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We employ point form relativistic quantum mechanics to calculate the photoproduction and electroproduction
of nucleon resonances. Both the transverse and longitudinal transition amplitudes are computed based on the
constituent quark model within the relativistic framework. The obtained results are compared with the calculations
of the nonrelativistic approach and of the hypercentral potential model. Relativistic effects and discrepancies
among the models are discussed.
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I. INTRODUCTION

We know that the nonrelativistic constituent quark model
has been employed to study low-energy hadronic phenomena
for a long time. The discussion of photoproduction and
electroproduction amplitudes of low-lying nucleon resonances
with this approach is one of the most interesting topics
since knowledge of those amplitudes is closely related to
nonperturbative QCD and can provide detailed information
about the structure of the nucleon. It is believed that new
data of nucleon structure functions in the resonance region
and of nucleon resonance transition amplitudes can provide
a test for different model predictions. Even though there are
many calculations in the literature, most of them are done
within the nonrelativistic framework and consider relativistic
corrections to the electromagnetic transition operators and to
the nucleon and resonance wave functions [1–3]. It has been
extensively discussed that the conventional long-wavelength
approximation in the reduction of electromagnetic transition
operators in the nonrelativistic constituent quark model (see
Ref. [2]) is not valid if the virtuality of the photon Q2 is around
1 GeV2. Moreover, the heavier the resonance is, the smaller is
the valid range of the long-wavelength approximation. Thus,
calculated transition amplitudes are expected to be valid in a
region of rather small Q2. It should be stressed that Lorentz
covariance is apparently lacking in those phenomenological
calculations [1–3]. Recently, the measurements of quark-
hadron duality indicate that the duality of the nucleon structure
function F2 may occur in the moderate-Q2 region (∼1 GeV2)
[4,5]. To understand the quark-hadron duality and the nucleon
structure functions in the resonance region, we need to have
a correct description of the nucleon electromagnetic transition
amplitudes in this moderate-Q2 region.

In 1949, Dirac [6] first proposed three equivalent forms of
relativistic dynamics: the instant form, the light-front form,
and the point form. In the instant form of relativistic quantum
mechanics, the interactions are involved in P0 (the time
component of the four-momentum) and in the Lorentz boost
operators J01, J02, and J03. Therefore, the main difficulty
of this form is that the manifest Lorentz covariance is lost
by construction because the three Lorentz boost operators
contain the interactions. In the point form, however, all the
components of the four-momentum Pµ(µ = 0, 1, 2, 3) are

associated with the interactions. They are the Hamiltonians
of the system. Other dynamical operators, such as angular
momentum and Lorentz boost operators, are interaction free.
Thus, the advantage of the point form is that all the Lorentz
transformations remain purely kinematic and the theory is
manifestly Lorentz covariant. The instant and light-front forms
have become rather popular in the past several decades and
most of the calculations are based on these two frameworks.
The point form framework has been discussed by Keister
and Polyzou [7] in 1991 and has recently been carefully and
systematically studied by Klink [8]. It was also employed in
the calculations of nucleon form factors [9], nucleon resonance
strong decays [10], and some other aspects of hadron physics
[11,12]. The results of the point form in the literature show
the importance of the relativistic description of the system.
Particularly, when the momentum transfer Q2 is at a moderate
region of ∼1 GeV2, the differences between the results of the
nonrelativistic calculation and those of the fully relativistic
point form are evident. It is found, in the calculation of
the proton electromagnetic and axial-vector form factors [9],
that the point form relativistic description always reduces
to the theoretical estimates of the nonrelativistic constituent
quark model. In addition, the strong decay widths predicted
by the point form [10] are remarkably different from the
nonrelativistic constituent quark model calculations. So far,
how well the point form relativistic quantum mechanics
aids in our understanding of hadron properties is still under
investigation [12].

In this work, the point form relativistic quantum mechan-
ics will be employed to calculate invariant electromagnetic
transverse and longitudinal transition amplitudes of low-lying
nucleon resonances. Moreover, the results of the nonrelativistic
framework in two reference frames—the conventional Breit
frame and the known equal velocity reference (EVR) frame
[13]— will be shown for comparison. It is expected that there
are remarkable differences between electromagnetic transition
amplitudes of the nonrelativistic framework and those of the
relativistic point form one.

This work is organized as follows. In Sec. II, we will
briefly present the formulations of the transition amplitudes
in the point form relativistic quantum mechanics. Section III
will show our calculations and results and other discussion.
Conclusions will be given in Sec. IV.
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II. FORMULATIONS IN POINT FORM

In this section, we briefly show the point form formulations.
In the point form relativistic quantum mechanics, one usually
uses the Bakamjian-Thomas method [14] by putting the
interactions into a mass operator M̂ to construct the interacting
four-momentum operator Pµ. In this way, the mass operator
M̂ can be divided into two parts. One is the free mass operator
M̂fr without any interactions and the other is the interacting
mass operator M̂int. The four-momentum Pµ is related to the
mass operator by

P µ = M̂V̂
µ

fr , (1)

where the free four-velocity operator V̂
µ

fr is not affected by the
interactions. According to the commutation relations satisfied
by the operators of the dynamical system and according to
the fact that P µ is a Lorentz vector, one gets [V µ

fr , M̂] = 0
and M̂ is a Lorentz scalar. Thus, the eigenstates of the
four-momentum operator P µ are the eigenstates of both the
mass and the velocity operators. In the center-of-mass frame
of the system, we can obtain the wave functions of the
three-quark system by solving a semirelativistic Schrödinger
equation (wherein the nonrelativistic kinetic energy operator
is replaced by the semirelativistic one including positive
energy only). Those wave functions are the eigenstates of
the mass operator with interactions. Since in the point form
the Lorentz transformations remain purely kinematic, the
so-called velocity state is usually introduced as follows:

|v; �k1, �k2, �k3; µ1, µ2, µ3〉
= UB(v)|k1, k2, k3; µ1, µ2, µ3〉
=

3∏
i=1

D1/2
σiµi

[RW (ki, B(v))]|p1, p2, p3; σ1, σ2, σ3〉, (2)

where ki, i = 1−3 are the quark momenta in the center-
of-mass frame (

∑
i
�ki = 0). B(v) is a Lorentz boost with

four-velocity v. In Eq. (2) pi = B(v)ki , and UB(v) is a
unitary representation of B(v). D1/2(RW ) is the spin-1/2
representation matrix of the Wigner rotation RW (ki, B(v)) =
B−1(B(v)ki)B(v)B(ki) [15]. A detailed discussion of the
transformation properties of the velocity states has been given
in Ref. [8]. It has been proved that all Wigner rotations of a
canonical boost of a velocity state are the same. Therefore, the
spins can thus be coupled together to a total spin state as in
the nonrelativistic framework as well as in the center-of-mass
frame. This is the practical advantage of using the velocity
state in the point form relativistic mechanics.

To calculate photoproduction and electroproduction ampli-
tudes of a nucleon resonance, we simply employ the point form
spectator approximation in the electromagnetic interaction, as
developed in Refs. [8] and [9]. Here, it should be mentioned
that the momentum transferred to the total nucleon is different
from the momentum transferred to the struck constituent. The
conserved electromagnetic current operator contains both the
one-body current and the dynamically determined current [16]:

Jµ := j 1
µ + jDD

µ . (3)

The one-body electromagnetic current j 1
µ in the point form

spectator approximation has the usual form of a pointlike Dirac

particle,

〈p′
i , λ

′
i |j 1

µ|pi, λi〉 = ei ū(p′
i , λi)γµu(pi, λi), (4)

where u(pi, λi) is the Dirac spinor with momentum pi and
spin λi for the ith struck quark. The matrix element of the
dynamically determined current is [16]

〈p′, λ′
i |jDD

µ |p, λ〉 = −qµ + q⊥
µ

q2
qν〈p, λ′

i |j 1
ν |p, λ〉, (5)

where qµ is the four-momentum of the incoming photon and
q⊥

µ is a four-vector perpendicular to q and is determined by
the requirement that there should be no pole at q2 = 0. It is
clear that the dynamically determined current does not affect
the transverse current [16]. Moreover, the gauge-invariant
constraint condition qµJµ = 0 is satisfied.

In fact, the electromagnetic four-momentum P
µ
em of the

relativistic point form has been discussed in Ref. [8]. P
µ
em

is obtained by integrating J ν(x)Aν(x) [where Aν(x) is the
photon field] over a forward hyperboloid [xµxµ = (cτ )2, x0 >

0, where c is the speed of light]:

P µ
em =

∫
d4xδ(x · x − (cτ )2)xµθ (x0)J ν(x)Aν(x)

=
∫

d3x√
(cτ )2 + �x · �x

(
cτ

�x
)µ

J ν(x)Aν(x), (6)

where τ is a constant. Here, we simply use P 0
em =∫

d3xJ ν(x)Aν(x) (in the nonrelativistic limit: c → ∞).
We can directly calculate the transition amplitudes by

using the same approach as in the calculation of resonance
strong decays in the point form [10]. We know that the
transverse (longitudinal) transition amplitude is the matrix
element of the transverse (longitudinal) photon and quark
interaction of HT

em (HL
em). In the fully relativistic point form,

the results of the amplitudes are frame independent. However,
in the nonrelativistic constituent quark model, the results
are reference frame dependent because the lack of Lorentz
covariance. In that approach, the electromagnetic transition
amplitudes of the nucleon resonances are usually studied in
the conventional Breit and EVR frames [13]. In Table I, we

TABLE I. Incoming photon four-momentum qµ = (ω, 0, 0, q),
and the four-momenta of the initial nucleon (Pi) and of the final
resonance (Pf ) in the Breit and EVR frames. MN and MX are the
masses of the nucleon and of the final resonance X, and Q2 is associ-
ated with the four-momentum transfer to the nucleon, Q2 = −(ω2 −
�q2) (here, we select �q ‖ ẑ).

Quantities Breit frame Equal velocity
reference frame

q

√
(Q2+M2

N
+M2

X
)2−4M2

N
M2

X

Q2+2(M2
N

+M2
X

)
(MN + MX)

√
Q2+(MX−MN )2

4MN MX

ω
M2

X
−M2

N√
Q2+2(M2

X
+M2

N
)

(MX − MN )
√

Q2+(MX+MN )2

4MN MX

Pi (
√

M2
N + q2

4 , 0, 0, − q

2 ) ( MN ω

MX−MN
, 0, 0, − MN q

MX+MN
)

Pf (
√

M2
X + q2

4 , 0, 0,
q

2 ) ( MXω

MX−MN
,0,0, + MXq

MX+MN
)

q⊥ (q, 0, 0, ω) (q, 0, 0, ω)
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explicitly list incoming photon momentum and energy, and
the four-momentum of the initial nucleon or final resonance
in the Breit and EVR frames [13], respectively. In addition,
the four-vector q⊥ perpendicular to q is also given in
Table I.

It should be stressed that the results in the fully relativistic
point form description are frame independent. For HT

em, this
is because the initial and final momenta Pi = MNVi and

Pf :=MXVf , and the initial and final velocities Vi and Vf , are
in the z direction in both the Breit and EVR frames. We have
U †(	)Jx(0)U (	) = Jx(0), where 	 is the Lorentz transfor-
mation relating to the two frames (Breit and EVR), and U (	)
is the unitary representation of the Lorentz transformation 	

with U †(	)U (	) = 1. Thus, for transverse amplitudes, the
predictions of the fully relativistic point form framework are
reference frame independent. Here, the amplitude is

Aµ′,µ = ξ 〈f,µ′|HT
em|i, µ〉 = −

√
2παE

ω
ξ 〈f,µ′| �J · �ε|i, µ〉

= 3ξ

∫
d3p1

(2π )3

d3p2

(2π )3

d3p3

(2π )3

d3p′
1

(2π )3

d3p′
2

(2π )3

d3p′
3

(2π )3

× (2π )6δ3(�k1 + �k2 + �k3)δ3(�k′
1 + �k′

2 + �k′
3)

× ψ∗
J ′,µ′ ( �p′

ρ, �p′
λ; µ′

1, µ
′
2, µ

′
3)ψ1/2,µ( �pρ, �pλ; µ1, µ2, µ3)

× D
∗1/2
λ′

3µ
′
3
[RW (k′

3, B(vout))]〈p′
3, λ

′
3| −

√
2παE

ω
�J+|p3, λ3〉D1/2

λ3µ3
[RW (k3, B(vin))]

× D
1/2
µ′

1µ1
[RW (k1, B

−1(vout)B(vin))]D1/2
µ′

2µ2
[RW (k2, B

−1(vout)B(vin))]

× δ3(k′
1 − B−1(vout)B(vin)k1)δ3(k′

2 − B−1(vout)B(vin)k2), (7)

where αE = 1/137. If we choose ε = − 1√
2
(0, 1, i, 0), then

J+ = − 1√
2
(Jx + iJy). In Eq. (7) p′

i = B(vout)k′
i and pi =

B(vin)ki ; µ and µ′ are the projections of the angular momenta
of the initial nucleon (1/2) and its final resonance (J ′),
respectively; the two wave functions are the intrinsic wave
functions of the initial nucleon and final resonance with
the momentum conjugates pρ and pλ of intrinsic Jacobi
coordinates; and ξ is the sign of the pionic decay of the
resonance. Owing to the symmetry of the wave functions it
is sufficient to consider only one case where quark 3 is struck
by the incoming photon, while the other two are spectators,

and to multiply the results by a factor of 3. The conventional
transition amplitude A1/2 or A3/2 is determined from the matrix
element of Eq. (7) by setting the quantum numbers of the initial
nucleon (µ) and of the final resonance (µ′) to be −1/2 and 1/2,
or 1/2 and 3/2, respectively.

In a similar way, one can calculate the longitudinal electro-
magnetic transition amplitude based on the relativistic point
form. References [17,18] show the longitudinal amplitude in
the nonrelativistic constituent quark model with the relativistic
corrections. In this work, the amplitude S1/2 is defined in
terms of the matrix element of the longitudinal electromagnetic
interaction HL

em [19]:

S1/2 = ξ 〈f,µ′|HL
em|i, µ〉 = ξ 〈f,µ′|

√
2παE

ω
εL
µ · Jµ|i, µ〉

= 3ξ

∫
d3p1

(2π )3

d3p2

(2π )3

d3p3

(2π )3

d3p′
1

(2π )3

d3p′
2

(2π )3

d3p′
3

(2π )3

× (2π )6δ3(�k1 + �k2 + �k3)δ3(�k′
1 + �k′

2 + �k′
3)

×ψ∗
J ′,1/2( �p′

ρ, �p′
λ; µ′

1, µ
′
2, µ

′
3)ψ1/2,1/2( �pρ, �pλ; µ1, µ2, µ3)

×D
∗1/2
λ′

3µ
′
3
[RW (k′

3, B(vout))]〈p′
3, λ

′
3|

√
2παE

ω

√
Q2

q
J0|p3, λ3〉D1/2

λ3µ3
[RW (k3, B(vin))]

×D
1/2
µ′

1µ1
[RW (k1, B

−1(vout)B(vin))]D1/2
µ′

2µ2
[RW (k2, B

−1(vout)B(vin))]

× δ3(k′
1 − B−1(vout)B(vin)k1)δ3(k′

2 − B−1(vout)B(vin)k2). (8)
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where the photon three-momentum is selected to be �q ‖
ẑ [with qµ = (ω, �q) and �q = (0, 0, q)]. This definition of
the longitudinal transition amplitude is consistent with that
of the transverse transition amplitude in Eq. (7). Usually,
the polarization vector of the longitudinal polarized photon
is selected to be εL

µ = (q/
√

Q2, 0, 0, ω/
√

Q2), so that the
constraint condition qµεL

µ = 0 is satisfied [17,20]. For the lon-
gitudinal photon quark vertex, the electromagnetic interaction
is, therefore, HL

em = εL
0 J 0 − εL

3 J 3. The gauge-invariant con-
dition qµJµ = 0 [17,20] gives 〈f |HL

em|i〉 =
√

Q2/q〈f |J0|i〉.
Clearly, the longitudinal electromagnetic interaction in Eq. (8)
is proportional to

√
Q2, and it vanishes in the real photon

limit Q2 = 0. The interaction HL
em is a Lorentz scalar. Thus,

the results of the longitudinal transition amplitude in the fully
relativistic point form are frame independent. It should be
mentioned that the longitudinal transition amplitude defined in
the conventional constituent quark model, as in Refs. [17,21],
is

Snon
1/2 = ξ 〈f,µ′|

√
2παE

ω
J0|i, µ〉. (9)

It is not a Lorentz invariant amplitude. The two definitions
of the longitudinal transition amplitude in Eqs. (8) and (9)
are different by a factor of

√
Q2/q. In addition, the results

of Eq. (8) in the nonrelativistic framework are still reference
frame dependent owing to the lack of the Lorentz covariance.

Here, we stress that the dynamically determined current
[see Eq. (5)] does affect the longitudinal current in the point
form. This is because the four-momenta of the system
are Hamiltonians. In addition, data for the electromagnetic
transition amplitudes from the particle data group (PDG) [22]
are AN

λ (X) · AX→πN/|AX→πN |. The sign AX→πN/|AX→πN |
of the coupling AX→πN is involved in those amplitudes since it
cannot be determined in elastic Nπ scattering [23]. Therefore,
the phases ξ have to be individually calculated in each model to
avoid any confusion in comparing the model calculations with
the data, especially in critical cases as for the Roper resonance
[21,23]. This means that in a theoretical calculation, both
the electromagnetic and pion couplings have to be calculated
simultaneously. Ignorance of the pion coupling part might lead
to incorrect results for the sign.

III. CALCULATIONS, RESULTS, AND DISCUSSION

In our numerical calculations, the conventional harmonic
oscillator wave functions are employed for the nucleon and
other nucleon resonances [such as the Roper resonance
P11(1440), S11(1535),D13(1520), and F15(1680)]. The two
parameters in the calculations are selected to be 0.16 GeV2

for the harmonic oscillator constant α, and mq = MN/3 for
the quark mass. Thus, the frequency of the harmonic oscillator
is about 500 MeV, which is required for the mass spectra of
nucleon resonances. Here, for simplicity, we do not consider
any configuration mixing effect from hyperfine interactions.
In Figs. 1 and 2, our results for the transverse transition
amplitudes A1/2 and A3/2 of the �(1232) resonance are plotted.
In the two figures, the data are from the PDG [22] and from
the compilation of Kamalov and Yang [24]. The results of
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FIG. 1. Electromagnetic transition amplitude A1/2(Q2) to
�(1232). The solid curve represents the results of the point form
calculation. The dotted and dotted-dashed curves stand for the cal-
culations of the nonrelativistic constituent quark model with the
relativistic corrections in the Breit and EVR frames, respectively.
The full circle at real photon point Q2 = 0 is from PDG [22]. The
other data denoted by full diamonds are from Ref. [24].

the nonrelativistic constituent quark model with relativistic
corrections [2] (also without configuration mixing) are also
illustrated in the two reference frames where the corrections
from the relativistic boost (see Ref. [13]) in the EVR frame is
considered.
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FIG. 2. Electromagnetic transition amplitude A3/2(Q2) to
�(1232). Notation for the curves and symbols are the same as in
Fig. 1.
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To compare with the nonrelativistic results, we should stress
that the nonrelativistic calculation involves some ambiguous
assumptions. For example, the fully relativistic boost is
not considered, the results for the invariant transverse
amplitudes are obviously reference frame dependent, and
the long-wavelength approximation in the reduction of the
electromagnetic transition operators is not a good approx-
imation if Q2 is around 1 GeV2. Figures 1 and 2 clearly
show a sizable difference between the relativistic point form
description and the two nonrelativistic calculations. One finds
that, compared with empirical data, the results of the point
form are better than those of the nonrelativistic frame-work,
particularly in the region of Q2 ∼ 1 GeV2. The absolute
magnitudes of the relativistic description, in the region of
Q2 � 0.5 GeV2, are always much smaller than those of the
nonrelativistic calculations. This feature is favored by the data
and agrees with the calculations of the proton form factors [9].
In addition, our results show that the point form relativistic
description provides another way for partially understanding
the nonvanishing ratios E2/M1 and S1+/M1 even though
the present framework can only explain a few percent of the
whole ratios at the real photon limit ((−2.5 ± 0.5)% for E2/M1
from PDG [22], for example). Since we did not consider any
deformation of the wave function of the �(1232) resonance
(configuration mixing), the two ratios in the conventional
nonrelativistic constituent quark model with relativistic cor-
rections are exactly zero. In the point form, the estimated
values are only about −0.02% for E2/M1 and −0.03% for
S1+/M1 at the real photon point. These two values are about
two orders of magnitude smaller than the empirical values.
Clearly, configuration mixing and meson cloud effects (as in
Refs. [25,26]) are missing in the present calculations. It is
expected that those effects play a much more remarkable role
in understanding the nonvanishing E2/M1 and S1+/M1 ratios
in the low-Q2 region.

In Figs. 3–7, the transverse and longitudinal transition
amplitudes of the two typical negative-parity nucleon reso-
nances S11(1535) and D13(1520) are shown. In the figures,
the numbers of the hypercentral potential model in Refs. [21]
and [27] and of the nonrelativistic constituent quark model
in the two reference frames (Breit and EVR) are shown
for comparison. The data in the figures are taken from the
PDG [22] and from the compilations of Refs. [28–30]. In
Figs. 4 and 7, we consider the effect of the factor

√
Q2/q in the

data. The effect is also taken into account in the results of the
hypercentral calculations (quoted from Refs. [21] and [27])
in the Breit frame owing to the difference between Eq. (8)
and Eq. (9). It has been claimed (see Refs. [21] and [27])
that the hypercentral potential can give a good description
for the intermediate-Q2 behavior of the nucleon resonance
transition amplitudes, particularly, their predictions for the
amplitude A1/2(Q2) of S11(1535) in Fig. 3. Here, we also see
a reasonable agreement between our point form relativistic
calculation and the data. Particularly, the agreement is seen
even at a moderate Q2 ∼1∼2 GeV2. As for the nonrelativistic
constituent quark model calculation (see, for example, the
dotted curve in Fig. 3), we find that one can modify the
model parameters to suppress the calculated result in the real
photon point and to get a good fit to the data. However, the
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FIG. 3. Electromagnetic transition amplitude A1/2(Q2) to
S11(1535). The double-dotted-dashed curve stands for the results of
hypercentral potential model calculations in Refs. [21] and [27]. Other
curves are rotated as in Fig. 1. The open circle at the real photon point
Q2 = 0 is from PDG [22]. The other data are from Ref. [28].

results of A1/2(Q2) at moderate Q2 will be simultaneously
suppressed and the total agreement with the data will become
even worse than that of the point form calculation. This
feature indicates the advantages of the relativistic point form
framework. When the momentum transfer Q2 is larger than

0 0.5 1 1.5 2 2.5 3
Q

2
(GeV

2
)

-40

-30

-20

-10

0

S
1/

2p
(1

0-3
G

eV
-1

/2
)

S11(1535)

FIG. 4. Electromagnetic longitudinal amplitude S1/2(Q2) to
S11(1535). The solid curve represents the results of the point form
calculation. The dotted and dotted-dashed curves stand for the
calculations of the nonrelativistic constituent quark model with the
relativistic corrections in the Breit and EVR frames, respectively.
Other curves and symbols are as in Fig. 3.
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FIG. 5. Electromagnetic transverse transition amplitude
A1/2(Q2) to D13(1520). The full square point at Q2 = 0 is from the
recent measurement of Ref. [29]. The other date are from Ref. [28].
Notation for the curves is the same as in Fig. 3.

1 GeV2, the results of the point form turn out to be less than
the values of the hypercentral predictions. This occurs because
we are using the harmonic oscillator wave functions [31],
which are different from the hypercentral wave functions. In
addition, the longitudinal transition amplitudes in this work
are related to the matrix elements of the longitudinal photon
and quark interaction HL

em [see Eq. (8)]. Thus, the calculated
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FIG. 6. Electromagnetic transverse amplitude A3/2(Q2) to
D13(1520). Notation for the curves and symbols is the same as in
Fig. 5.
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FIG. 7. Electromagnetic longitudinal amplitude S1/2(Q2) to
D13(1520). Notation for the curves and symbols is the same as in
Fig. 4. The data are from Ref. [30].

amplitudes are Lorentz invariant in the fully relativistic point
form.

For the transition amplitude A1/2(Q2) of the resonance
D13(1520), agreement is also reasonable. The recent data
for the helicity amplitudes of A1/2 and A3/2 of D13(1520)
[29] are −0.038 ± 0.003 and 0.147 ± 0.010 (in units of
GeV−1/2). These are shown by the full square data points
in Figs. 5 and 6 at Q2 = 0. Those new data imply that the
empirical value of A1/2 increases (in magnitude) and that of
A3/2 decreases compared to the standard PDG values [22]:
−0.024 ± 0.009 and 0.166 ± 0.005. These changes are also
favored by theoretical predictions. The fit for the transition
amplitude A3/2(Q2) of the D13(1520) resonance, however, is
not as good as that for the A1/2(Q2) case, particularly, at small-
and moderate-Q2 values. It has been claimed that relativistic
kinematics is not responsible for the disagreement [32]. In fact,
this situation remains in the hypercentral constituent quark
model calculations (see Refs. [21], [27], and [32]). The reason
for this discrepancy is the lack of explicit quark-antiquark
configurations.

Figures 8–11 show the calculated transverse and longi-
tudinal electromagnetic transition amplitudes of the nucleon
resonances P11(1440) and F15(1680) in the point form frame-
work. We see the remarkable discrepancies between the fully
relativistic point form framework and the nonrelativistic con-
stituent quark model. Comparing with the data for the A1/2(Q2)
of the Roper resonance, we find that all the calculations
of our present model, of the hypercentral model, and of
the nonrelativistic constituent quark model with relativistic
corrections deviate from measurements in the moderate region
of Q2 � 0.5 GeV2. Our calculation for S1/2(Q2) of the Roper
resonance (see Fig. 9) seems to agree with the data (with the
factor

√
Q2/q also considered) quantitatively. The magnitudes
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FIG. 8. Electromagnetic transverse amplitude A1/2(Q2) to the
Roper resonance P11(1440). Notation of curves is the same as in
Fig. 3. The data are from the compilations of Ref. [21].

of our results are remarkably smaller than the data and
the results of the hypercentral potential model. So far, the
assignment of the Roper resonance remains controversial. The
recent measurement of Jefferson Lab. [30] has almost ruled out
the interpretation of this resonance as a q3G hybrid state [33].
It is argued that the meson cloud effect (not considered here)
on the transverse and longitudinal transition amplitudes of
the Roper resonance is important [34]. For the transitions
of the F15(1680) resonance, we find that our results deviate
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FIG. 9. Electromagnetic longitudinal amplitude S1/2(Q2) to the
Roper resonance P11(1440). Notation of curves and symbols is the
same as in Fig. 8 (where the factor

√
Q2/q has been considered).
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FIG. 10. Electromagnetic transverse amplitude A1/2(Q2) to
F15(1680). Notation of the curves and symbols is the same as in
Fig. 3.

from the data of A1/2(Q2) in the moderate-Q2 region of
∼0.4 GeV2. However, they behave better than the results
of the hypercentral model for A3/2(Q2) compared with the
data. In addition, the strengths of the transition amplitudes
of the resonance F15(1680) in the real photon limit are
short of those in all different model calculations, particularly
for A3/2(Q2).
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FIG. 11. Electromagnetic transverse amplitude A3/2(Q2) to
F15(1680). Notation for the curves and symbols is the same as in
Fig. 3.
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IV. CONCLUSIONS

Incorporating the results of the previous calculations for
the form factors of the nucleon [8] and of π and ρ mesons
[11,12] with this calculation of the transition amplitudes of the
nucleon resonances, we conclude that point form relativistic
quantum mechanics can provide a convenient way to study
hadron properties, particularly the transitions to resonances.
Since the relativistic boost is correctly considered in this
framework, the results for the Q2 dependences of the transition
amplitudes are expected to be reasonable. This conclusion can
be clearly seen from the point form predictions of the transition
amplitudes of the �(1232) resonance, as shown in Figs. 1
and 2, and of the S11(1535) in Fig. 3. We find that some of the
results calculated in the present point form indicate that the
values are smaller in magnitude than those predicted by
the conventional constituent quark model when Q2 increases.
This phenomenon has also been seen in proton form factor
calculations [9]. Our work shows that reasonable results for the
transition amplitudes of A1/2,3/2(Q2) of the �(1232) resonance
and of A1/2 of the S11(1535) and D13(1520) resonances can be
achieved, but not for the A3/2 of D13(1520), the A1/2(Q2) of
the Roper resonance, or of the F15(1680) resonance. Moreover,
there are sizable discrepancies between the point form results
and the nonrelativistic constituent quark model predictions
with relativistic corrections. Because harmonic oscillator wave
functions are employed in the two frameworks simultaneously,
the discrepancies clearly indicate that relativistic effects need
to be correctly taken into account. It should be stressed that the
results of both the transverse and the longitudinal transition
amplitudes of the fully relativistic point form are reference
frame independent. The sizable reference frame dependences
show the lack of Lorentz covariance in the nonrelativistic
approach.

Finally, we only simply take into account the har-
monic oscillator wave functions in our present point form

calculations. Other physical ingredients, such as realistic wave
functions of the resonances, confinement, the meson cloud,
two-body exchange currents, and configuration mixing are
not considered at all. Certainly, the predicted results at large
Q2 are not very satisfactory. There is some discussion about
the applicability of the point form description [12,35]. It
appears that the radius of the bound-state wave function
is an important parameter for distinguishing any relativistic
effect. Here, much better results are expected if other physical
ingredients, such as realistic wave functions, meson cloud
effects, and configuration mixing, are consistently included
from the beginning. Moreover, in this work, we only use
simple three-dimensional harmonic oscillator wave functions.
It is argued and expected that the wave functions of the
four-dimensional fully relativistic harmonic oscillator [36]
and of the hypercentral potential model [32] can provide
more reliable results in a relativistic calculation. A system-
atic study of nucleon resonance transition properties with
the hypercentral model in the relativistic point form is in
progress.
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