.
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FIG. 3. Tree level diagrams for the reaction γN → �∗K →
NKK̄ .

By analogy to the above considered �+ photoproduction
we denote g�∗NK∗ = α�∗g�∗NK . The parameter α�∗ must be
defined by a comparison of calculated cross sections with
experimental data at Eγ ∼ 2 GeV. However, the available
experimental data for the γp → �∗K+ reaction cover the
energy range Eγ = 2.8–4.8 (GeV) [32], beyond the ap-
plicability of the effective Lagrangian formalism. Thus, in
this region the total cross section decreases with energy as
E−2.1

γ , whereas the amplitudes of Eq. (8) predict a strong
increase. The energy dependence at high energy is reasonably
well described by the Regge phenomenology. Since the
�∗ decay angular distribution supports the dominance of the
t-channel natural parity exchange processes, one can assume
that the dominant contribution to the �∗ photoproduction
at high energy comes from the leading K∗ trajectory [33].
The corresponding amplitude is obtained from the t-channel
K∗ meson exchange in Eq. (8) by the Reggezation of the
K∗ meson exchange propagator, i.e.,

1

t − M2
K∗

→ γ (t)

(
s

s0

)α(t)

, (10)

where α(t) = α(0) + α′ t is the Regge trajectory and γ (t)
denotes the normalization function

γ (t) = CR(Tr[R R†])−1,
(11)

R = ūσ
�∗ (p∗

�)
[
ενµαβ kνq ′α (

q ′
σ γ β − q/′gβ

σ

) ]
un(p) εµ,

with q ′ = p�∗ − p. In the following we assume that at energies
near the threshold the production amplitude is defined by the
effective Lagrangian model of Eq. (8), A�∗

eff. L., whereas at high
energies it is described by the Regge phenomenology, A�∗

R , as

A�∗ = A�∗
eff. L. θ (E0 − Eγ ) + A�∗

R θ (Eγ − E0). (12)

We take E0 = 2.3 GeV as the matching point between the two
regimes. The choice of parameters in Eqs. (10) and (11) as s0 =
1 GeV, α(t) = −0.1 + 0.9t , and CR = 29.6 gives a satisfac-
tory description of the high energy data, as exhibited in Fig. 4
for the differential cross section at Eγ = 3.7 GeV.

In Fig. 5 we show the energy dependence of the total
cross section. The dot-dashed curve is the fit of the data
σ � 6.55 (Eγ /GeV)−2.1 (µb) from Ref. [32]. For illustration
we also show the cross section calculated with a constant
amplitude, where the energy dependence is defined by the
phase space volume alone. The strength parameter α�∗ is

035206-4



COHERENT �+ AND �(1520) PHOTOPRODUCTION OFF THE DEUTERON PHYSICAL REVIEW C 72, 035206 (2005)

0.0 0.5 1.0 1.5 2.0

−t [GeV
2
]

10
−2

10
−1

10
0

 d
σ/

dt
 [µ

b/
G

eV
2 ]

γ p–>Λ∗
K

+
Eγ=2.8–4.8 (GeV)

Eγ=3.7 GeV

K* −trajectory

FIG. 4. Differential cross section of the reaction γp → �+K+ at
Eγ = 3.7 GeV. Experimental data from Ref. [32].

adjusted by fitting the calculated cross section to the exper-
imental extrapolation (dot-dashed curve) at the normalization
point. Two solutions α�∗ = +0.372 and −0.657 result in two
different energy dependencies of the cross section at low
energy. Both solutions exceed the experimental data above
the normalization point. The solution with positive α�∗ at low
energies is close to the pure phase space dependence shown
by the long-dashed curve.

In Fig. 6 we show the differential cross sections of the
�∗ photoproduction at Eγ = 2 GeV. The differential cross
sections of the γp → �∗K+ reaction for positive α�∗ together
with the separate contributions of the Born and K∗ exchange
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FIG. 5. Total cross section of the reaction γp → �∗K+ as a
function of the photon energy. The experimental data are taken from
Ref. [32]. The dot-dashed curve is the fit of this data σ � 6.55 E−2.1

γ

(µb). The long-dashed curve represents the cross section when the
amplitude is taken to be constant. The solid curves corresponds to
the amplitude of Eq. (12). The signs ± corresponds to the sign of
α�∗ . The dashed curve describes the extrapolation of the effective
Lagrangian model to the high energy region.

channels are shown in Fig. 6(a). In case of the γ n → �∗K0

reaction, shown in Fig. 6(b) by the solid curve, the Born term
(s-channel exchange) is negligible. In the γp reaction, the
interplay of the Born terms and the K∗ exchange amplitude is
important at forward angles, which leads to a dependence of the
total cross section on the sign of α∗

� [see Fig. 6(b)]. However,
as we will see below, in the coherent γ d → �∗�+ reaction
the region of backward angles of the K+ photoproduction
gives the main contribution, and, therefore, the final result
is not sensitive to the choice of the solution. Nevertheless,
for further consideration we chose the solution with positive
α�∗ because it describes the total K+K− production better in
γp interaction at low energies.

Finally, we note that a similar approach for the
�∗ photoproduction based on the effective Lagrangian for-
malism was developed in a recent paper [7]. The difference
consists in a different choice of the form factors and param-
eters, which results in slightly different predictions for the
differential and total cross sections. This difference may be
resolved experimentally.

III. REACTION γ d → �∗�+

The tree level diagrams for the coherent γ d → �∗�+
photoproduction are shown in Fig. 7.

First of all note that the amplitudes from the charge
and neutral meson exchange shown in Figs. 7(a) and 7(c)
and/or 7(b) and 7(d) give constructive interference in the total
cross section. That is because in the elementary amplitudes
of γN → �∗K and γN → �+K̄ reactions the dominant
contribution comes from the K∗ exchange. The different signs
in γK0∗K̄0 and γK+∗K− vertices are compensated by the
different signs in n�+K− and p�+K̄0 interactions. The
latter is a consequence of the assumed isospin I = 0 of the
pentaquark.

The amplitudes of the coherent �∗�+ photoproduction are
expressed through the transition operators of the elementary
processes γN → �∗K and γN → �+K̄ shown in Figs. 7(a),
7(c) and 7(b), 7(d), respectively, as

A(a,c) = g�NK

∫
d4p

(2π )4
ū�γ5

1

q2 − M2
K

ūσ
�∗M�∗

σµ

× p/ + M

p2 − M2
�d

p/′ + M

p′2 − M2
Udε

µ, (13a)

A(b,d) = −g�∗NK

M∗
�

∫
d4p

(2π )4
ū�M�

µ

1

q2 − M2
K

ūσ
�∗qσ γ5

× p/ + M

p2 − M2
�d

p/′ + M

p′2 − M2
Udε

µ, (13b)

where the transition operators M are described in the previous
section, �d and Ud stand for the deuteron np coupling vertex
and the deuteron spinor, respectively, p′ = pd − p, and q is
the momentum of the exchanged kaon.

Following Ref. [24], we assume that the dominant contri-
bution to the loop integrals comes from their imaginary parts,
which may be evaluated by summing all possible cuttings of
the loops, as shown in Fig. 8.
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FIG. 6. (a) Differential cross section of the
γp → �∗K+ reaction at Eγ = 2 GeV. The no-
tation “Born” corresponds to the coherent sum of
the t, s-exchange diagram and the contact term,
shown in Figs. 3(a), 3(b), and 3(d), respectively.
(b) Differential cross section of the γ n → �∗K0

reaction (solid curve) and γp → �∗K+ reaction
(dashed and dot-dashed curves). The symbol ±
indicates the sign of α�∗ .

Calculating the imaginary parts, we use the following
substitutions for the propagators of the on-shell particles
(shown by crosses):

1

q2 − M2
K

→ 2πδ
(
q2 − M2

K

)
,

p/ + M

p2 − M2
→ 2π (p/ + M) δ(p2 − M2), (14)

and the identity

∫
d4pδ(p2 − M2) =

∫
d3p
2E

, (15)

with E2 = p2 + M2. We also use the standard representation
of the product of the deuteron vertex function and the attached
nucleon propagator through the nonrelativistic deuteron func-
tion

�d

ū1(p)ū2(pd − p)

Ud

=
√

2Md ψmd,m1m2 , (16)

where ψmd,m1m2 is the deuteron wave function with the spin
projection md and the nucleon spin projections m1 and m2. By
using Eqs. (14)–(16), one can express the principal parts of the

oKoK

Λ∗

Θ+

d

γ
K+

Λ∗

Θ+Θ+

Λ∗

Θ+
K+

Λ∗

(c)

(a) (b)

(d)

n

p

d

γ
p

n

p

γ

d

nd

γ
p

n

FIG. 7. Tree level diagrams for the reaction γ d → �∗�+. The
exchange of charged and neutral mesons are shown in (a), (b) and in
(c), (d), respectively.

invariant amplitudes in Eq. (13) as

AP
(a,c) = g�NK

∑
m1m2

[ū�(p�)γ5um1 (r)]

× [
ūσ

�∗ (p∗
�)M�∗

σµ εµum2 (r)
]
S�∗

m1m2
, (17a)

AP
(b,d) = −g�∗NK

M∗
�

∑
m1m2

[ū�M�
µ um1 (r)εµ]

× [
ūσ

�∗qσ γ5 um2 (r)
]
S�+

m1m2
, (17b)

where r = pd/2 and

S�∗
m1m2

= I i
m1m2

(p�) + I j
m1m2

(k − p∗
�),

S�+
m1m2

= I i
m1m2

(p∗
�) + I j

m1m2
(k − p�),

I i,j
m1m2

(pX) = i

√
2Md

16π

∫
pdp

EpX

θ (1 − |ai,j (p, pX)|)
×φmd,m1m2 (p, a(p, pX)),

(18)

ai(p, pX) = 2EEX + M2
K − M2

X − M2

2ppX

,

aj (p, pX) = 2EEX − M2
K + M2

X + M2

2ppX

,

φmd,m1m2 (p, a) =
√

4π

〈
1

2
m1

1

2
m2

∣∣∣∣1md

〉[
u0(p)

+ 1√
8

(3a2 − 1)(1 − 3 δmd 0) u2(p)

]
,

where M2
X = E2

X − p2
X and ul with l = 0, 2 is the radial

deuteron wave function in the momentum space, normalized

(j)(i)

K

γ

d

K

γ

d

FIG. 8. Diagrammatic representation of cutting (indicated by
crosses) in the loop diagrams.
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as ∫
d3p

(2π )3
�(p) = 1,

where

�(p) = 4π
[
u2

0(p) + u2
2(p)

]
. (19)

In deriving Eqs. (17) we neglect the p dependence of the
elementary amplitudes of γN → �∗K and γN → �+K̄ on p
(see Figs. 2 and 4) in comparison with the sharp p dependence
of �(p). In our calculation we use the deuteron wave function
for the realistic Paris potential [34]. We checked that the final
result does not depend on the fine structure of the deuteron
wave function and practically does not depend on the choice
of the potential.

The differential cross section of the coherent �∗�+
photoproduction reads as

dσγd→�∗�+

d�
= 1

64π2

1

S

Pout

Pin
|Aa,c + Ab,d |2, (20)

where S, Pin, and Pout are the square of the total energy and
the momenta in the initial and the final states in γ d c.m.s.,
respectively; averaging and summing over the spin projections
in the initial and the final states are assumed. Note that the
interference between amplitudes Aa,c and Ab,d is negligible,
and they can be summed incoherently.

In Fig. 9 we show the differential cross section of the
reaction γ d → �∗�+ at Eγ = 2 GeV as a function of the
angle between the beam direction and direction of flight of
�∗ in the γ d c.m.s. The nonmonotonous behavior of the cross
section is completely defined by the spectral functions S�∗

and S�+
in Eqs. (17a) and (17b), respectively. S�∗

and S�+

have sharp peaks in forward (θγ�∗ � 27.5◦) and backward
(θγ�∗ � 152.5◦) hemispheres, respectively.
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FIG. 9. Differential cross section of the γ d → �∗�+ reaction.
The notation γ d → �∗(�+) and γ d → �+(�∗) corresponds to the
diagrams in Fig. 7(a), 7(c) and in 7(b), 7(d), respectively.
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FIG. 10. Tree level diagrams for background processes. (a)–(d)
noncoherent spectator channels; (e), (f) coherent semiresonant back-
ground processes.

IV. BACKGROUND CONTRIBUTION

Since the �∗ and �+ are unstable baryons, the typical
experiment for studying the coherent γ d → �∗�+ process
must include a simultaneous measurement of the pK− and
nK+ invariant masses. Therefore, the question is whether the
predicted cross section of the coherent �∗�+ photoproduction
is large enough to be seen above the background of competing
resonant and nonresonant processes in the γ d → npK+K−
reaction.

We consider three types of background process. One is
the photoproduction of a K+K− pair in a γp interaction
when the neutron is a spectator. This process includes the
resonant γp → �∗K+ → pK+K− photoproduction and the
nonresonant γp → pK+K− reaction shown in Figs. 10(a) and
10(b), respectively.

Similarly, a K+K− pair can be produced in a γ n interaction
when the proton is a spectator. The corresponding processes
are depicted in Figs. 10(c) and 10(d).

The third process is the coherent background when the
K+K− pair is produced in a γN interaction and one of the
kaons together with the second nucleon forms the outgoing
�+ or �∗, as shown in Figs. 10(e) and 10(f), respectively. We
term it a coherent semiresonant background.

A. Spectator channels

First, let us consider the K+K− photoproduction in a
γ d interaction where the neutron or proton is merely a
spectator. As an input, we have to describe the elementary
processes γp → pK+K− and γ n → nK+K−, which consist
of resonant and nonresonant parts.
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FIG. 11. Background processes for the γp → pK+K− reaction:
(a) vector meson contribution; (b) virtual �(1405) excitation.

1. γ p → pK+ K−

The dominant contribution to the nonresonant part in
γp reactions comes from the virtual vector meson decay and
�(1405) excitation [8,22] as depicted in Figs. 11(a) and 11(b).
The contribution from excitations of other hyperons is strongly
suppressed, since they are far off-shell.

The vector meson channel γp → Vp → pK+K−, where
V = φ, ρ, ω has been analyzed in detail in Ref. [8]. In the
present study we use this model in which the vector mesons are
produced through the Pomeron and meson (π, η, σ ) exchanges
with the same parameters. The only difference from Ref. [8]
is that now we do not use a cut on the invariant mass of the
K+K− pair around the φ meson mass.

We parameterize the amplitude of the virtual �(1405)
excitation through the K∗ exchange process. This assumption
is supported by the K∗ exchange dominance in �∗ and
�+ photoproduction and allows us to reduce the number of
unknown parameters. The amplitude of this channel reads as

A�′
f i = ū(p′)M�′

µ u(p)εµ,
(21)

M�′
µ = −i

egγKK∗g′

MK∗
(
t − M2

K∗
)εµναβkνqα

× (p/�′+M�′ )γ5γβ

p2
�′ − M2

�′ + i��′M�′
FK∗(t),

where �′ ≡ �(1405), ��′ = 50 MeV is the total decay width
of �′ [11], FK∗ (t) is the K∗ exchange form factor, and the
constant g′ is a product of the two coupling constants g�′NK

and g�′NK∗ . The choice g′ � 7.8 gives the correct value of
the total yield of K+K− mesons at Eγ ∼ 2 GeV. Note that
the interference between the resonance and nonresonance
channels in the total cross section is rather weak, and, therefore,
they can be added incoherently. Thus, the total cross section
of the γp → pK+K− reaction reads as

dσ

d�dMpK−
=

(
dσ

d�

)γp→�∗K+

F�∗
(MpK− )

+ 1

64π2

1

s

pout

pin

q̄F

16π3

×
∫ (∣∣AV

f i(γp)
∣∣2 + ∣∣A�′

f i

∣∣2)
d�F , (22)

where � is the solid angle of the K− meson photoproduction
in the γp c.m.s., q̄F is the momentum of the K− meson in
the c.m.s. of the pK−-pair, and �F is the K− meson solid
angle in this system. Summing and averaging over the spin
projection in the initial and the final states is to be included.
F�∗

(MpK− ) stands for the �∗ decay distribution, which is

1.4 1.5 1.6 1.7

MpK
- (GeV)

0

3

6

9

12

dσ
/d

M
pK

-(
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/G
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γp–>pK
+ −
K

total

γp–>Λ∗
K

+

V–>KK
Λ1405

FIG. 12. The pK− invariant mass distribution in the γp →
pK+K− reaction at Eγ = 2 GeV. The resonance channel, vector
meson, and �(1405) contributions are shown by the inner solid, long
dashed, and dashed curves, respectively.

obtained straightforwardly from the general expression for
the γp → pK+K− amplitude with the virtual excitation of a
�∗ hyperon,

F�∗
(Mx) = ��∗→pK−

π�tot

2MxM�∗�tot(
M2

x − M2
�∗

)2 + (�totM�∗ )2
, (23)

where �tot = 15.6 MeV and ��∗→pK− = (0.45/2) × �tot [11].
The pK− invariant mass distribution at Eγ = 2 GeV inte-

grated over � is shown in Fig. 12. One can see that the �(1405)
excitation contributes at MpK− below the �∗ resonance
position, and the vector meson channels contribute mainly
at large MpK− , above M�∗ . The partial contributions to the
total γp → pK+K− cross section are the following: σ (�∗) �
0.19 µb, σ (V ) � 0.17 µb, and σ (�(1405)) � 0.07 µb. The
total cross section σtot � 0.43µb is in agreement with the
experimental data of Ref. [35]: σ

exp
tot = (0.47 ± 0.12) µb at

Eγ = 2–2.5 (GeV).

2. γ n → nK+ K−

In this case the nonresonant part is dominated by the
vector meson excitation and, therefore, the nK+ invariant mass
distribution may be written in obvious notation as

dσ

d�dMnK+
=

(
dσ

d�

)γ n→�+K−

F�+
(MnK+ )

+ 1

64π2

1

s

pout

pin

qF

16π3

∫ ∣∣AV
f i(γ n)

∣∣2
d�F , (24)

with

F�(Mx) = 1

2π

2MxM���(
M2

x − M2
�

)2 + (�totM�)2
. (25)

We will also use the Gaussian distribution taking into ac-
count the small �+ decay width and the finite experimental
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FIG. 13. The nK+ invariant mass distribution in the γ n →
nK+K− reaction at Eγ = 2 GeV. BW indicates the Breit-Wigner
�+ decay distribution of Eq. (25). The dashed curve corresponds to
a Gaussian distribution of the �+ decay width σ = 5 MeV.

resolution,

F�
G (Mx) = 1

2

1

σ
√

2π
e
− (Mx−M�)2

2σ2 . (26)

The nK+ invariant mass distribution at Eγ = 2 GeV inte-
grated over � is shown in Fig. 13. One can see the sharp peak
of �+ excitation. In case of a Gaussian �+ decay distribution
the peak is modified. The height of the peak is reduced by the
factor σ/��, and the width becomes proportional to σ .

3. Spectator reactions γ d → pK+ K−(n) and
γ d → nK+ K−( p)

The differential cross section of the γ d → pK+K−(n)
reaction, where the neutron is a spectator, reads as

dσ sp.(n)

d�dMpK−dMnK+
=

(
dσ

d�dMpK−

)γp→pK+K−

×WnK (MnK+ ),
(27)

WnK (MnK+ ) = 2MnK+

∫
d3pn

(2π )3
√

1 + p2
n

/
M2

N

× δ
(
M2

nK+ − (pn + q)2) �(pn),

where we neglect the smooth dependence of dσ γp→pK+K−
on

pn in comparison to the sharp pn dependence of the momentum
distribution in the deuteron, �(pn), defined in Eq. (19).

If the invariant mass of the nK+ pair is not fixed, then the
integration over MnK+ leads to the obvious result∫

dMnK+
dσ sp.(n)

d�dMpK−dMnK+
�

(
dσ

d�dMpK−

)γp→pK+K−

.

(28)

When the invariant mass is fixed, then the function WnK (MnK+ )
becomes important, and, moreover, it defines mainly the
dependence of the cross section on MnK+ . Indeed, let us assume
that the momentum distribution in a deuteron behaves as a delta
function, i.e., �(p) � (2π )3 δ(p). Then one gets

WnK (MnK+) � 2MnK+ δ
[
M2

nK+ − (
M2

N + M2
K + 2EK+MN

)]
.

(29)

That is, the distribution WnK (MnK+) has a peak around
the point MnK+ 0 �

√
M2

N + M2
K + 2EK+MN , which is deter-

mined by the energy of the K+ meson in the laboratory system.
On the other hand, this energy depends on the invariant mass
of the pK− pair and the angle of the K+ production in the γp

c.m.s. In reality, the distribution function reads as

WnK (MnK+)

= 2MnK+

∫
pdp

8π2qL

√
1 + p2

/
M2

N

�(p)θ (1 − |a|),

a =
2
√(

q2
L + M2

K

)(
p2 + M2

N

) + M2
N + M2

K − M2
nK+

2pqL

,

(30)

where qL is the momentum of K+ meson in laboratory system.
The distribution function WnK is shown in Fig. 14(a) as a
function of MnK+ at fixed angle of pK− pair photoproduction,
θγ (pK−) (in γ d c.m.s.) for three different invariant masses of the
pK− pair: MpK− = 1.52, 1.57 and 1.47 GeV. The choice of
θγ (pK−) = 27.5◦ corresponds to the position of the maximum
of the coherent γ d → �∗�+ photoproduction cross section
at forward angles (see Fig. 9). This angle corresponds to the
backward K+ photoproduction in γp → �∗K+: θγK+ � 119◦
in the γp c.m.s.

The differential cross section of the γ d → nK+K−(p)
reaction, where the proton is spectator, may be obtained from
Eq. (27) by using the substitutions n → p,K+ → K−, and
MnK+ → MpK− :

dσ sp.(p)

d�dMpK−dMnK+
=

(
dσ

d�dMnK+

)γ n→nK+K−

WpK (MpK−).

(31)

The essential difference is that now we analyze the dependence
of the distribution function WpK not on MpK− but on the
invariant mass MnK+ . This dependence is included in WpK

implicitly through the dependence of the momentum of K−
on MnK+ , and therefore, in general, we have no narrow peak
structure of WpK as a function of MnK+ . As an example, in
Fig. 14(b) we show the distribution WpK as a function of
MnK+ at fixed values of MpK− = 1.52, 1.57, and 1.47 GeV and
θγ (pK−) = 152.5◦. One can see a broad maximum at MpK− =
1.52 GeV and an almost monotonic behavior at 1.47 and
1.57 GeV.

B. Coherent semi-resonant background

The amplitude of the process shown in Fig. 10(e) is
calculated similarly to the amplitude of the coherent �∗�+
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FIG. 14. (a) Invariant mass distribution
function WnK as a function of MnK+ at
θγ (pK−) = 27.5◦ and fixed values of MpK− .
(b) Invariant mass distribution function WpK as a
function of MnK+ at θγ (pK−) = 152.5◦ and fixed
values of MpK− .

photoproduction described by Eq. (17a). The corresponding
cross section reads as

dσ e

d�dMpK−dMnK+

= 1

64π2

1

s

pout

pin

q̄F

16π3

1

2

∣∣∣∣d�′

d�

∣∣∣∣
∫

d�F |Ae|2 F�(MnK+),

(32)
Ae = g�NK

∑
m1m2

[ū�(p�)γ5um1 (r)]

× [
ūσ

�∗ (p∗
�)Mγp→pK+K−

σµ εµum2 (r)
]
S�∗

m1m2
,

where pin, pout are the momenta of the proton and pK− pair
in γp c.m.s., � and �′ are the solid angles of the pK− pair
in γ d and γp reactions, respectively, q̄F is the momentum of
the K− meson in the rest frame of the pK− pair, and �F is
the solid angle of K− in this frame. The additional factor 1/2
assumes renormalization of the flux in the γ d system compared
with the γp interaction. The function F�(MnK+ ) is defined in
Eq. (25). Averaging and summing over the spin projections in
initial and the final states, respectively, have to be performed.
Actually, here we have a sum of two cross sections. One is the
contribution of the virtual vector meson and another one is the
contribution of the virtual �(1405) excitation.

Similarly, one can write the cross section of the process
shown in Fig. 10(f) as

dσf

d�dMpK−dMnK+

= 1

64π2

1

s

pout

pin

qF

16π3

1

2

∣∣∣∣d�′

d�

∣∣∣∣
∫

d�F |Af |2 F�∗
(MpK− ),

(33)
Af = −g�∗NK

M∗
�

∑
m1m2

[
ū�Mγ n→nK+K−

µ um1 (r)εµ
]

× [
ūσ

�∗qσ γ5 um2 (r)
]
S�+

m1m2
,

where the function F�∗
(MpK− ) is defined in Eq. (23) and other

notation is similar to the previous case.
Let us now compare the contribution of the coherent �∗�+

photoproduction and the coherent semiresonant background
described by Eqs. (33) and (34) in the vicinity of the �+ and

�∗ resonance position:

dσ̃ ch.

d�
=

M�∗+�∫
M�∗ −�

M�+�∫
M�−�

dMpK− dMnK+

× dσγd→�∗�+

d�
F�∗ (MpK−) F�+ (MnK+),

(34)

dσ̃ ch.bg.

d�
=

M�∗+�∫
M�∗ −�

M�+�∫
M�−�

dMpK− dMnK+

×
(

dσ e

d�dMpK−dMnK+
+ dσf

d�dMpK−dMnK+

)
,

where � = 20 MeV. In Fig. 15 we show result of such
a comparison. One can see that the coherent background
contribution has local maxima caused by the spectral functions
S, but the values of these contributions at the peak positions
are much smaller than for the coherent process. Therefore, the
dominant background contribution comes from the spectator
processes.
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γd –>pnK
+ −
K (coh.)

*

~

FIG. 15. Comparison of the coherent �∗�+ photoproduction
(solid curve) and coherent semi-resonant background (dashed curve)
depicted in Fig. 10(e) and 10(f).

035206-10



COHERENT �+ AND �(1520) PHOTOPRODUCTION OFF THE DEUTERON PHYSICAL REVIEW C 72, 035206 (2005)

V. RESULTS AND DISCUSSION

As pointed out above, the coherent �∗�+ photoproduction
seems to be accessible most effectively by a search for a
sharp �+ peak in the invariant nK+ mass distribution at fixed
invariant masses of the pK− pair

dσγd→npK+K−
(M0)

d�dMnK+
=

M0+�∫
M0−�

dMpK−
dσγd→npK+K−

d�dMnK+dMpK−
. (35)

In our further analysis we choose M0 = 1.52, 1.57, and
1.47 GeV and � = 20 MeV. One can expect that the coherent
photoproduction appears at M0 = M�∗ = 1.52 GeV and that
it is suppressed relative to the strong background when we
go above or below this point. Since the cross section of
the coherent photoproduction at Eγ = 2 GeV has bumps
at θγ�∗ � 27.5◦ and 152.5◦ in γ d c.m.s. (see Fig. 9), then
it is natural to expect that the regions around these angles
are more favored for a manifestation of the coherence
effect.

Note that at forward and backward angles of the pK−
pair photoproduction, θγ (pK−), some of the spectator processes
shown in Fig. 10 are suppressed dynamically. To illustrate
this point, let us consider the dependence of cos θγK− in
γp → �∗K+ photoproduction and cos θγK+ in γ n → �+K−
photoproduction as a function of cos θγ�∗ (Fig. 16). Here we
assume that θγK is the K meson photoproduction angle in
the γN c.m.s. and θγ�∗ is the �∗ photoproduction angle in
γ d c.m.s. One can see that the region of 0 � θγ�∗ <∼ 76◦ is
forbidden kinematically for �+K− photoproduction from the
resting neutron. Similarly, the region of 107◦ <∼ θγ�∗ � π is
forbidden for �∗K+ photoproduction from the resting proton.
In the kinematically forbidden regions the corresponding
processes can proceed only through the high-momentum
component in the deuteron wave function and, therefore, are
exponentially small.

Consider first γ d → npK+K− photoproduction at a for-
ward angle of the pK− pair at θγ (pK−) � 27.5◦ and Eγ =

−1.0 −0.5 0.0 0.5 1.0

cosθγΛ(γd c.m.s. )

−1.0

−0.5

0.0

0.5

1.0

co
sθ

γK
(γ

N
 c

.m
.s

.)

γ p–>Λ∗
K

+

γ n–>Θ+ −
K

FIG. 16. Dependence of cos θγK− in γp → �∗K+ photoproduc-
tion and cos θγK+ in γ n → �+K− photoproduction as functions of
cos θγ�∗ in the γ d → �∗�+ reaction at Eγ = 2 GeV.

2 GeV. The corresponding invariant mass distributions for
M0 = 1.52, 1.57 and 1.47 are shown in Figs. 17(a)–17(c),
respectively.

At M0 = M�∗ , the background is dominated by the resonant
�∗ photoproduction in the spectator mechanism shown in
Fig. 10(a). The next important contribution comes from the
nonresonance spectator channel [Fig. 10(b)]. The shape of
the background spectrum has a resonancelike behavior with
the center close to the mass of �+ and a width of about 15 MeV.
This behavior is defined by the spectral distribution function
WnK (or the deuteron momentum distribution) in Eq. (27)
and the kinematics [see Fig. 14(a)]. At MpK− = 1.52 GeV,
WnK has a sharp peak at MnK+ � 1.54 GeV. For MpK− =1.57
and 1.47 GeV the peak position is shifted to lower or higher
masses, respectively. Similarly, one can see the correspond-
ing shift in the background contribution at M0 = 1.57 and
1.47 GeV, shown in Figs. 17(b) and 17(c). Here, the
background is dominated by the nonresonance spectator
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FIG. 17. The nK+ invariant mass distribution in the γ d → npK+K− reaction at fixed values of the pK− invariant mass. The angle of
the pK− pair photoproduction in γ d c.m.s., θγ (pK−) = 27.5◦ and Eγ = 2 GeV. (a) MpK− = 1.52 ± 0.02 GeV; (b) MpK− = 1.57 ± 0.02 GeV,
(c) MpK− = 1.47 ± 0.02 GeV. The notation sp.(γp → �∗K+) and sp.(γp → pKK) corresponds to the processes depicted in Figs. 10(a) and
10(b), respectively; γ d → �+pK− corresponds to the coherent background shown in Fig. 10(e), γ d → �∗�+ corresponds to the coherent
�∗�+ photoproduction (Fig. 7).
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FIG. 18. Summary plot of the total nK+ invariant mass distri-
bution in the γ d → npK+K− reaction at three fixed intervals of
the pK− invariant mass with M0 = 1.52, 1.57 and 1.47 (GeV) at
θγ (pK−) = 27.5◦ and Eγ = 2 GeV.

channels. Its value is almost similar for all considered
values of M0, being much smaller than the total background
at M0 = 1.52 GeV.

At M0 = 1.52 GeV, the height of the peak of the coherent
�∗�+ channel is about one third of the total background
contribution. This ratio decreases for M0 = M�∗ ± 70 MeV.
Thus, a summary plot of the total nK+ invariant mass
distribution for three fixed intervals of the pK− invariant mass
is shown in Fig. 18.

One can conclude that, since the width of the coherent
photoproduction is much smaller than the effective width of the
background, this contribution can be extracted experimentally
under the condition of a high-resolution measurement of the
nK+ invariant mass.

In the case of a energy resolution comparable with the
width of the background peak, one has to smear this peak.
The simplest way to do it is integrating the nK+ invariant

mass distribution over � in the forward hemisphere of the
pK− pair photoproduction. The corresponding predictions
for M0 = 1.52 GeV and a summary plot for three values
of M0 are shown in Figs. 19(a) and 19(b), respectively.
One can see that again at M0 = M�∗ the background is
dominated by the resonance �∗ photoproduction where the
neutron is a spectator. But the shape of the background is
quite different from the previous case. Instead of the narrow
peak one observes a monotonic increase of the background
contribution. This behavior allows us to extract the sharp
�+ peak of the coherent �∗�+ photoproduction. The peak
becomes negligible at M0 = M�∗ ± 70 MeV, as shown in
Fig. 19(b). Here one can also see the prediction for a Gaussian
smearing of the �+ peak with σ = 5 MeV.

Consider now the backward hemisphere of the pK− pair
photoproduction in the reaction γ d → npK+K−, say for
θγ (pK−) � 152.5◦. The corresponding invariant mass distribu-
tions at different M0 are exhibited in Fig. 20.

Now, the dominant contribution to the background comes
from the spectator resonant �+ photoproduction, depicted in
Fig. 10(c). The other channels are rather weak. At M0 =
1.52 GeV the background contribution is enhanced by the
distribution function WpK , which at MnK+ � 1.54 GeV is
much greater for M0 � M�∗ [see Fig. 14(b)]. The coherent
contribution of the �∗�+ photoproduction is a factor of four
smaller than the background contribution.

The summary plot of the total invariant mass distribution
of the nK+ for three fixed intervals of the pK− invariant
mass is displayed in Fig. 21. One can see a strong increase
of the invariant mass distribution at M0 = 1.52 GeV. But this
increase is caused mainly by the properties of the distribution
function WpK . Here, we have no striking qualitative effect of
the coherent �∗�+ photoproduction. Therefore, studying the
coherent ��+ photoproduction seems to be difficult in this
kinematic region.

Now we make three comments. First, since in the for-
ward hemisphere of the �∗ photoproduction the dominant
contribution comes from the backward angles of the K+
photoproduction in the elementary γp → �∗K̄+ subprocess,
our predictions are not sensitive to the choice of the solution
for the coupling strength α�∗ discussed in Sec. II [see
Fig. 6(b)].
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FIG. 19. (a) The nK+ invariant mass

distribution in the γ d → npK+K− reac-
tion at M0 = 1.52 GeV at the forward
hemisphere of pK− pair photoproduction
and Eγ = 2 GeV. Notation is the same as
in Fig. 17. (b) Summary plot of the total
nK+ invariant mass distribution at three
fixed intervals of the pK− invariant mass
with M0 = 1.52, 1.57 and 1.47 GeV.
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FIG. 20. Same as in Fig. 17 but for θγ (pK−) = 152.5◦. The notations sp.(γ n → �+K+) and sp.(γ n → nKK) corresponds to the processes
depicted in Figs. 10(c) and 10(d), respectively.

Second, in our analysis we have assumed that the
�+ photoproduction from the nucleon is dominated by the
t-channel K∗ exchange process. This assumption leads to a
similarity of the �+ photoproduction from the neutron and
proton. A violation of this similarity (or a suppression of the
photoproduction from the proton, with the cross section of
the γ n → �+K− kept on the same level) discussed recently
[9,23] would result in a suppression of the process shown in
Fig. 7(d). As a consequence, the coherent cross section
of �∗�+ photoproduction would be suppressed around the
second peak at the backward angles of the pK− pair
photoproduction, shown in Figs. 9 and 15, leaving the first
peak at the forward-angle photoproduction without change.
The corresponding calculation of the differential cross sec-
tion with and without the contribution of the γp → �+K̄0

subprocess is presented in Fig. 22. Since the coherent �∗�+
photoproduction is determined by the first peak, our main
result shown in Fig. 19 remains unchanged.
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FIG. 21. Same as in Fig. 18 but for θγ (pK−) = 152.5◦.

Third, the bumplike structure of the differential cross
section of the coherent γ d → �∗�+ reaction is caused mainly
by the spectral functions S in Eqs. (17). Thus in Eq. (17a) the
amplitude of the �+ → nK+ transition is a smooth function
compared with the spectral function S�∗

independently of the
properties of �+. Therefore, our predictions remain valid for
the JP = 3

2
±

of �+, considered in the recent Ref. [9].
When our prediction is to be compared with experiments,

one should pay attention to at least the following two points.
First, an energy spread in the beam photon may change the
shape of the background, which is determined mainly by
the quasi-free �∗ production. However, our conclusion, as
indicated by Fig. 19, is not changed qualitatively. Second,
the shape of the background is sensitive to the acceptance of
the measurement. In particular, the effect of coherent �∗�+
production may be significantly suppressed when the detector
does not have the acceptance to detect the pK− pair in the
forward angles. In contrast, the acceptance of the forward
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FIG. 22. Differential cross section of �∗�+ photoproduction
with (solid curve) and without (dashed curve) the contribution of
the γp → �+K̄0 subprocess.
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pK−, as in the case of LEPS of SPring-8 [1], may make the
effect more pronounced.

VI. SUMMARY

In summary, we analyzed the coherent �∗�+ photo-
production in γ d interaction, taking into account different
background processes. We found that the behavior and the
strength of the background processes depend strongly on the
kinematics, where the momentum distribution in the deuteron
plays a key role. Thus, at fixed angle of the pK− photopro-
duction the nK+ invariant mass distribution of the background
processes looks like a narrow peak with maximum around the
�+ mass. This behavior hampers the extraction of the coherent
process at finite invariant mass resolution. Most promising
is an experimental analysis of the distributions integrated
over the pK− production angles in the forward hemisphere
of the c.m.s. In this case the background processes increase
monotonically with MnK+ in the vicinity of M�+ , which allows
us to extract the coherent γ d → �∗�+ channel even with
finite invariant mass resolution. We have demonstrated that
the coherent �+�(1520) photoproduction does not depend
on the �+ photoproduction amplitude but rather is defined
by the probabilities of the �(1520) photoproduction and the
�+ → NK transition. Therefore, this effect may be used
as an independent method for studying the mechanism of
�+ production and �+ properties.

Our model estimates for the γ d reaction may be considered
an example of why the �+ peak is seen under certain
experimental conditions and why it does not appear above
the strong background in others.

Finally, we note that the predicted process of the coherent
�∗�+ photoproduction may be studied experimentally at the
electron and photon facilities at LEPS of SPring-8, JLab,
Crystal Barrel of the Electron Stretcher and Accelerator
(ELSA) and GRAAL of the European Synchrotron Radiation
Facility (ESFR).
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APPENDIX: TRANSITION OPERATORS FOR THE
RESONANCE AMPLITUDES

1. �+ photoproduction amplitude

We show here the explicit expressions for the transition
operators Mµ in Eq. (5) for a positive �+ parity and the PS
coupling scheme.

The specific parameters for the form factor in Eq. (4) are
defined by

Fs = F (MN, s), Fu = F (M�, u), Ft = F (MK+ , t). (A1)

In addition, we need the form-factor combinations

F̃tu = Ft + Fu − FtFu, F̃su = Fs + Fu − FsFu (A2)

to construct the contact terms Mc
µ given below that make the

initial photoproduction amplitude gauge invariant [25,26]. The
four-momenta in the following equations are defined according
to the arguments given in the reaction equation

γ (k) + N (p) → �+(p�) + K̄(q̄). (A3)

a. γ n → �+ K−

Mt
µ = i

eg�NK (kµ − 2q̄µ)γ5

t − M2
K+

Ft , (A4a)

Ms
µ = ieg�NKγ5

p/ + k/ + MN

s − M2
N

(
i

κp

2MN

σµνk
ν

)
Fs, (A4b)

Mu
µ = ieg�NK

(
γµ + i

κ�

2M�

σµνk
ν

)

× p/� − k/ + M�

u − M2
�

γ5 Fu, (A4c)

Mc
µ = ieg�NKγ5

[
(k − 2q̄)µ
t − M2

K+
(F̃tu − Ft )

+ (2p� − k)µ
u − M2

�

(F̃tu − Fu)

]
. (A4d)

The transition operator of t-channel K∗ exchange amplitude is
given by

Mt
µ(K∗) = egγKK∗g�NK∗

MK∗

εµναβkαq̄β

t − M2
K∗

×
[
γ ν − i

σ νλ(p − p�)λ
M� + MN

κ∗
]
F (MK∗, t). (A5)

b. γ p → �+ K̄ 0

Ms
µ = i

eg�NK

M� + MN

γ5q̄/
p/ + k/ + MN

s − M2
N

×
(

γµ + i
κp

2MN

σµνk
ν

)
Fs, (A6a)

Mu
µ = i

eg�NK

M� + MN

(
γµ + i

κ�

2M�

σµνk
ν

)

× p/� − k/ + M�

u − M2
�

γ5q̄/ Fu, (A6b)

Mc
µ = i

eg�NK

M� + MN

γ5q̄/

[
(2p + k)µ
s − MN

(F̃su − Fs)

+ (2p� − k)µ
u − M2

�

(F̃su − Fu)

]
. (A6c)
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2. �∗ photoproduction amplitude

We show here the explicit expressions for the transition
operators Mσµ in Eq. (8) for the reactions γp → �∗K+ and
γ n → �∗K0.

a. γ p → �∗ K+

Mt
σµ = i

eg�∗NKM∗
�(2qµ − kµ)(kσ − qσ )γ5

t − M2
K+

Ft , (A7a)

Ms
σµ = −i

eg�∗NK

M∗
�

qσ γ5
p/ + k/ + MN

s − M2
N

×
(

γµ + i
κp

2MN

σµνk
ν

)
Fs, (A7b)

Mc
σµ = i

eg�∗NK

M∗
�

γ5

[
(2q − k)µ(k − q)σ

t − M2
K+

(F̃ts − Ft )

− (2p + k)µ
s − MN

(F̃ts − Fs) + gσµ F̃ts

]
. (A7c)

The corresponding form factors are defined by

Fs = F (MN, s), Ft = F (MK+ , t), F̃ts = Ft + Fs − FtFs.

(A8)

The transition operator of t-channel K∗ meson exchange
amplitude is given by

Mt
σµ(K∗) = egγKK∗g�∗NK∗

MK∗M�∗

ενµαβ kνqα

t − M2
K∗

× [q ′
σ γσ − q/′gσβ] F (MK∗, t) (A9)

with q ′ = p�∗ − p.

b. γ n → �∗ K 0

Ms
σµ = −i

eg�NK

M∗
�

qσ γ5
p/ + k/ + MN

s − M2
N

(
i

κp

2MN

σµνk
ν

)
Fs.

(A10)

The t-channel K∗-exchange operator is defined by Eq. (A9)
with the appropriate coupling constant gγKK∗ .
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