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The semileptonic decays of A. and A, are treated in the framework of a constituent quark model. Both
nonrelativistic and semirelativistic Hamiltonians are used to obtain the baryon wave functions from a fit to the
spectra, and the wave functions are expanded in both the harmonic-oscillator and the Sturmian bases. The latter
basis leads to form factors in which the kinematic dependence on g? is in the form of multipoles, and the resulting
form factors fall faster as a function of ¢ in the available kinematic ranges. As a result, decay rates obtained in
the two models with the Sturmian basis are significantly smaller than those obtained with the harmonic-oscillator
basis. In the case of the A., decay rates calculated with the Sturmian basis are closer to the experimentally
reported rates. However, we find a semileptonic branching fraction for the A, to decay to excited A* states of
11 to 19%, in contradiction to what is assumed in available experimental analyses. Our prediction for the A,
semileptonic decays is that decays to the ground state A, provide a little less than 70% of the total semileptonic
decay rate. For the decays A, — A, the analytic form factors we obtain satisfy the relations expected from
heavy-quark effective theory at the nonrecoil point, at leading and next-to-leading orders in the heavy-quark
expansion. In addition, some features of the heavy-quark limit are shown to naturally persist as the mass of the

heavy quark in the daughter baryon is decreased.
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I. INTRODUCTION AND MOTIVATION

Many of the parameters of the standard model (SM),
including the Cabbibo-Kobayashi-Maskawa (CKM) [1] matrix
elements, are not yet determined with “satisfactory” precision.
Very precise knowledge of these matrix elements is important
as they play a crucial role in the search for answers to some
fundamental questions, such as the nature of CP violation
and the unitarity of the CKM matrix. Semileptonic decays of
hadrons have been, and will continue to be, the main source
of information on the CKM matrix elements. The precision
with which the CKM matrix elements are extracted from these
semileptonic decays is strongly dependent on how well the
form factors that describe the matrix elements of the hadronic
currents are known. The vast literature on these form factors
is a testament to the importance of these parameters.

The semileptonic decays of heavy mesons have been
studied extensively in the past two decades. Wirbel, Stech
and Bauer [2,3] assumed monopole-type form factors for the
decays of heavy mesons. In Refs. [4,5], a nonrelativistic quark
model (NRQM) was used to treat the semileptonic decays of
B and D mesons, and relatively simple forms for the form
factors were presented. The first of those articles, along with
the work of Shifman and Voloshin [6], ultimately led to the
development of the heavy-quark effective theory (HQET). In
addition, Ivanov and Santorelli [7] used a relativistic quark
model to find the form factors. These are just a very few of a
very large number of articles that treat semileptonic decays of
mesons in some kind of model.
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Weak decays of hadrons involving one or more heavy
quarks (m¢g > Aqcp) have an additional symmetry in the
effective Lagrangian, which was first pointed out by Isgur
and Wise [8]. There, they used the additional heavy-quark
symmetry to obtain normalized, model-independent predic-
tions for all the form factors for the decays of heavy hadrons
to daughter hadrons that are also heavy. This led to many
subsequent calculations by many authors.

For the hadronic matrix elements of the electroweak
currents between two heavy mesons, the application of HQET
provides a number of features that simplify the extraction of
CKM matrix elements from such decays. First, the number
of form factors is reduced, so that the six form factors that
describe the decays of heavy pseudoscalar mesons to heavy
pseudoscalar and vector mesons are replaced with a single
form factor, at leading order in HQET. This form factor has
become known as the Isgur-Wise function. Second, the abso-
lute normalization of this form factor at the so-called nonrecoil
point is known. Third, corrections to this normalization do
not arise at order 1/m in the heavy-quark expansion, but at
order 1/ m2Q This is known as Luke’s theorem [9] and is an
analog of the Ademollo-Gatto theorem [10]. This means that
some predictions made at leading order are more robust than
might be expected. Finally, the corrections that do arise can be
estimated systematically in the heavy-quark expansion. As a
result, HQET has become the tool of choice in the extraction
of [Vep| [11].

For the semileptonic decays of a heavy meson to a light
meson, the predictions of HQET are not quite as powerful:
There is no reduction in the number of form factors needed
to describe the decay, nor are the normalizations of any of
the form factors known. However, the heavy-quark symmetry,
along with SU(2) or SU(3) flavor symmetry for the light
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mesons, can be used to relate the form factors for D — 7«
and D — p decays, for instance, to those for B — m and
B — p decays, respectively. Thus, even though it is not as
predictive in the decays of heavy-to-light mesons, there is still
a great deal of reliance on HQET for extracting V,,;, from meson
decays.

For the semileptonic decays of a heavy baryon to another
heavy baryon, HQET makes predictions that are completely
analogous to those made for heavy-to-heavy meson decays:
(i) the six form factors that describe the decays to the ground-
state heavy baryons are replaced with a single form factor, the
Isgur-Wise function; (ii) the normalization of the Isgur-Wise
function is known at the nonrecoil point; (iii) corrections to
this normalization first appear at order 1/ sz; (iv) corrections
can be systematically estimated in a 1/m o expansion.

In the case of a heavy baryon decaying to a light baryon,
HQET makes predictions that are not as powerful as in
the heavy-to-heavy case, but are significantly more powerful
than for the heavy-to-light transitions of mesons. Among
the baryons, the leading-order prediction is that the number
of independent form factors decreases from six to two. In
addition, as with mesons, the heavy-quark symmetry can be
used to relate the form factors for the decay A — n to those
for A, — p, for instance. This, in principle, could facilitate
the extraction of V,;, from semileptonic decays of the A, and
because the number of unknown form factors is reduced from
six to two, the theoretical uncertainty in the extraction from
these decays should be significantly smaller than extractions
from meson decays.

Although HQET has been tremendously successful and
useful in treating semileptonic decays of heavy hadrons, it
is not without its limitations. It is a limit of QCD that applies
only to hadrons containing heavy quarks. For the decays of
such hadrons, it predicts only the relationships among form
factors, not their kinematic dependence; Ansitze, models of
one kind or another, or lattice simulations, are still needed for
this. In addition, the predictions of HQET are valid only as
long as the energy of the daughter hadron is not comparable
with the mass of the heavy quark. For heavy-to-heavy decays,
this means that the predictions are valid for all of the available
phase space, but for heavy-to-light decays, such as B — m,
a large portion of the available phase space is beyond the
region of reliable applicability of HQET. These limitations
mean that the predictions of HQET must be complemented or
supplemented by information arising from other approaches
to hadron structure.

Although some work has been done in modeling the form
factors for the semileptonic decays of heavy baryons, to the
best of our knowledge, little has been done in treating the
decays to excited baryons. Predictions for the number of
independent form factors for decays to excited states have
been made within the framework of HQET [12], and Leibovich
and Stewart [13] have examined the form factors for decays
to the 1/27 and 3/27 states, using large N, arguments. In
the semileptonic decays of B mesons to those with charm,
it is known that B® decays to the ground-state pseudoscalar
and vector mesons provide only about 75% of the total
semileptonic decay rate, while for the B*, the corresponding
fraction is about 85%. Any assumption that decay of a heavy
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baryon to the ground state will saturate the semileptonic decay
rate is therefore subject to potentially large corrections.

In some of the work done in this area, the predictions of
HQET, along with various Ansétze for the form factors, have
been used to estimate some decay rates. Leibovich and Stewart
[13] follow such a procedure to estimate the rates for decays
of the Ay to the J¥ = 1/27 and 3/2~ A. states. Polarization
effects in semileptonic A, and A, decays have been studied
by Korner and Kramer [14], using the predictions of HQET
to estimate the dominant form factors for both b — ¢ and
¢ — s transitions. They have also calculated the asymmetry
parameters that characterize the angular dependence of the
decay distributions.

A number of authors have constructed explicit quark models
of the form factors for the decays of Ay baryons to ground-
state baryons. The decays of A, and €2, have been treated
by Singleton, who uses a spectator quark model [15]. He also
discusses the polarization of the W boson and the daughter
baryon in these processes. Albertus, Hernandez, and Nieves
[16] use a NRQM to evaluate the form factors for A, —
A, explicitly applying heavy-quark symmetry to their trial
wave functions. To date, there appear to be only two lattice
studies of the semileptonic decays of heavy baryons. A first
study of A, and &, semileptonic decays has been made by
Bowler et al. [17], and Gottlieb and Tamhankar [18] have
examined the decay of the A;. Avila-Aoki and Collaborators
[19] have studied the semileptonic decays of a number of
charmed baryons, both in a NRQM and in the MIT bag model.
There have been light-front calculations [20], as well as ones
using sum rules [21], Bethe-Salpeter formalisms [22], bag
models [23], and quark-model calculations [24]. Large N,
arguments have also been applied to these form factors [25],
as well as perturbative QCD arguments [26]. For the decays of
a heavy baryon to a light one, work has been done with QCD
sum rules [27], and there is one quark-model calculation [28]
apart from the work of Scora [29], to the best of our knowledge.

The experimental status of heavy baryon semileptonic
decays is somewhat rudimentary. The semileptonic decay
rate for A, — A has been measured by the CLEO and
ARGUS Collaborations [30,31], and the DELPHI Collabo-
ration has only recently published an analysis of the exclusive
semileptonic decay of the A, [32]. Before this, only the
inclusive semileptonic branching fraction A, — A .fvX had
been reported by the Particle Data Group (PDG) [11]. In
their analysis of the A, — A semileptonic decay, the CLEO
Collaboration has assumed that the ground state A saturates
the semileptonic decays of the A, and cites the absence of any
final states of the form Afv with additional decay products
from the A, to support their assumption [31]. No experiments
have yet reported results for the decay A, — n.

The major difficulty in the baryon sector is that there is
no source of heavy baryons as there is for mesons. Electron-
positron colliders have produced billions of B mesons, utilizing
the fact that the Y'(4s) is just above the BB threshold. In
principle, a similar abundance can be duplicated among D
mesons by use of the W(3s). With baryons, production at
such machines will be continuum production, as there are no
(known) resonances to enhance the rate of production. Hadron
colliders can provide larger yields, but they provide large yields
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of everything, and the heavy baryons will then have to be
separated from everything else that is produced. However,
the recent CLEO measurement suggests that some optimism
regarding the future measurement of these decays might be
warranted. In addition, there might be prospects for such
studies at Jefferson Laboratory upgraded to 12 GeV or higher,
or at E907 at the Fermi National Accelerator Laboratory. The
advantage in these cases is that the target will be a baryon,
unlike the continuum production at e™ e~ machines.

In this paper we study the semileptonic decay of Ay
baryons, the motivation for which is twofold. One of our
motivations is the importance of the CKM matrix elements
V.» and V., and that baryon semileptonic decays can provide
complementary extractions of these quantities, despite the
difficulties just mentioned. In particular, a model such as ours,
coupled with constraints provided by HQET, may lead to a
more precise extraction of V,;, than provided by meson decays.

Our second motivation is to examine the predictions for
these decays of a quark model developed very much in the spirit
of the work by Capstick and Isgur [33], which builds on the
work of Isgur and Karl [34,35]. Such a model has been applied,
with some success, to the strong [36] and electromagnetic
[37,38] couplings of baryons, and the semileptonic decays of
baryons is a useful complementary extension of such a model.
Indeed, a similar model, applied to the semileptonic decays of
mesons [4], gave rise to HQET. We note that the dissertation of
Scora [29] treats a number of baryon semileptonic decays in a
framework very similar to that used in the treatment of mesons
in [4]. We use a similar framework, but we extend the model
to examine the decays to excited baryons, whereas Scora [29]
examined only decays to ground-state baryons. We also use a
more sophisticated treatment of baryon structure.

This manuscript is organized as follows: In Sec. II
we discuss the hadronic matrix elements and decay rates.
Section III presents a brief outline of HQET as it relates to
the decays that we discuss. In Sec. IV we describe the model
we use to obtain the form factors, including a description of
the Hamiltonian. Our analytic results are discussed in Sec. V,
our numerical results are given in Secs. VI and VII presents
our conclusions and outlook. A number of details of the
calculation, including the explicit expressions for the form
factors, are shown in a number of appendices.

II. MATRIX ELEMENTS AND DECAY RATES

A. Matrix elements

The transition matrix element for the semileptonic decay of
AQ (AQ — Aqéw) is

G _— / /
T = TZVQquey’*(l — )ity (A (P SOl A p(p, 5)), (1)

where Gp/v/2 = g? /(8M3,) is the Fermi coupling constant,
My is the intermediate vector boson mass, Vp, is the CKM
matrix element, and u;y*(1 — ys5)u,, is the lepton current.
Because quarks are confined, the matrix element of the hadron
current is described in terms of a number of form factors. We
will build a model of the baryons we wish to study and obtain
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approximations to the form factors that describe the hadronic
matrix elements. For transitions between ground-state (J© =
1/2%) baryons, the hadronic matrix elements of the vector and
axial currents are

(Ag(P', SOVl Ao(p, s)) =u(p', S’)[Fl @

+ P+ Fs(q%i]u(p, 5), 2)
m m

Ag A,

(Mg(P', DAL A (P, 5)) =u(p',s") [G1(q2)yu
p P,
+GagH) "+ Gs(qz)—u] ysu(p,s), ()
mAQ mAq

where the F; and G;’s are baryon form factors which depend
on the square of the momentum transfer ¢ = p — p’ between
the initial and the final baryons. Similarly, the matrix elements
for decays to a daughter baryon with J¥ = 3/2~ are

’ —a Pa
(A2 )| Vil Ao(p. o) = (p', s/)|:— (Flm
mAQ
p/
+ B2y ) + F4gw]u(p,s),
mAQ mAz/z
4)
/ / — th
<A3/2(p,s)}AM|AQ(p,S))=M (p/,s/)|: (Glyu
mAQ
P P,
+ Gy~ + G3—+£ >+G4gw}ysu(p,S).
mAQ mAg/z
The spinor u®(p’, s’) satisfies the conditions
pu(p',sH) =0, P, sy. =0,
)]

w(p' s = mysput(p'. s,

The corresponding matrix elements for decay to a baryon with
JP =5/2% are

, , Pa p
(A2 | Vi Ao lp. ) = T (ol )L [_ﬂ (Fw
mp, Ao

p/
+ B2 gyt )+F4gﬁu:|’/‘(l71s),
M, mAZ/z
(6)
[y —a, r o Pa 14
<A2/2(p,s)|A#|AQ(p,S)>= ﬂ(p,s)—|:—ﬂ<G1y#
Mpag | Mg
p P,
+ G+ Gs—— | + Gaggy |vsu(p. ).
mp, mAZ/z

where the spinor #*?(p’, s') is symmetric in the indices « and
B and satisfies

P (p' sy = pput(p,s) =0,

wP (s ye = TP 5y = 0,

aP(p' s = myeut (p', s, @

wP(p',s)gup = 0.
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Here we have only presented the form-factor equations
involving spinors having natural parity. One can construct
the equations for unnatural-parity spinors in a similar manner
by switching ys from the equations defining the G; to the
equations defining the F;.

B. Decay rates

The decay rate that arises from any of these matrix elements
is

1 G d’
dl = —— =LV, |2 1_[ _4pr
2mp, 2 L amnE;
X LV HWQo 00 (pa =Y pr). ®

where A refers to the initial hadron. The leptonic tensor L’ is

L* =8[p} py, + Pl py — 8" pe - pu, i€ ppup]. 9)
The hadronic tensor H,,, is
Hyy = ) (MolJ]IA)) (A1l Ag), (10)
spin

where Ay and A, refer to the initial and final baryons,
respectively. The tensor H,, must have the Lorentz
structure
H/u) = —agu + IBJrJr(p + p/)lt(p + p/)v

+B+—(p + P)u(p = P + B—+(p — P)u(p + Py

+B—(p = Pulp = P

+iY€upo(p+ P (p = p)°.

The complete expression for the differential decay rate is

Iro L GEmy,
dxdy ~ [Vogl P [@Cq + B++Cpi+ + B+ Cp—
+B4-Cpi— +B——Cp—— +vCy, (11
where

S

2 m%
=z V)
Ao Ao

Cp,, = 8[x(2x, +y) — 2x* — y/2]

2 2 4m?
nty ny Ay
- — ( 5 — 3 —8x+3y> ,

mAQ mAQ mAQ

(12)

mj mj
Cﬂ—+:Cﬂ+—=T 4(x_xm)_y_T >

2 2
m m
I4 4
C/g77 = —\\y—-——1,
m2 m2
Ag Ag

m2
Cy = :|:2y |:2)Cm —4x + y+ TE(me + y) .
my,

In these expressions, x = Ey/my,, where E, is the lep-
ton energy, x,, = (my , — mf\q)/(2m3\Q), and y = ¢*/m3 =
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(p—p)?/ mf\Q. The F sign in C,, is determined by the charge
of the lepton, with the upper (negative) sign corresponding to
decays to £v,. The lepton energy has the range

—K 27 2 12 Qxpm+y) m%
—(y—mi/m + v+ =
250 i) v U,

K 5 2 N\1/2 (2xm+y) m%
<x<——(y—
g 2ﬁ(y my [miy,) "+ yt+os

4y Ao

with K = 3[(2x,, — y)* — 4m3 /m3 1'%, and y has the kine-
matic range m7 /my | <y < (ma, —ma,)*/my . If the lepton
mass is neglected, the terms in 84, f_4, and B__ vanish, and
the differential decay rate becomes

2 .5

d*T FIA ay
= |Voql? el 428, [2x(2x
dxdy Vol 3973 mf\Q + 2844+ 2x(2xy, + y)
—4x? — Y] F yy(2x, —4x +y)}, (13)

where the lepton energy is now constrained by —K /2 +
2xp +¥)/4<x <K /2 4+ (2x, + y)/4 and the lower limit on
y is zero. In this case the differential rate depends only on
o, B++, and y. The explicit expressions for «, B4, and y in
terms of form factors for different final baryon spins are given
in Appendix D.

III. HEAVY-QUARK EFFECTIVE THEORY

HQET [39] has been a very useful tool in the study of
electroweak decays of heavy hadrons. This effective theory
has been applied to a number of processes, both inclusive and
exclusive, to higher and higher order in the 1/m ¢ expansion,
where m ¢ is the mass of the heavy quark. In most applications,
the aim has been to constrain the hadronic uncertainties in the
extraction of CKM matrix elements such as V,,;, and V,,;,. In this
section, we take a different tack; we examine the predictions of
HQET for decays of a heavy A into any of the allowed excited
daughter baryons, whether this daughter baryon is heavy or
light, with the aim of comparing these predictions with the
form factors that we obtain in our model.

A. Heavy to heavy

In a heavy excited baryon, the light-quark system has some
total angular momentum j, so that the total angular momentum
of the baryon can be J = j £ 1/2. These two states are
degenerate because of the heavy-quark spin symmetry. It is
useful to show explicitly the representation we use for these
two degenerate baryons. In the notation of Falk [40], we write
Wl ) = w0 — T (), with

u”l"'“f(v/) — A,ul.../l,j(v/)uQ(v/). (14)

Here, u (V') is the spinor of the heavy quark and A*'#i(v')
is a tensor that describes the spin-j light-quark system. This
tensor is symmetric in all of its Lorentz indices, meaning that
the ut1-+#i(v') is also symmetric in all its Lorentz indices. Both
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u’f‘i,;é’ (v') satisfy the conditions

¢/L£MI ...;L_,-(U/) — uﬂl...ﬂ_, (v/)7

LAY U3 R ¥ R ¢ o Hpee b —
v, U =0, gyt (v) =0,

(15)

where (i and p; indicate any pair of the indices it ... u ;. The
state with J = j 4 1/2 also satisfies

Yk =0, (16)

Further details of the structure and properties of these tensors
are given in Falk’s article [40].

At this point, it is useful to discuss the parity of the states,
which is determined by the parity of the light component.
A spin-j light-quark component with parity (—1)/ is said to
have “natural” parity, unnatural parity otherwise. The natural-
parity light-quark systems therefore have j© = (2n)* or j© =
(2n + 1)~, with n a positive integer or zero. The natural-
parity light-quark systems are represented by tensors, while
those with unnatural parity are represented by pseudotensors.
Because the parity of the baryon is that of the light-quark
system, we may refer to the baryons as being tensors or
pseudotensors, with the understanding that this really refers to
the light-quark component of the baryon. It is thus convenient
to divide the decays we discuss into two classes, those in
which the daughter baryons are tensors and those in which
they are pseudotensors. We begin with the discussion of the
tensor decays.

In general, we are interested in the matrix element

o = (AW, PICTh|Ap(v)), 7)

where ¢ and b are the heavy-quark fields and I" is an arbitrary
combination of Dirac matrices. With the use of HQET, we may
write this as

(ALY, PIETDIApW)) = @ (W) uIMyy. .y, (18)

to leading order. In writing this form, we are omitting
multiplicative QCD corrections of the order of unity that arise
from matching of the effective theory to full QCD at different
mass scales. Here, M, is the most general tensor that we
can construct, given the kinematic variables at our disposal.
Clearly M,,,..,,, may not contain any factors of v//h OF guiu,;
and therefore takes the form

My, =0V W0y, - vy, (19)

Thus a single form factor, n/)(v - v') is needed to this order,
regardless of the spin of the final baryon. In addition, spin
symmetry allows us to relate the form factors for I' = y,, to
those for I' = y,, 5.

The case of J¥ = 1/2%, j = O requires a special comment.
These states may be thought of as radial excitations of the
ground state Al. Because of the heavy-quark symmetry and
the orthogonality of these states with respect to the ground
state, we must have

(A, jT = 00)w[eTbIAy))
= (- v — Dyl - v)a@)Mu(), (20)

where the subscripts (n) denote the nth radial excitation; that
is, these amplitudes must vanish as v — v. This result has
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been pointed out by Isgur, Wise, and Youssefmir [41]. Note,
too, that all of the other amplitudes (j # 0) vanish trivially at
the nonrecoil point.

For the pseudotensor decays, we write exactly the same
form, but M, . y; Tust now be a pseudotensor object and
must therefore be constructed by use of the ¢ tensor. Inspection
shows that no such pseudotensor can be constructed, given that
we have only two kinematic variables at our disposal, namely v
and v/, and that the spinor tensor used to describe the daughter
baryon is symmetric in its indices. Thus decay amplitudes for
transitions to pseudotensor daughter baryons vanish at leading
order in HQET.

Applying these results to the specific case of j© =17, we
find, for J¥ =1/2-,

w—1 2
Fi=—n"w), F=Gy=——n"Ww),
1 A 2 2 NG
(21
w1
For 3/27,
FE=F=G,=G;=F,=G;=0F =G, =n"w).
(22)

In these two sets of equations 1! is a universal function of the
Isgur-Wise type, and w = v - v'.
For j? = 2%, we find for J¥ = 3/2%,

2w—1)

F3=G3=F,=G4=0, F = Wﬂ(z)(w),
4 2( 1) @
_l’_
=Gy = ———nPw), G ==L @),
2 2 mn 1 /10 n
and for 5/2
FhL=F=F,=G,=G,=G3=0,F =G, Zﬂ(z)(w)-
(24

As with the previous example, the function n® is an Isgur-
Wise form factor common to both decays.

For the elastic decays, as well as for decays to the
1/27, 3/27 doublet, the matrix elements have been evaluated
at orders 1/m. and 1/my in the heavy-quark expansion [13].
When we present our results for the form factors, we will
compare our expressions with the predictions of HQET.

B. Heavy to light

For the heavy-to-light transitions, we may no longer
describe the daughter baryons in terms of the spin structure
of the light-quark system that helps to make up the baryon.
Instead, we are forced to use the total angular momentum
of the baryon concerned, as well as its parity. As before,
we may represent one of these baryons, denoted A*, by
a generalized Rarita-Schwinger field u*'*"(p), where the
auxiliary conditions now are

I (p) = mpeut 1 (p),
pﬂ]uﬂl'“lbz(p) =0,

Vi u"t " (p) =0,
uyt "t (p) =0, (25)
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and a baryon with angular momentum and parity J% is
represented by a spinor tensor with n = J — 1/2 indices. As
was the case with the heavy-to-heavy transitions, we need to
divide the possible transitions into two classes, which we call
tensor and pseudotensor, with the obvious meaning.

As before, we begin with the transitions to tensor states.
Here we say a state of total angular momentum J is a tensor if
its parity is (—1)/~1/? and is a pseudotensor otherwise. The
matrix element of interest is

(A*(p)yr STl AL () = @ " (P)YMy, _pp, Tuv),  (26)

where M,,, ., is the most general tensor that one can construct.
As with the heavy-to-heavy transitions, we may not use any
factors of y,,, p,, or gy, in constructing My, _,,, which
must therefore have the form

Mﬂ-lmllm

=V, .. Uy, Sy 27)

Here, 47, is the most general Lorentz scalar that we can build.
On inspection, we find that

dy =" +y&", (28)

so that each of these transitions is described by two form
factors at leading order in HQET.

For the transitions into pseudotensor daughter baryons, we
write exactly the same form as in Eq. (26), but now M, .
must be a pseudotensor. This may involve the use of the ¢
tensor, but because u"'#(p) is symmetric in its indices, at
most one of these indices may be contracted with the indices
of the ¢ tensor. With some patience and the use of a few
well-chosen identities, one can show that any pseudotensor
term constructed with the ¢ tensor may always be reduced to
an ordinary tensor multiplying a ys matrix. We therefore leave
out much of the tedium and simply write for these transitions

My, ., = Vp, -y, [é'l(n) + vgz(n)] (29)

The & of Eq. (28) and ¢ of Eq. (29) are functions of
the kinematic variable v - p. Thus any of the heavy-to-light
transitions is described by a pair of form factors to this order
in HQET. Note that for both sets of heavy-to-light transitions,
we may use the spin symmetry of HQET to relate the two form
factors necessary for I' = y,, to those for I' = y,, ys.

For 1/2%, we find

F3=G3=0, F=G,=2&",
_ £ (0) (0) (0) (30)
Fy = ";‘_1 —S2 ";‘_ +§
while for 1/27, the form factors are
Fs=G3=0, F,= 2§'(0)
_ ) ) ) ) D
Fr=-[¢g"+& ] -6 =6"]
For 3/27,
F3=Gy=F,=G,=0, F,=G,=2&",
(D (D) (1) (1) (32)
Fl = ST T S2 » G +§ .
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For 3/2F,
F;=Gy=F=G,=0, F=G,=-2",
_ (1) (1) _ (1) (1) (33)
Fl— [ +§ ]» Gl—_[l _2]~
For 5/27,
=G3=F=G,=0, F,=G,=2t?,
(34

2 2 2 1
A=t -t o=t el

Note that, in principle, the form factors for the decays to 1/2~
have no relationship with those for decays to 3/27 in this limit.

IV. THE MODEL

A. Wave-Function Components

Our calculation follows the spirit of the work by Isgur,
Scora, Grinstein, and Wise (ISGW) [4]. In our model, a baryon
state has the form

Ao(p, 9)) =37 / &p,d’p,CVY,

x [q1(P1, 51)92(P2, 52)q3(P3, 53))

1 1
where p, = Z5(p1 — P2), P» = 7 (P1 + P2 — 2p3) are the
Jacobi momenta, C* is the antisymmetric color wave function,
and \IJjQ Ga,Va 0 XAo is a symmetric combination of flavor,
momentum, and spin wave functions.
For A ¢ the flavor wave function we use is

Prg = S5ud — )0,

which is antisymmetric in quarks 1 and 2. The momentum-spin
portion of the wave function must therefore be antisymmetric
in quarks 1 and 2. For states like the neutron and proton,
we use the wuds basis used in Refs. [33,34]. In that basis,
the wave function of the proton is simply uud, whereas that
for the neutron is ddu. This flavor wave function provides
some simplification in dealing with matrix elements of
the Hamiltonian. However, the treatment of current matrix
elements, such as those that describe semileptonic decays,
will require some extra care, as will be explained later.

The total spin of the three spin-1/2 quarks can be either 3/2
or 1/2. The spin wave functions for the maximally stretched
state in each case are

X3n(+3/2) = [M11),
Xp(+1/2) = (A1 41) = [ L),
Xip(+1/2) = =) + L) = 2111 1),

where S labels the state as totally symmetric and A(p) denotes
the mixed symmetric states that are symmetric (antisymmetric)
under the exchange of quarks 1 and 2. The momentum
wave function for total L = £, + ¢, is constructed from a
Clebsch-Gordan sum of the wave functions of the two Jacobi
coordinates p, and p, and takes the form

1pLanlpn;‘Z;‘(p,Oa PA)
= > (LMILym, LM — m) i 0,m(Dp)Vn, b, 1-m(D2).

m
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The momentum and spin wave functions are then coupled to
give symmetric wave functions corresponding to total spin J
and parity (—1)%+),

Wy =Y (JMILMy, SM = Mp)Vpat,n, 00 Xs(M — My).
My

The full wave function for a state A is built from a linear
superposition of such components as

Wygrm =a ) nf Wiy (35)

Here ¢ 4 is the flavor wave function of the state A and the ’7,~A are
coefficients that are determined by diagonalization of a Hamil-
tonian in the basis of the W;,,. For this calculation, we limit
the expansion in the preceding equation to components that
satisfy N <2, where N = 2(n, +n,) + £, + £,. Consistent
with this is the fact that the states we discuss all correspond to
N < 2. With this limitation, the wave function for a Ay with
J¥ =1/27 takes the form

Wi 1/2tM = Pag {[n?Ql/foooooo(Pp, L) + 7> Yoo1000(Pps P2)
+ né\Qlﬁooomo(va PA)]le/z(M)
+ 103 Yooo101 (- PX] 2 (M)
+ né\g [V1n,0101 (P, PA)X3S/2(M - ML)]I/ZM
+ né\Q (¥ 1a1,00005, P XT /(M — ML)]I/ZM

+ né\Q [V2m1,0101 (P, pA)X3S/2(M - ML)]I/ZM},
(36)

where [Yra,n,e,ne,(Pp, PLXs(M — Mp)]y m is a shorthand
notation that denotes the Clebsch-Gordan sum ) m, (I M|
LMy, SM — M) Yimn,e,ne, (P, PR Xxs(M — Mp).  When
we diagonalize the Hamiltonian, this expansion will provide
the wave functions for seven states with J© = 1/2F, the
lowest of which will be taken to be the ground state of the
system.

A simplified version of the model would truncate this
expansion after the first component, giving

Wa,. 172+ = PaV000000(Pps PA)X{J/Z(M),

while the first radial excitation of interest in this model would
be

Vo172t = DaVoo00010(Pp, Px)le/z(M)-

There exists a second radial excitation that, in the truncated
basis, would be

Y, 1/28m = aVoo1000(Pp, Px)le/z(M)-

The latter state has its radial excitation in the p coordinate,
which means that it has a very small overlap with the ground
state in the spectator model that we use. For some states,
this truncation provides a very good approximation to the
wave function, but there are important configuration mixing
effects for a number of states. In the spectator assumption
that we use, not all of these states have an overlap with
the initial ground state Ap. The possible states that can
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be connected to the ground state are the states with J¥ =
1/27,1/2f,1/27,3/27,3/2%,5/2*, where 1/2" and 1/2]
denote the ground state and the first (radially) excited state.

It is useful for us to list the single-component representa-
tions of these states. The states with J© = 1/2% have already
been given. For the remaining states, we have

Wa,12-m = Oa[¥in,0000(Pp, pA)Xf/z(M - ML)]I/Z’M,
Wa,32-m = Pa[¥im,0001 (P Px)le/z(M - ML)]3/27M,
Wag3/20m = Pa[Wan, 0000 PX] (M — ML)]3/2,M»

Wag.s/2¢m = Oa|¥am,0002(Pp> pk)Xf)/z(M =MD,
37

From these representations, the multiplet structure expected
in the heavy-quark limit is easily identified, with the 1/27
and 3/2 states forming a multiplet and the 3/2% and 5/2%
states forming another. Both of the 1/2% states we consider
are singlets.

1. Expansion bases

A common choice for constructing the baryon wave
function is the harmonic-oscillator basis. One advantage of
using this basis is that it facilitates calculation of the required
matrix elements. However, it leads to form factors that fall
off too rapidly at large values of momentum transfer. We
therefore also use the so-called Sturmian basis [42]. In this
basis, form factors have multipole dependence on qz, which
is what is expected experimentally. The full wave functions in
momentum space are

1
2n! 2
Yo (p) = {7 } () (=1)"
L (n+L+ 1)

1 _2 o4l
se @O L, 2(p?/a®) V()  (38)
aL+§

X

in the harmonic-oscillator basis, and

1
2[nl(n + 2L +2)1]2

1
ST _ L
‘ﬂan(p) - (n + I + %)' (l) ﬂLJ,-%
1 @+3.0+ <p2 - ,32)
X ——F Pn 2 2 yLm(p)
(% + 1)L+2 p2 + ﬂZ
(39)

in the Sturmian basis. The L)(x) are generalized Laguerre
polynomials and the P{""(y) are Jacobi polynomials, with
p = |pl- The corresponding wave functions in coordinate
space are

2n! 2 322 Ltk
Vi (1) = [71,} a2 Ly 2 (@) Yim()
(n+L+3)
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in the harmonic-oscillator basis, and
1

! 2 3
Wan( ) = [MTZ),} (2,3)L+2€7'3

x La"2 (2B7) Yim(r)

in the Sturmian basis.

2. Hamiltonian

We use a NRQM similar to that of Isgur and Karl [34,
35], with some of the modifications suggested by Capstick
and Isgur [33,43]. The Isgur-Karl model evolved from the
pioneering work of others; an extensive list of references to
the origins of the model can be found in Ref. [33].

The phenomenological Hamiltonian we use takes the form

H= Z Ki+ > (Vi + Hyp) (40)

i<j

where Y. K; is the kinetic part of the Hamiltonian. For this,
we use two forms, the usual nonrelativistic form given by

2
Ki:<m,-+ Pi ) 41)
2mi

and a semirelativistic form given by

K; :,/piz—i—miz. 42)

The spin-independent confining potential is a simplified
version of that used by Capstick and Isgur [33], with

brlj 2OlCoul

Vconf C‘]‘]‘] + " 2 3rij

; (43)

. . ijo. . .
withry; = |r; —rjl. thp is the hyperfine interaction, assumed

to have the form

ij _ 20y

hyp 3m,-mj

8w
{?S - 8;8%(rij)

1|38 ri)(S;
+ r_3|: e
ij

ij

rij) S, . S_,-:H.

(44)

The first term is a contact term, and the second is a tensor
term. The spin-orbit interaction is neglected. We note here
that ocoul, @nyp, b, Cyqq, and m; are not fundamental, but
are phenomenological parameters obtained from a fit to the
spectrum of baryon states.

B. Obtaining the form factors

1. Ag > A,

Here we illustrate the procedure we follow to obtain the
form factors, using the decay of the Ay to the ground state
A, as an example. We begin with the vector current matrix
element from Eq. (2), with the assumption that the parent
Ag is at rest and the daughter A, has three-momentum p.
The left-hand side of Eq. (2) is evaluated with the quark
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model, after the operator V,, = Gy, O has been reduced to
its Pauli (nonrelativistic) form. Specific values for the index p
are chosen, as well as specific values of s and s’. By making
three sets of such choices, three equations for the F; in terms
of the quark-model matrix elements of three operators are
obtained. This system of equations is then solved to obtain the
expressions for the form factors. In the specific case at hand,
choosing s = s’ = +1/2 and u = 0, for instance, leads to

(Mg, DIGro QAo (0, +))
— /d3

x (4193919 0 Qlq192 Q) W3, (+)
=F + F+ F;,

ppd’ pid’ ppd’ p CY CHUR (+)
45)

where

(@135 lq1a2)(qlg" v Q10).  (46)

The matrix element (g;q5|q14>) gives § functions in spin,

momentum, and flavor in the spectator approximation, and

the operator GyyQ = 1+ & (m). When the § functions are
q

used, the integral is simplified to
) } [Ao(0, +))
Q

1
(Ag(p, B [1 + 6’(
mqm

:\/\d:;ppd}p)\wj\q(p:oa p;\)

1
X |:1 +0 (
mqm
with p/, = Py P = Pr — .2«/3/2 myp/my,, wher§ my is.the
mass of the light quark. This leaves the momentum integration,
which is performed by use of both bases for the momentum
wave function shown earlier. The analytic results for the form
factors for Ay decaying into various A, final states are given
in Appendix C. For decays to excited states, the calculation of

the form factors is a little more involved, but the basic idea is
as outlined here.

(4195919" 0 0lg192Q) =

Q>i| WAQ(pﬂs pk)’ (47)

2. AQ—>N

For decays in which the daughter baryon is a nucleon,
the procedure is much the same as outlined in the previous
subsection, with one modification. To illustrate, let us take the
specific example of A, — p. The flavor wave functions of
these two states have been chosen to be

ba, = %(ud —du)b, ¢, =uud. (48)

For the transition to occur, the third quark in the parent baryon,
the b quark, undergoes the transition b — u, leaving a final
state that is %(ud — du)u. This has no overlap with the flavor
wave function that we use for the proton. We must now permute

the third quark with the first and second quarks, giving
{13}%(ud —du)u = %(udu — uud), )
{23}%@“1 —duwu

%(uud — duu),
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both of which now have some overlap with the proton flavor
wave function we use. This requires that the sum of matrix
elements,

(N(P. HI{13}0i[Ao(0, +)) + (N (p. H)I{23}0:|A (0, 1)),

be evaluated, where we apply the permutation to the wave
function of the daughter nucleon. The permutation operators
also transform the spin and momentum wave functions of the
nucleon. The transformed spin wave functions are

{13} x*(s) = =L x7(s) — L x*(s),

(50)
(231(5) = L") = S ).
After carrying out the transformation on the nucleon wave
function, and using the fact that the ground-state momentum-
space wave function is totally symmetric, we find

(p(p. 5)10i]A (0, s") = _V3/4)/d3ppd3pk

X Y. LAY (0¥, (Py. P, (51)

where A**'(0;) is the Pauli reduction of the operator O;. The
integrations required for the A, to proton form factors are the
same as those in Eq. (47) in the previous subsection, and so
the form factors are the same up to a multiplicative factor.
For excited states, however, the procedure is slightly more
involved, and is easily illustrated by examination of the decays
to the radially excited nucleon.

Assuming single components, the wave function of the
radially excited state is

W12t m = OnP000010(Pps PXT/(M). (52)

The {13} transformation, acting on the spin-space part of this
wave function, produces

{13} Woo0010(P, P/\)Xlx/z(M)

N A !
=Woo0010(P,- P;.) |:—7Xf/2(M) - EXf\/z(M)

= — 3 [V27¥001000®, P X 2 (MD+3 V001000 P2) X1/ (M)
+ /3 Yoo0010(Py» PO (M)
5a(M) ++/18 /
+ Y000010(Pos PLIX {2 (M) + Yooo101(Py'> P2)

X X {1 (M) + V6 Yo00101 (P X1 2(M)], (53)

with a similar expression for the {23} transformation. Here
py = %(p»; —p2), pr = %(p3 + p2 — 2p)) are the Jacobi
coordinates in the transformed basis. Of these components,
only the first, third, and fifth have spin wave functions that
overlap with the decaying A, while only the first and third
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have nonzero spatial overlaps. The integrals that arise from
the first component are simply a numerical factor (+/27/8)
times those that arise in the Ap — A, matrix elements
for the radially excited A,. The integrals that arise from

the third term are also a numerical factor (+/3/8) times the
Ag — A, ground-state integrals, multiplied by a factor that
arises from the spectator overlap. In this case, this overlap is
expected to be small, as the spectators are in a radially excited
state in the daughter baryon, but in their ground state in the
parent.

The preceding procedure is relatively straightforward to
implement in the harmonic-oscillator basis, largely because
the Moshinsky rotations have been treated by a number of
authors, and are also fairly simple to calculate. In particular,
the fact that the “permuted” wave function can be written in
terms of a finite set of transformed wave-function components
is another feature that makes the harmonic-oscillator basis
attractive for calculations like these. In the Sturmian basis,
however, the permutation of particles requires an infinite sum
of transformed wave functions. This sum could be truncated
at some point in a calculation such as this. However, at this
point we do not examine decays to daughter nucleons in the
Sturmian basis.

V. ANALYTIC RESULTS AND COMPARISON WITH HQET

The analytic expressions that we obtain for the form
factors are shown in Appendix C, for both the Sturmian and
harmonic-oscillator bases. The results shown there are valid
when the wave function for a particular state is written as a
single component, in either expansion basis.

As mentioned earlier, one of the advantages of the Sturmian
basis is that it leads to form factors that behave like multipoles
in the kinematic variable, and this is seen in the forms that
we display. At this point, it is instructive to compare, as
far as possible, these analytic forms with the predictions of
HQET. While HQET does not give the explicit forms of
the form factors, a number of relationships among the form
factors are expected, and any model should reproduce these
relationships. In what follows, we restrict our comparison to
the predictions that are valid at the nonrecoil point, as we
have ignored any kinematic dependence beyond the Gaussian
or multipole factors shown in Appendix C. In addition,
we focus mainly on the predictions for heavy-to-heavy
transitions.

A. Natural-parity daughter baryons

We begin by discussing the form factors for decays to
daughter baryons of natural parity. In this work, this means
daughter baryons with J” = 1/2% (both ground state and
first excited state), J© = 1/2~ and 3/2~ (which constitute
a degenerate doublet when the daughter baryons are also
treated as heavy) and J* = 3/2% and 5/2" (also a doublet).
In our discussion of these results, we implicitly assume that
the wave functions for the states are dominated by a single
component of the wave-function expansions that we use. These
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single-component wave functions have been described in
Sec. IV A.

For elastic decays, predictions have been made at least to
order 1/ ms and 1/ m2Q However, we restrict our discussion to
the predictions valid to order 1/m, and 1/m . To this order,
using the results of Falk and Neubert [44], we find that the
relationships among form factors are

m m
F,=G,=—2F=-—2G,,
my my

g
Fi=G —F({1+—).

no

(54)

Our expressions for the form factors satisfy these relationships,
in both bases, to the appropriate order. In fact, the analytic
forms obtained exactly match the structure predicted by
HQET [44].

For the (1 /27,3/ 2’) doublet, there are 14 form factors in
general, which Leibovich and Stewart [13] write in terms of
a number of universal functions and constants, valid at order
1/m, and 1/my. Using their expressions, and writing form
factors for the 1/27 state as primed quantities, the relationships
expected are

1

F = 3mg —my) Fa,
: zﬁm,,( 0 = my) Fs
/ / 2
F = 3G} + == (Gy —2F).
F;=-G3, Gy=F, F—-G=G3—1I,
’ ! i 2
Gy = —3F, +2V3G,, F—G,= —ﬁG&
/ / / mg / 2
F}+ G, 4+ 2G|, = /3F. <1+—)—2G - —G;j,
2 2 1 4 m, 3 \/§ 3
(55)

where terms that vanish at the nonrecoil point have been
ignored. Our results for these states also satisfy all eight
of the relationships shown in Eq. (55) in both bases. Thus
there is a very good correspondence between the predictions
of HQET and those of the quark model that we use, and
this correspondence is independent of the wave-function basis
chosen.

For the (3/27", 5/2%) doublet, the available predictions are
at leading order, shown in Egs. (23) and (24). These are also
satisfied by our analytic expressions for the form factors, in
both bases.

For the excited state with J* = 1/27, the predictions of
HQET are that the form factors should vanish at the nonrecoil
point by reason of the orthogonality of the wave functions.
In the treatments in the literature, this is achieved with the
assumption that the form factors have an explicit factor that
vanishes as w — 1. In the expressions that we have obtained
for the leading-order form factors, this orthogonality arises
explicitly from the size parameters of the wave functions.

It is instructive to examine the expression for F; for this
decay in the limit when the Hamiltonian is that of a harmonic
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oscillator. The expression for Fj is

L2 - o)

F =1y
203,
Mo 0‘%(7 2 _3 2) O‘%/U 2_3 2)
— —(7Ta;, —3a3) — or —3a5) | ¢,
30‘§w mo g * my g *
(56)
where

3 ()l 3m2  p?
IH = 5 (% exXp | — 20. > |- (57)
a5y 2my Ay,

In the preceding expressions, «; (o) is the size parameter
of the initial (final) wave function associated with the Jacobi
coordinate X, and oc/%/\, = (a% + oc/%,) /2. If the Hamiltonian is
taken to be a harmonic oscillator of the form

K
V="r —12)? Hlr; — 132 +r — 131 =3K (p* +1%)
(58)

where r; is the position of the ith quark and p = (r; — 1)/ V2
and A = (r; +1r; —2r3)/ V6 are the Jacobi coordinates, then

_<3Km(,mQ)l/4 _(3Km(,mq>l/4
Oy =\ — , Oy =\ —"—" . (59)
mo +2mg mg +2mg

With these forms, the term in F| proportional to m,
vanishes identically, whereas the term in (¢ — ?) becomes
proportional to 1/m, — 1/m and so vanishes in the heavy-
quark limit. The terms in pz, which we do not include
here, will be those that contribute, despite the orthogonality
of the wave functions, as expected. Note that even though
the p? terms will appear with explicit factors of 1/ mf], )4
will range from small values (of the order of Agcp), to a
maximum of (mﬁQ — m%q )/(2my ). Such terms are therefore
not necessarily negligible. However, in the nonrelativistic
model that we use for the form factors, we have neglected
such terms.

B. Unnatural-parity daughter baryons

For the decays to baryons with unnatural parity, HQET
predicts that the form factors should vanish at leading order. In
the present model, we first have to identify such states, which
we do in the heavy-quark limit, using the single-component
wave functions. The wave functions of interest are

Wag.1/20m = ba [Yo00101(Pps PXT2(M — ML)]I/ZM ,
Wap32m = Pa [Vooo101(Pp- p,\)X3S/2(M - ML)]3/2,M ,
Wa,32-m = Oa [Vin,0100(Pp, PA)X3S/2(M - ML)]3/2’M ,

Wag.s5/2-m = ba [V1a1,0000Pp0 P2)X3 (M — ML)]5/2,M -
(60)
In the spectator assumption that we use, none of these states

have any overlap with the ground-state parent Ap. In fact,
there is a “two fold” orthogonality at play. The spin wave
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TABLE I. Hamiltonian parameters obtained from the four different fits. HO refers to the harmonic-oscillator basis, and ST refers to the
Sturmian basis. In the same column, NR indicates a nonrelativistic Hamiltonian, and SR indicates a semirelativistic one. The form of the

Hamiltonian is described in Sec. IV A 2.

Model  m, (GeV)  m,(GeV)  m.(GeV)  my (GeV) b (GeV?) ACout Clnyp Cyqq (GeV)
HONR 0.40 0.65 1.89 5.8 0.14 045 0.81 ~1.20
HOSR 0.38 0.59 1.83 5.17 0.17 0.09 0.26 —1.45
STNR 0.40 0.64 1.87 5.28 0.13 0.41 0.31 ~1.18
STSR 0.34 0.57 1.78 5.22 0.15 0.19 0.11 ~1.23

function of the two spectator quarks is orthogonal to the
corresponding wave function in the parent baryon. The spatial
wave functions of these two quarks are also orthogonal in
parent and daughter. Thus decays to these states will occur only
through configuration mixing in the wave function, induced by
various terms in the Hamiltonian.

In the model that we use, configuration mixing in the spin
wave functions arises from hyperfine terms involving the heavy
quark, which means that such mixing will be small. Thus
we expect that decays to such states should be significantly
suppressed. Interestingly, the suppression of the decays to
these unnatural-parity doublets persists as the mass of the
heavy quark in the daughter baryon is decreased, as such
configuration mixing remains small. In this case, even though
the definition of unnatural parity is different for light states,
there are still a number of decays (in A, — A, for instance)
that are predicted to be significantly suppressed. We will
comment on this later, when we examine the numerical results
of our model.

VI. NUMERICAL RESULTS

A. Model parameters, Mass spectra, and wave functions

In Sec. IVA2, we introduced the two Hamiltonians
we diagonalize to obtain the baryon spectrum. The two
Hamiltonians differed only in the form chosen for the kinetic

portion, one of which was nonrelativistic (NR), while the
other was semirelativistic (SR). In addition, we used two
different expansion bases to obtain the wave functions: the
harmonic-oscillator (HO) basis and the Sturmian (ST) basis.
In the following text, the four spectra we obtain are denoted
HONR, HOSR, STNR, and STSR, in what should be obvious
notation.

There are eight free parameters to be obtained for each
spectrum: four quark masses (m, = my, mg, m., and my), and
four parameters of the potential (anyp, ctcoul, b, and Cyyy). We
have investigated the effects of a tensor interaction in the two
HO models, and found the effects to be small. In the results
we present, the tensor interaction has therefore been ignored.
The eight parameters are determined from a ‘“variational
diagonalization” of the Hamiltonian. The variational parame-
ters are the size parameters o, and ), of Eq. (38) or 8, and B,
of Eq. (39). This variational diagonalization is accompanied
by a fit to the known spectrum. In this fit, the eight parameters
mentioned before are varied. The values we obtain for the
Hamiltonian parameters are shown in Table I, and some of the
wave-function size parameters are shown in Table II.

We note that the value of b, the slope of the linear potential,
tends to be smaller than in most published studies of the baryon
spectrum. The same is true for the strength of the hyperfine
interaction apyp. In the case of the latter, the small strength
arises because the hyperfine interaction is treated as a contact
interaction, and this can lead to very strong attractive forces

TABLE II. Wave-function size parameters o, and o, for states of different J P in different models. All values
are in GeV. For the Sturmian basis, the size parameters have been denoted g in the text.

Jr Model Ay A, A N
(Ot)u ap) (Ot)u ap) (Ot)u ap) (Ol)” O‘p)
1/2+ HONR (0.59, 0.61) (0.55, 0.58) (0.49, 0.53) 0.48
172+ HOSR (0.68, 0.68) (0.60, 0.61) (0.52,0.57) 0.54
1/2% STNR (0.44, 0.66) (0.41, 0.69) (0.35, 0.75) -
1/2+ STSR (0.46, 0.64) (0.43,0.67) (0.38,0.72) -
1/2~ HONR — (0.47, 0.49) (0.40, 0.47) 0.37
1/2~ HOSR — (0.55, 0.59) (0.48, 0.54) 0.46
1/2~ STNR — (0.60, 0.50) (0.55, 0.54) -
1/2~ STSR — (0.61, 0.49) (0.58,0.51) -
3/2% HONR — — — 0.35
3/2F HOSR — — — 0.44
5/2% HONR — — — 0.35
5/2% HOSR — — — 0.46
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TABLE III. Baryon masses (in GeV) fitted in different quark
models. The first two columns identify the state and its experimental
mass, and the next four columns show the masses that result from the
models that we use.

State Experimental mass HONR HOSR STNR STSR
N(1/2%) 0.94 1.00 1.08 1.08 1.08
N(1/25) 1.44 1.76 1.60 1.81 1.70
N(1/27) 1.54 1.45 1.44 1.50 1.47
N@3/27) 1.52 1.45 1.44 1.50 1.47
N(@3/21) 1.72 1.72 1.69 1.78 1.77
N(5/2%) 1.68 1.72 1.69 1.78 1.77
A(1/27%) 1.12 1.23 1.23 1.12 1.10
A(1/2) 1.60 1.73 1.81 1.61 1.55
A(1/27) 1.41 1.54 1.62 1.50 1.56
A(3/27) 1.52 1.54 1.62 1.50 1.56
AQ3/2%) 1.89 1.81 1.81 1.77 1.87
A(5/2) 1.82 1.82 1.81 1.77 1.87
A (1/2%) 2.28 2.35 2.32 2.26 222
A (1/27) 2.59 2.61 2.70 2.61 2.68
A.(3/27) 2.63 2.61 2.70 2.61 2.68
Ap(1/2%) 5.62 5.62 5.62 5.62 5.62

between the quarks. One result of this is that, for sufficiently
large values of ayyp,, the masses of the lightest baryon states
can become negative. The small value of this parameter that
results from our fits is therefore driven largely by the need
for positive baryon masses. One direct consequence is that
hyperfine splittings are not well reproduced in all but the
HONR model, with the A — N mass splitting being about
one third of its experimental value.

In general, we allow the values of «, to be different from
a;. The exceptions occur in cases when the three quarks
are identical, as they are in the nucleon. In that case, the
variational diagonalization automatically selects o, = a;. In
Table II, we show only some values of the size parameters.
The other size parameters, for the states that are significant
for this work, are related to those presented. For instance,
for the 1/2]L states, the size parameters are the same as for
the 1/2% states. Furthermore, because we do not include a
spin-orbit interaction in our Hamiltonian, the size parameters
for the 1/27 and 3/27 states are identical. We do not show
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the size parameters for the A states with Q = b, ¢, or s and
JP =3/2% or5/2%, mainly because we find that semileptonic
decays to these states are very small.

1. Mass spectra

Portions of the four mass spectra we obtain are shown
in Table III. In this table, the first two columns identify the
state and its experimental mass, and the next four columns
show the masses that result from the models that we use. The
small hyperfine interaction that we alluded to in the previous
subsection has resulted in ground-state nucleons that are too
heavy in all models. In addition, the ground state A (not shown
in the table) is too light in all models. Similar patterns emerge
when the various A and X (not shown) states are compared.
The size of this interaction also results in ‘radial’ excitations
that are too heavy, even heavier than usually result in models
like these.

We note, too, that the different models give very
similar results for many of the states such as the
N(1/2%), N(1/27), A(1/2%) and A,(1/2"), for instance, but
for some states such as N(1 /2?)(1440), there are striking
differences in the masses obtained.

2. Wave functions

For many of the states that we treat, the wave functions that
result are, to a very good approximation, the single-component
wave functions shown in Sec. IV A. This turns out to be a
particularly good approximation for the orbitally excited states
such as the 1/27 and 3/2~ states, for all but the nucleon states.
For the A(1/27) and A(3/27), for instance, the dominant
component has a coefficient [the n; of Eq. (A2)] of at least
0.985 in all of the models. We treat such states as being single-
component states, and this will introduce errors of about a
few percent (typically less than 3% for the particular states
mentioned, usually much less for the states containing a ¢ or
b quark).

Significant mixing occurs only in the 1/2% sector, for all
flavors, particularly in the ST models. Table IV shows the
wave-function coefficients for the two lowest 1/2F states,
in each flavor sector, for all four models (in the case of the
nucleon, we show only the results from the HO models).
The mixing shown in this table complicates the extraction
of the form factors. However, in all results that we show for

TABLE IV. Mixing coefficients (;) of the two lowest-lying 1/2% states in different flavor sectors. The n; are defined in Eq. (A1) of

Appendix A.
Baryon HONR HOSR STNR STSR
states

m 2 UK] m M2 3 m 2 3 m 2 3
N(1/2%) 0.979 —0.150 0.034 0.989 —0.110 0.028 — — — — — —
N( /Zfr) 0.022 0.522 0.825 —0.026 0.579 0.800 - - - - - -
A(1/2%) 0.994 0.005 —0.069 0.998 0.003 —0.035 0.900 0.208 0.382 0.875 0.313 0.368
A(I/ZT) 0.047 0.149 0.962 0.018 0.650 0.750 —0.177 0.977 —0.115 -0.279 0.950 —0.152
A(1/27) 0.999 0.001 —0.020 0.999 <0.001 —-0.012 0.917 0.137 0.374 0.877 0.289 0.382
AC(1/2T) 0.017 0.100 0.993 0.010 0.361 0.931 —0.138 0.989 —0.059 —-0.257 0.957 —-0.132
Ap(1/27) 0.999 <0.000 —0.003 0.999 <0.001 —0.004 0.915 0.141 0.378 0.876 0.286 0.390
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TABLE V. Form-factor components .%; and &; as defined in Eq. (61), evaluated at the nonrecoil point. The components are shown for the
HONR (HO) and STNR (ST) models. The columns labeled A, are for the A, — A® form factors, and those labeled A are for the A, — A

form factors.

Form factor JP=1/2*% JP=1/2" JP=3/2"
A, Ay A, Ay A Ay

HO ST HO ST HO ST HO ST HO ST HO ST
FO 098 097 099  0.99 0 0 0 0 —1.08 —148 —1.16 —138
FD 054 078 020 028 0.36 0.32 0.16 012 —046 —076  —023 —0.25
FO 023 015 008 005 —004 —004 —004 —001 —-0.10 —037 —0.03 -0.12
F49 0 0 0 0 0 0 0 0 0 0 0 0
F0 0 0 0 0 —124 —171 —134 —1.60 0 0 0 0
T —054 —072 020 —026 0.36 0.32 0.16 0.12 0.46 0.76 023 025
T 0 0 0 0 —034 —043 —011 —0.14 <001 <001 <001 <0.01
F119 005 —0.03 001 <001 0.06 0.05 0.01 0.02 0.08 0.07 0.02 001
7 0 0 0 0 0 0 0 0 0 0 0 0
FD 0 0 0 0 0 0 0 0 0 0 0 0
FO —021 —0.11 —0.07 —0.04 0.34 0.43 0.08 0.14 0.37 0.43 0.13  0.15
F9 0 0 0 0 0 0 0 0 0 0 0 0
F0 - - - - - - - - —0.14  —0.13  —0.06 —0.05
@© 098 097 099 099 1.24 1.71 1.34 160 —1.08 —148 —1.16 —138
@@ 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0.04 0.02 0.02 0.01 0.07 0.06 0.03 002
@4 002 —001 <001 <001 0.06 0.02 0.01  <0.01 0.05 0.07 0.01  0.01
@ 0 0 0 0 —124 —171 —134  —1.60 0 0 0 0
@@ —054 —072 —020 —0.26 0.36 0.32 0.16 0.12 0.46 0.76 023 025
7@ 0 0 0 0 0.08 0.06 0.04 0.03 0 0 0 0
@4 —0.14 006 —0.02 —0.01 0 <001 <001  <0.01 0.14 0.20 002  0.02
@© 0 0 0 0 0 0 0 0 0 0 0 0
@@ 0 0 0 0 0 0 0 0 0 0 0 0
7@ 023 0.1 0.08  0.04 0.08 0.07 0.04 003 —-037 —043 —0.13 -0.15
@4 013 009 002 001 —006 —0.02 —001 001  —017  —0.1 —0.03 —0.02
@@ - - - - - - - - 0.14 0.18 0.06  0.06
@4 - - - - - - - - 0.12 0.13 002 0.2

the form factors and the decay rates, this mixing is properly
accounted for. Note that, in each of these wave functions, there
is also some contribution from the term in n4. However, this
component of the wave function has negligible overlap with the
wave function of the parent baryon, and so is neglected here.

B. Form factors and decay rates

In our calculation of the form factors, we have assumed that
we can use nonrelativistic approximations for the operators.
This means that we have ignored terms in the various quark-
model operators that appear at order 1/ mz, 1/ sz, and above.
Such terms have also been ignored in writing the hadronic

matrix elements. However, in extracting the form factors, we
have kept, and shown, terms that are of the order of 1/(m,m ).
To examine the validity of this treatment, we write each form
factor as

1 1 1
my mo mgmo
(61)

_ ©0) @) Q) qQ)

=70+ 79+ 70+ 7
and show the values for fi(o), 5{-((’), etc., in Table V. In this
table, we show only the results for the HONR and STNR
models.
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TABLE VI. The form factors for A, — A transitions, calculated at the nonrecoil point, in the

four models used here.

Spm Model F] Fz Fg F4 G] G2 G3 G4
1/2% HONR 1.75 -054 -0.23 - 0.98 —-0.54 0.23 -
172+ HOSR 1.76 —0.55 —0.24 - 0.98 —0.55 0.24 -
1/2% STNR 1.90 —-0.72 —0.11 - 0.97 -0.72 0.11 -
1/2% STSR 1.78 —-0.66  —0.09 - 0.92 —0.66 0.09 -
1/2~ HONR 0.32 —1.22 0.34 - 1.20  —0.80 0.08 -
1/2~ HOSR 0.42 —1.02 0.30 - 1.14 —0.61 0.10 -
1/2~ STNR 0.28 —1.82 0.43 - 1.73 —1.42 0.07 -
1/2~ STSR 0.36 —1.30 0.31 - 1.38 —1.04 0.08 -
3/2° HONR —1.83 0.46 0.37 -0.14 —-1.00 046 —-0.37 0.14
3/2° HOSR —1.81 0.52 0.35 —0.18 —0.94 052 035 0.16
3/2~ STNR —-2.61 0.76 0.43 —0.13 —1.42 076  —-047 0.13
3/2° STSR —2.03 0.58 034  —-0.13 —1.11 0.57 —-0.38 0.13

For the elastic decays, the form factors F; and G, are
dominant, whereas all other form factors are subdominant.
For 1/2~ final states, F», G, and G, are dominant, whereas
for 3/27, F; and G, are the dominant form factors. In each
case, we see that the .#© or ¥© term is significantly larger
than the “higher-order” terms, as expected. The numbers in this
table suggest that the convergence in 1/m, is rapid, modulo
the model dependence.

1. A, > AW

In Table VI we show the values of the form factors at the
nonrecoil point for the decays A, — A, for both elastic and
inelastic channels. In this table, the results from all four models
are presented. The results we obtain for the elastic channel
are consistent with the predictions of HQET as estimated by
Scora [29].

In their treatment of the process A. — Ae*v, the CLEO
Collaboration has used the leading-order predictions of HQET
to analyze the decay rate in terms of two form factors, & and
&,. In terms of the form factors that we have been using, these
HQET form factors are

& =F+F)/2,
& =G —Gy/2,

& =F/2,
& = G2,

The two sets of equations above arise from inverting
Egs. (30) either in terms of the F; or the G;. In Table VII,
we show the values we obtain for the ratio &,/&;, evaluated
at the nonrecoil point. We also show the value obtained by
the CLEO Collaboration in their analysis. We note that CLEO

(62)

TABLE VII. The ratio & /& for A. — A(1/2%). The first row is
obtained with the vector relation defined in the text, and the second
row is obtained with the axial-vector relation.

&/& HONR HOSR  STNR STSR CLEO
Vector —0.18 —0.18 —-0.23 -023 -0.31
Axial vector —-0.21 —-0.22 —-0.27 —-026 —031

presents a single value for the ratio of form factors, whereas
we have two sets of values, arising from the two expressions in
Eq. (62). These two expressions give values for this ratio
that are different, but not disturbingly so. The vector ratio
(involving the F;) tends to be smaller than the axial-vector
ratio (involving the G;), and both are smaller than the ratio
extracted by the CLEO Collaboration. The differences among
the numbers we obtain using the two methods can be traced
back to the 1/m ¢ terms in F7; if those terms are ignored, both
methods give the same value for the ratio.

Figure 1 shows the ¢ dependence of the form fac-
tors for the elastic transition A. — A(1/2%1), calculated
in the HONR and HOSR models on the left and in the
STSR and STNR models on the right. In each panel, the
solid curves arise from the SR version of the model, and
the dashed curves are from the NR version. If we compare
the form factors shown in Fig. 1, we see that those calculated
using the ST wave functions have larger slopes near the
nonrecoil point (maximum ¢2) than those calculated using
the HO wave functions. The form factors calculated in the
different models all have similar values near the nonrecoil
point (as seen in Table VI). The larger slopes obtained in
the case of the ST model form factors means that we can
expect smaller integrated rates from the STSR and STNR
models.

The differential decay rates dT"/dq? that we obtain in the
four models are shown in Fig. 2. For these rates, we use
|Ves| = 0.974. In these figures, we show the differential rates
for decays to the elastic channel, as well as for two orbital
excitations, the states with J¥ = 1/2~ and 3/2~. We have
also examined the differential decay rates to the 3/2% and
5/2% orbitally excited states, as well as to the 1/2% radially
excited state. With the exception of the latter, we find these
rates to be significantly smaller than those shown in this
figure.

As expected from the plots for the form factors, the
differential decay rates that arise from the ST wave functions
for the ground state show a larger variation over the allowed
g range. We also point out that the most noticeable difference
between the NR and SR versions of a particular model is seen
in the differential rate for the elastic decay.
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FIG. 1. Form factors for A, — A(1/2%) obtained with HO wave functions (left panel, HOSR and HONR models) and ST wave functions
(right panel, STSR and STNR models). In each panel, the solid curves arise from the SR version of the model, and the dashed curves arise
from the NR version. Note that F; is indistinguishable from G, in all cases.

The integrated decay rates for the different final states in
the different models are shown in Table VIII. As already
anticipated, the total semileptonic decay rates that we obtain
in the HO models are significantly larger than those obtained
in the ST models. This effect is largest in the elastic decays,
for which the HO models predict decay rates that are more
than twice as large as those of the ST models. We note that
the elastic rates predicted by the ST models are much closer
to the experimentally reported rate [31] than those predicted
by the HO models.

From Table VIII, it is clear that, while the elastic channel
dominates the decay rate of the A, it does not saturate the
decay. In each model, we find that the decay rate to the 1/2~
state is roughly one tenth of the elastic decay rate, while
the decay rate to the 3/27 state is about 5% of the elastic.
Decays to these two excited states account for about 15%
of the total decays of the A., assuming that decays to other
excited states are negligible. It is also interesting to note that
the ratio I'p / ['ioral 1S almost independent of the model that we
use, even though the absolute rates are very different in the
different models.

The assumption that the channels we explore saturate the
resonant decays of the A, is certainly consistent with the

dr/dq” (s'Gev™)

q’(GeV)

results we have obtained with the other states that we consider.
First, we point out that phase space limits how many excited A
states can be considered, and the higher the excitation, the more
limited the phase space available for producing such a state.
For some final states for which there might be sufficient phase
space to allow the decay, the spin-space structure of the state
allows little overlap with the initial baryon, and configuration
mixing that could involve components with larger overlap with
the initial baryon is very small. In addition, angular momentum
factors (in orbitally excited states) lead to suppression of the
decay rate.

We can compare our predictions for decays to the excited A
states with the assumption made by the CLEO Collaboration
[31], that the elastic channel saturates the semileptonic decays
of the A.. In our models, we find that between 11 and 19% of
the A, semileptonic decays are to excited states. In addition,
our branching fraction (of 81 to 89%) to the ground state A
must represent an upper limit, as we have not included any
nonresonant production of multiparticle final states. It appears
difficult to understand the lack of evidence for any decays
to excited states in Ref. [31]. This article reports no signal for
decays of thekind A, — A Xe'tv, and this is taken as evidence
of saturation. However, the excited A states that we consider

4x10"

3x10'2

dr/dq” (s'Gev™)
(3]
X
S

0.0 0.5 1.0 1.5
q'(GeV?)

FIG. 2. The differential decay rates for different A, — A® transitions in the different models that we use. The curves on the left arise
from the two versions of the HO model, while those on the right are from the ST models. The curves are for exclusive final states with
JP =1/2%,1/27 and 3/2~. Also shown are the differential decay rates we obtained by adding the exclusive modes described (labeled “total”).
In each panel, the solid curves arise from the SR versions of the models, and the dashed curves arise from the NR versions.
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TABLE VIIL Integrated decay rates for A, — A® in units of
10" s~! for different A states in the four models we consider. The
last row shows the “elastic fraction” obtained in our model, where the
decays shown in the table are assumed to saturate the semileptonic
decays.

Spin '(HONR) I'(HOSR) T'(STNR) I'(STSR)  Exp. [31]
1/2F 2.10 2.36 0.79 1.11 1.05£0.35
1/2- 0.19 0.29 0.12 0.15 -

3/2- 0.04 0.06 0.06 0.05 -

1/2f 0.02 0.02 <0.01 <0.01 -

Total 2.35 2.73 0.97 1.31 -
/T 0.89 0.86 0.81 0.85 1.0 (assumed)

do not decay to A, the most obvious decay mode to search
for, as this decay is isospin violating. They will predominantly
decay to X final states. In fact, the 1/27 state, the A(1405),
has a 100% branching fraction to X, while the A(1520), the
3/27 state, has roughly equal dominant branching ratios to
¥ and NK, with only about 10% going into Az . Thus our
suggestion is that CLEO should investigate final states like
Ymfv and N K/{v, and not states like Armlv.

The results discussed above are obtained using the assump-
tion that the lightest of the J P—1 /27 A states, identified with
the Sp; state A(1405) found in analyses of scattering data, is
a three-quark state. There are a number of other descriptions
of this state in the literature, such as a dynamically generated
bound state [45] and a multiquark state [46]. If the CLEO
Collaboration (or other groups) searches for decays of the A,
to excited A states, especially the A(1405), and finds no such
decays, this would be a strong hint that this state is not a simple
three-quark state, as we have assumed.

Our estimate of the fraction of A, decays to excited states
has important consequences for the absolute normalization of
the branching fractions to the more than 60 observed final
states in A decay. Most of these branching fractions are

PHYSICAL REVIEW C 72, 035201 (2005)

measured relative to the decay mode Aj — pK~m™, and the
absolute branching fraction of this mode cannot be extracted
from data without introducing model dependence. One of
the two important techniques for this extraction is based on
measurements [47,48] of the cross section for A X production
in ete™ annihilation, with the subsequent semileptonic decay
A} — A€"v,. The extraction relies on the assumption that the
fraction f of decays AT — X €1, that have X; as the ground
state A is unity (the elastic channel saturates the semileptonic
decays), with a significant uncertainty. Our calculated value
f =0.85, with an error of 0.04 estimated by evaluating f
in four different models, changes the central value of this
parameter and may allow a reduction in the assumed error
from model dependence in the extracted absolute branching
fractions.

2. Ab g A(c*)

In Table IX we show the values of the form factors at the
nonrecoil point for the decays A, — A%, where this notation
means that the A, may be in an excited state. The results from
all four models are shown, along with the results from a lattice
study [17]. The lattice results are actually given as multiples
of £(w), evaluated at the nonrecoil point, and Ref. [17] reports
a number of different values for £(w). In the “physical”
limit, values £4)(1) = 1.03%(:}5 and £V)(1) = 0.87 +£0.22
are quoted, in which the two extractions are from the axial
and vector currents, respectively. The results we obtain for the
elastic decays are consistent with the predictions of HQET
as estimated by Scora [29], as well as with these lattice
simulations.

Figure 3 shows the g2 dependence of the form factors for
the elastic decay of the A, calculated in the HONR and HOSR
models on the left and in the STSR and STNR models on the
right. In each panel, the solid curves arise from the SR version
of the model, and the dashed curves are from the NR version.

TABLE IX. Form factors of A, — Aﬁ.* ), calculated at the nonrecoil point, in the four models we use. Also shown are the lattice estimates
for the elastic form factors, taken from [17]. The lattice numbers are in fact multiples of their estimate of &(w), for which they explore a number

of scenarios.

JP Model Fl Fz F3 F4 G] Gz G3 G4
1/2* HONR 1.27 —0.20 —0.08 - 0.99 —-0.20 0.08 -
1/2+ HOSR 1.24 —0.18 —0.08 - 0.97 —0.18 0.08 -
1/2* STNR 1.28 —-0.26 —0.04 - 0.98 —-0.26 0.04 -
1/2* STSR 1.20 -0.22 -0.03 - 0.92 -0.22 0.03 -
1/2+ Lattice 1284006  —0.19+0.04  —0.06"0% - 0.99 —0.2470% 0.09 +0.02 -
1/2- HONR 0.12 —1.20 0.11 - 121 ~1.05 0.03 -
1/2- HOSR 0.15 -0.95 0.09 - 1.01 —0.82 0.04 -
1/2- STNR 0.10 ~1.63 0.14 - 1.61 ~1.50 0.03 -
1/2- STSR 0.11 —121 0.10 - 1.24 —1.12 0.03 -
3/2° HONR -133 0.17 0.13 -0.06  —1.03 0.17 -0.13 0.06
3/2- HOSR ~1.13 0.15 0.12 —0.05  —0.87 0.15 —0.12 0.05
3/2- STNR -1.75 0.25 0.15 —-0.05  —1.36 0.25 —0.22 0.05
3/2- STSR ~1.31 0.16 0.11 —-0.05  —1.04 0.16 —0.18 0.05
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FIG. 3. Form factors for A, — A.(1/2") obtained with HO wave functions (left panel, HOSR and HONR models) and ST wave functions
(right panel, STSR and STSR models). In each panel, the solid curves arise from the SR version of the model, and the dashed curves arise from

the NR version. Note that F; is indistinguishable from G, in all cases.

As noted in the case of the A, — A(1/2"), the form factors
obtained in the ST basis have significantly larger slopes than
the corresponding form factors calculated in the HO basis at
the nonrecoil point.

In terms of the Isgur-Wise function &(w) for the elastic
decay of the A, the form factor F| is

_ 1 1
F— [1 LA <2mc + %)] E(w),

where A = my, —mp =my, —m, at leading order in the
heavy-quark expansion. From the forms given in Appendix C,
and with the identification A ~ 2m,, we can extract

(63)

3mg p?
~ — — 64
E(w) ~ exp ( o (64)
in the HO basis or
1
E(w) ~ Y (65)
(1 2m3\( F)

in the ST basis (assuming single-component wave functions),
and we have assumed that o) = oy = «, B, = B = P in the
heavy-quark limit. Writing

p2 = }nf\(_(u)2 — = Zmi(_(u) —1), (66)
the expressions above become
3m?2
§(w) ~exp | — " (w—1) (67)
in the HO basis or
1
Ew) ~ ———— > (68)
[1+ 7 (W — D]
in the ST basis.
The Isgur-Wise function may be expanded as
2
2 g 2
Ew)=1=pw =D+ Zw=1D" 4 (69)

where the slope of the form factor at the nonrecoil point is
denoted p? and the curvature is denoted 2. Rigorous bounds

have been placed on the values of both the slope and curvature
parameters for meson decays, and some models have difficulty
in satisfying those bounds. In particular, in the model of ISGW
[4], a factor x was introduced by hand {see the discussion
between Egs. (B2) and (B3) of Ref. [4]} to modify the q2
dependence of the form factors. In our model, the equivalent
procedure would be to change I for the elastic decays shown
in Appendix C from

ai/zai/z 3mk p?
In=\|—F"—]exp| -~ -
vy 2mip, &

as calculated to

3/2 32
ax/ ot)\// 3m2  p?
Iy = ——="—]exp|— .
" 3 P\72m2 a2
@ A, w

The argument used by ISGW was that this factor of ¥ would
take into account “relativistic effects.” The effect of this change
is shown in Fig. 4, where the form factors for A, — A, are
plotted as functions of w = v - v’ for the two HO models
[graphs (a) and (b)]. For comparison, graph (c) shows form
factors obtained in the ST basis, also as functions of w. Graph
(a) shows our calculated form factors, and graph (b) shows
form factors including the factor of «.

Table X lists the slope of the Isgur-Wise function that we
have extracted, at the nonrecoil point, in both the HO and
ST models, as well as in the “relativistically modified” HO
model (using the factor «). The slopes of the form factor near
the nonrecoil point are larger in the ST models than in the
HO models. One can easily understand this by noting that the
value of p? is

2 m(zx
in the HO models, and
2 m(zr

in the ST models. The extra factor of 2 in the latter case
arises because the form factors in the ST models have a dipole
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Form Factors

Form Factors

Form Factors

FIG. 4. The elastic form factors for the decay of the A, as
functions of w. Graphs (a) and (b) arise from the HO model, and
graph (c) is from the ST version of our model. Graph (a) shows
the form factors obtained in this work, and graph (b) incorporates a
“relativistic” factor in the exponential (see text). In each graph, the
solid curves arise from the SR version of the model.

dependence on w. A corresponding monopole form would give
the same slope as that of the HO models. Because the values
of m, are similar in the two sets of models and the values of
a are not very different from the values of 8, the ST models
will give slopes that are roughly twice as large as those of the

TABLE X. Slope of the Isgur-Wise function, evaluated at the
nonrecoil point, for the elastic decay of the A,.

Model HONR HOSR HONRk HOSRxk STNR STSR

dé(w)/dw —-138 —-133 =282 =271 =571 =327

PHYSICAL REVIEW C 72, 035201 (2005)

HO models. In the same way, it is easily shown that the ST
models lead to curvatures that are about six times as large as
those obtained in the HO models.

The k-modified HO model leads to slopes that are similar
to those obtained in the ST models, since the value chosen for
« was 0.7 (so that 1/k? ~ 2). Relativistic effects do not need
to be invoked to obtain the large slopes obtained in the ST
models. The differences in the slopes are simply artifacts of
the expansion bases used for the wave functions.

In the follow-up article to Ref. [4], Scora and Isgur [49]
rewrite the quark-model form factors, explicitly replacing the
exponential factor that arises with the HO wave functions. The
change they make is

1
exp {—grv%f[(mg —mp)* — qﬁ}

1
N (72)

{14 gr2lons —mpy — g2}

where 72, is the value obtained from the HO wave functions
and
3
rt =
dmgmy

+ rle + rocp- (73)

The last term arises from matching of currents in HQET with
full QCD. In expression (72), the integer N =2 +n + n/,
where n and n’ are the HO principal quantum numbers for the
initial and final wave functions. The final forms that they used
are therefore very similar to the forms that we have obtained
in the ST models.

The values we have obtained for the slope of the Isgur-Wise
function in our ST models are significantly larger than the
value obtained recently by Huang et al. [50], who used a
HQET approach based on QCD sum rules: Their value for
,02 is less than 1.5, similar to the values we obtain in the
HO models. In arecent analysis of the A, form factor measured
in hadronic Z decays, the DELPHI Collaboration [32] found
p% = 2.03 & 0.46, where the error shown is statistical. They
also reported two sets of systematic errors, each comparable
with the statistical error. This result means that, for the
ST models, we will obtain integrated decay rates that are
significantly smaller than the DELPHI rate. In the lattice study
by Bowler et al. [17], the reported slope is 1.1 £ 1.0. A more
recent lattice study with 0(a?, a;a?) improved lattices [18]
does not quote values for the slope. However, a conservative
estimate from the graphs they present gives values for p? that
appear to be consistent with the large values we obtain in the
ST models.

Also of some interest is the curvature of the Isgur-Wise
function, denoted o2. In the HO models with no modifica-
tions, the prediction is that ‘71310 = (pﬁo)z, whereas the ST
models give 052T = 3(,0§T)2/2. Bounds on the curvature of
the Isgur-Wise function for meson decays have been derived
by Le Yaouanc, Oliver, and Raynal [51]. To the best of our
knowledge, no such bounds have been derived for baryon
decays. However, the values of the curvature we obtain by
using both the HO and ST models easily satisfy the known
bounds for meson decays. Note that the large slope and large
curvature we obtain suggest that the common procedure of
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FIG. 5. The differential decay rates for different A, — A transitions in the various models that we use. The curves in the left panels arise
from the two versions of the HO model, and those in the right panels are from the ST models. The upper panels are for A, — A£b,, where
£is e~ or . The lower panels are for A, — A®t1,. The curves are for final states with J* = 1/2%,1/27,and 3/2".

parametrizing the Isgur-Wise function only in terms of its
slope parameter can potentially lead to significant errors in the
extraction of CKM matrix elements.

The differential decay rates dT"/dg? that we obtain in the
four models are shown in Fig. 5 (assuming |V,;| = .041).
In these plots, we show the differential rates for the elastic
channel, for the radially excited 1 /2;r state, as well as for
decays to two orbital excitations, the states with J L /2~
and 3/27. We have also examined the decay rates to the
3/2%,5/2% states, and found them to be smaller than those

shown in this figure, contributing of the order of 1% or 2% to
the total rate.

The integrated decay rate for the different final states in the
different models are shown in Table XI. As anticipated above,
the total semileptonic decay rates that we obtain in the HO
models are significantly larger than those obtained in the ST
models. This effect is largest in the elastic decays, for which
HO models predict decay rates that are more than twice as
large as those of the ST models. Note that, in all models, the
decay rate to the 3/27 state is roughly twice the decay rate

TABLE XI. Rates for A, — A" decays in units of 10'*s~!. The first five rows are
for decays with a muon or electron in the final state, and the last four rows are for
decays with a 7 in the final state. The rows labeled “total” are obtained by summing
the exclusive decay rates shown in the table, and the row with the branching fractions
assumes that the exclusive channels shown saturate the semileptonic decays of the A;. The
elastic fraction reported by the DELPHI Collaboration (fifth row, sixth column) is actually
T(Ap = AlDy)/[T(Ap = Acliy) + T (A, — A.mrmeb,)]. The errors on both DELPHI
results are statistical and systematic, respectively.

Jr [(HONR) T(HOSR) TI(STNR) T(STSR) TpELpHI
1/2* 4.60 5.39 1.47 200 407100 00
1/2- 0.45 0.52 0.26 0.27 -

3/2° 0.95 0.90 0.63 0.60 -
Total (A€ y) 5.95 6.81 2.36 2.87 -

Ta./ ool 0.76 0.79 0.62 0.69  0.47H 000
172+ 1.90 2.09 0.82 1.00 -

1/2° 0.10 0.11 0.08 0.07 -

3/2° 0.15 0.13 0.14 0.12 -
Total (A%t~ ;) 2.15 2.33 1.04 1.19 -
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to the 1/27 state. In the heavy-quark limit, this ratio of decay
rates is expected to be 2, and results from arguments that are
similar to spin-counting arguments.

Table XI also shows that a significant fraction of the
semileptonic decay of the A, is inelastic. This is analogous to
what has been seen in B semileptonic decays, for which the
elastic channels account for no more than about 80% of the
total semileptonic decay rate. For the A;, our predicted ratios
are similar, ranging from 62 to 77% of the total semileptonic
decay rate. We have estimated the total semileptonic decay rate
by assuming that the three exclusive modes shown in Table XI
saturate the semileptonic decays (rates to other states that we
have examined are significantly smaller than those shown in
the table). Using these numbers, we obtain predictions for
the total semileptonic decay rate of the A;, also shown in
Table XI.

For comparison, the PDG [11] gives a rate of 7.486 +
2.105 x 10'°s~! for the inclusive semileptonic decay A, —
A LV + anything. This is significantly larger than any of the
total semileptonic widths we obtain, but the authors of the
PDG emphasize that this value results from assumptions about
the fragmentation of b quarks into baryons, and “cannot be
thought of as measurements” [11]. The DELPHI value for the
elastic semileptonic decay rate is also shown in Table XI.
As anticipated, the rates we obtain in the ST models are
significantly smaller than the DELPHI rate, whereas those
obtained in the HO models are consistent with the DELPHI
measurement.

The examination of the decays of the A (Sec. VIB1) found
that the ST models provided rates that were consistent with
the CLEO measurements, while the HO models gave rates
that were twice as large. This suggested that the ST models
might be more reliable. For the A, decays, we see that the HO
models provide rates that are more consistent with the single
measurement available to date. For the ST models, the
predicted rates are about 20 away from the reported value, if
the systematic and statistical errors are treated in quadrature.

The DELPHI Collaboration has also reported on the elastic
fraction of the semileptonic decays of the A,. For the ra-
tio'(Ap = AlDy)/[T(Ap = Aclvy)+T(Ap = Actmliy)],
they find a value of 0.477009%0%7  with no evidence for
resonant decays. This ratio is smaller than we predict, in
all models. However, our predictions must be thought of as
upper limits for the elastic fraction, as we do not include any
nonresonant semileptonic decays. We note that our predicted
ratios are already somewhat smaller than those reported
in the decays of B mesons, whereas the DELPHI ratio is
smaller still, suggesting that there are significant differences
between the semileptonic decays of the heavy baryons and
those of the heavy mesons. If the DELPHI results for both the
elastic rate and the elastic fraction are not modified by future
experiments, this aspect of the physics of heavy hadrons will
require further scrutiny.

3. Ap—> N® decay

The decays of the Ay to final states consisting solely of
light quarks are interesting as they provide an alternative means

PHYSICAL REVIEW C 72, 035201 (2005)
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FIG. 6. Form factors (a) & I(V), (b) & fA), and (c) &, for the transitions
A, — n and A, — p. All curves are found with the HO models,
with the solid curves corresponding to HOSR and the dashed curves
to HONR. The two plots for & arise from the two ways of evaluating
this form factor, shown in Egs. (62).

of extracting CKM matrix elements like V,;. The expectation
from HQET is, modulo 1/m ¢ effects, that the form factors that
describe the A, — n semileptonic decays will be the same as
those describing the A;, — p semileptonic decays. To explore
this, we now examine the form factors for these two decays.
In Fig. 6 we show the form factors él(v), EI(A), and &, for
the transitions A, — n and A, — p, obtained in the two
HO models. The two forms SI(V’A) are found using the two
sets of equations in Egs. (62). The value of &, is independent
of which of the two sets of equations we use, up to the order
to which we calculate the form factors. In both the NR and
SR versions of the model, the two curves for él(A) are very
similar, indicating that the HQET prediction, that this form
factor should be the same for both transitions, indeed holds
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FIG. 7. Differential decay rates for A, — N 9+ in the HONR and HOSR models. The upper panels show the rates for A, — N Bte=p,,
and the lower panels show the rates for A, — N®*1t~9_, both in units of |V,;|>. The panels on the left are from the HOSR model, whereas

those on the right are from the HONR model.

up to small corrections. For the SR version, the two curves
are closer than in the NR case. The differences seen in the
curves for &, which are consistent with those in the curves for

I(A), arise mainly from the differences in the size parameters

(o, and «)) between the A, and A, states in the models (see
Table II). The curves for & I(V) show the biggest differences in
going from A, — p to A, — n, in both models. Here, the
differences get some contribution from the 1/m term that is
present in Fj.

In Fig. 7, we show the differential decay rates for A,
decaying semileptonically into the four lowest-lying nucleon
states, and Table XII shows the integrated rates into six

TABLE XII. Decay rates of A, — N®*¢D, in units of
102 s |V,,|2. Also shown are the rates for A, — N®°¢+v, in units
of 109571, obtained using |V,4| = 0.224.

J*r Ap —> N®Tp, Ap —> N®Tr=p,
F(HONR) T(HOSR) T(HONR)  T(HOSR)
172+ 4.55 7.55 4.01 6.55
1/2F 2.92 4.44 2.20 3.05
1/2~ 1.42 3.85 1.10 2.73
3/2° 1.52 1.77 1.02 1.04
3/2F 1.06 2.21 0.61 1.14
5/2* 0.78 1.47 0.37 0.52
Total 12.23 21.29 9.31 15.03
A, — N®Ogty, _ _
172+ 1.02 1.35 - -
1/2~ 0.02 0.04 - -

exclusive states. Also shown in this figure and table are the rates
that we obtain when the final lepton is a 7. The ground-state
nucleon is the largest of the CKM suppressed decays of the
Ay, butit accounts for less than 50% of these decays, in both of
the HO models. A large fraction (about 20%) goes into the first
excited state, the Roper resonance, usually treated as a radial
excitation of the ground-state nucleon, as it is in this model.
As with the A(1405) in the decays of the A, this result hinges
on the assumption that the Roper resonance is a three-quark
state and that it is the first radial excitation of the nucleon. A
number of hypotheses for the internal structure of this state
have been made, such as pentaquark partner [52], dynamically
generated state [53], and hybrid state [54]. In each of these
scenarios, the rate at which the A, decays semileptonically
into this state is affected by its internal structure. For the
three-quark, radially excited case, the prediction is that decays
to this state are about 60% of the decays to the ground-state
nucleon, a rather large fraction. If ample A;’s can be produced,
their semileptonic decays may therefore provide information
that can be used in understanding the structure of the Roper
resonance.

We have examined decays to other excited nucleons, and
those shown in Table XII are by far the dominant ones. We
have also examined one additional 1/2% nucleon state, two
additional nucleon states with J© = 3 /27", and one additional
nucleon state with J¥ =5 /2%, none of which are shown in
Table XII. Of these, the rate to the additional 1/27 state is less
than 1% of the “total” rate that we have estimated, whereas
rates to the additional 3/2% and 5/27 states are similarly small
or even smaller. These small rates are a direct consequence of
the structure of these states, as their overlaps with the decaying
Ay, in the spectator assumption, are very small. The only other
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FIG. 8. Differential decay rate for A, — n in the HONR and
HOSR models.

excited nucleons that may occur with “significant” rates in the
semileptonic decays of the A, are those with higher spins, such
as 7/2% and 5/27. However, for such states, orbital angular
momentum centrifugal factors will lead to some suppression
of the decay rate.

Figure 8 shows the differential decay rate for A, — n,
and the integrated decay rates for two exclusive modes A, —
N®0_obtained with |V,4| = 0.224, are shown in Table XII. Tt
is clear from this table that decays of the A, to excited states
of the nucleon are strongly suppressed, in part because of the
reduced phase space.

VII. CONCLUSIONS AND OUTLOOK

A constituent quark-model calculation of semileptonic
decays of A, and A baryons, which has several novel features,
is described here. Analytic results for the form factors for the
decays to J¥ = 1/2% ground states and excited states with
different quantum numbers are evaluated and compared with
HQET predictions. For A, — A, transitions, the relations
among the form factors, predicted by HQET, are satisfied
by the form factors obtained in the model, independent of
the basis used to describe the baryon wave functions. For the
elastic form factors, as well as for the form factors for decays
to the (1/27, 3/27) doublet, the HQET relationships among
the form factors are found to hold up to the order we have
examined, namely 1/m; and 1/m.. For states of higher spin,
we have compared our model form factors with the HQET
predictions at leading order, and the expected relations hold at
that order.

These form factors depend on the size parameters of
the initial and final baryon wave functions, and so a fit to
the spectrum of the states treated here is performed. Two
model Hamiltonians are used, with either a nonrelativistic
or semirelativistic kinetic-energy term, and with Coulomb
and spin-spin contact interactions. The wave functions are
expanded in either a harmonic-oscillator or Sturmian basis, up
to second-order polynomials, and we calculate our numerical
results for form factors and rates by using the resulting
mixed wave functions. Four sets of predictions are made for
form factors and rates, with wave functions, size parameters,

PHYSICAL REVIEW C 72, 035201 (2005)

and mixing coefficients arising from fits we obtain by using
both the nonrelativistic and semirelativistic Hamiltonians and
by using the two different bases. These predictions can
be used to assess the model dependence in the results we
obtain.

Interestingly, the form factors for decays to ground state
daughter baryons evaluated using the Sturmian basis for the
wave functions have slopes at the non-recoil point that are
significantly larger than those evaluated using the harmonic
oscillator basis. As a result, the corresponding integrated
decay rates for A, — A elastic decays, calculated using the
Sturmian wave functions, are smaller than those obtained using
the harmonic oscillator basis wave functions. The Sturmian
rates are both consistent within errors with the experimentally
reported rate of 1.05 4= 0.35 x 10'! s=!, while those calculated
using the harmonic oscillator basis are significantly larger.
As pointed out by Keister and Polyzou [42], although
calculations using the Sturmian basis are not as simple
as those using the harmonic oscillator basis, the resulting
form factors have shapes which are expansions in inverse
powers of 1+ k*/A2, with k the decay three-momentum
(in a non-relativistic decay calculation like ours), and A a
constant which is calculated in terms of quark masses and
wave function size parameters. This is closer to the form
expected from experimental studies of hadron decay form
factors, and so the use of Sturmian basis functions produces
realistic results for decay calculations even with the inevitable
truncations of the basis required for tractability. Larger scale
numerical calculations using the Sturmian basis require fewer
basis states than those using the harmonic oscillator basis to
yield accurate energies and decay form factors for excited
states.

Although the use of a semirelativistic Hamiltonian does not
necessarily lead to a better fit to the spectrum, in calculations
in which both bases are used it results in an integrated decay
rate for A, — A elastic channel that is closer to the central
value that has been experimentally reported. However, the rate
obtained in the nonrelativistic version of the Sturmian model
is also consistent (within 1¢7) with the experimentally reported
value.

Decay form factors and rates to all available excited-
state daughter baryons are evaluated with these four models.
Significant branching fractions are found for A, inelastic
semileptonic decays in all four calculations, with the total
to all excited states ranging from 11 to 19%. This has
important consequences for the absolute normalization of
the branching fractions to the many observed final states in
A} decay, most of which are measured relative to the
decay mode A} — pK~n™. The extraction of the absolute
branching fraction of this mode, from measurements of the
cross section for AjX production in ete™ annihilation,
requires knowledge of the fraction f of semileptonic decays
AT — X €%y, to the elastic channel. Our result contradicts
the available CLEO analyses, in which it is assumed that
the elastic decay of the A, saturates its semileptonic decays.
A larger fraction, from 23 to 38%, of A;, — A, semileptonic
decays, are found to be inelastic. Elastic decays of the A,
involving 7 leptons in the final state are suppressed by roughly
a factor of 2 because of the reduction in the final-state phase
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space, and those to excited baryon states are suppressed more
strongly.

HQET predicts that the form factors & and &,, defined
earlier, should be the same for the decays A, — N Oand A, —
N*, up to 1/my or 1/m,. corrections. Within our models,
we find that the two form factors are very similar, but not
identical, with the differences arising from differences in the
size parameters for the A, and A.. In the case of the decay of
the A, to nucleons, we find that the “elastic” fraction is quite
small, of the order of 35% when the leptons produced in the
decay are light. A number of excited nucleons contribute to
the total rate, with the radially excited Roper having the next
largest branching fraction. This may be used as a test of the
structure of this resonance, if ample A;’s can be produced.

The work presented in this manuscript can be extended in
a number of directions. We plan to examine the semileptonic
decays of heavy Q2 baryons, both to ground states and to
a number of excited states, in a calculation similar to the
one outlined here. Since the description of these states using
both the quark model and HQET is more complex, it will be
interesting to see if the correspondence between quark-model
results and the predictions of HQET still holds. We can also
apply our model to the description of the semileptonic decays
of the light baryons, although these are already successfully
described by Cabbibo theory. Essentially all experimentally
accessible observables for these decays have been measured,
and it will be interesting to see if our model, constructed with
no special reference to chiral symmetry or current algebra, can
describe the results of these measurements.

We have not examined the predictions of our model for
the many polarization observables that can, in principle,
be measured in semileptonic decays. One example is the
asymmetry parameter o, in the decays of the A., which
has already been extracted by the CLEO Collaboration. The
predictions of our model for this and similar quantities are
therefore of some interest. In addition, the rare decays of
heavy baryons, such as A, — A, can easily be treated in the
framework that we have developed. Such processes, along
with their meson analogs, are used in searches for physics
beyond the standard model. However, the interpretation of
the measured rates depend strongly on estimates of the form
factors involved (in much the same way that the extraction
of CKM matrix elements depends on the form factors that
describe semileptonic decays). Finally, if factorization, in
some form, is valid, the semileptonic form factors calculated
in the manuscript may also be useful in the description of
nonleptonic weak decays.

It may also be possible to systematically improve the quark
model used in the present calculation. An obvious first step is
the implementation of full symmetrization of the spatial wave
functions in the Sturmian basis, which would allow calculation
of results for decays to final-state nucleons in this basis.
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APPENDIX A: WAVE FUNCTIONS

As mentioned in the text, our wave functions are expanded
in two different bases. For the states of different spins and
parities considered here, the expansions are given in this
Appendix. For A ¢ states with J© = 1/27, the expansion reads

A A
Wag120m = Pag{[m ¢ Wo00000(®p P1) + 15 Yoo1000(Pp P2)
A
+ 15 ° Y000010(Pp s Px)]xf/z(M)
A
+ 14 °Y000101 (P Px)Xf\/z(M)
Ao N
+ 15 ° [Y1m,0101(Pp, PX3 (M — ML)]I/ZM
A
+ 76 ° [V1m,0000 (P> PXT (M — ML)]]/ZM
A
+ 17 [Yar,0101 (P PX3 (M — ML)]I/Z’M},

(AL)

where [V, n,e,n;0,(Pp> P Xs(M — M) m is a shorthand
notation that denotes the Clebsch-Gordan sum 3,

(UM|LMp, SM — M)W rmpn,eone, (P PR Xs(M — MLp).
For A o states with J” = 1/27 and 3/2, the expansion is

A
Waga-m = Oap{n [¥im0100(pp PA)XgS/Q(M - ML)]JM
A
+ 0, ¢ [Yim,010000, POXT M — ML)]
A
+ 15 2 [V10m,0001 (P, PA)le/g(M - ML)],M},

(A2)

where J can take the value 1/2 or 3/2.
For A ¢ states with J P =3 /27T, the expansion is

A
Wa,320m = Pag{m ¢ Yooot01(Pp. PA)XgS/z(M)
A
+ 1, [Y1a,0101 (P PX3 (M — ML)]3/2!M

A

+ 132 [Y1m,0101 (P PA)X]A/z(M — ML)]3/2,M
A

+ 1y ¢ [szLozoo(Pp, pA)le/z(M - ML)]3/2,M

A
+15° [Vam,0001 0, POX3H(M — M) 32.M

[ ]
+ ﬂé\g [l/fZMLoml(va p)\)Xf\/z(M h ML)]3/2’M

+ Ué\g [V211,0002(Py P»\)le/z(M - ML)]3/2.M}~
(A3)
For J¥ = 5/2%, the expansion is
Wa,500m = ¢AQ{'7{\Q¢1ML0101(P/)7 pA)X3S/2(M)
+05° [Yam,0101 (P, PX3 (M — ML)]S/ZM

+ 152 (201,001 (P POXI (M — ML)]S/Z!M
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Ao
+115 [W2m,020000 POXT (M — MD)]55

A

+ 15 ° [W2m1,0002(Pp Px)le/g(M - ML)]S/Z’M}-

(A4)

No other states are expected to have significant overlap with

the decaying ground state A ¢ in the spectator approximation
that we use.

The wave-function components for nucleons are different

from those previously shown because of the different (12)

symmetry in the wave functions, and are shown below. For
JP = 1/27, nucleon wave functions are expanded as

Wy 1/2tm = ¢N{[U{V¢’000000(Pp, P1) + 15 Y001000(Pps P1)

+ 15 Yo00010(P» P2)] X1/ (M)

+ 13 Yo00101 (Bp» PXT /(M)

+ 08 [V1m,000105, POXT (M — ML)]I/Z!M
+ 18 [Yan,0000005» PR X3 2 (M — ML)]I/Z'M

+ 15 [V2m,0002(Py pA)X_%S/z(M - ML)]I/Z,M},
(AS)

For JP = 1/27 and 3/27, the expansion is

Wy j-m = ¢N{U{V[W1ML0100(P,0, p,\)le/Z(M - ML)],M
+ 05 [Y1a,0001 D0 POX3 (M — ML)]

+ 03 [Y1a,0000 @0 POXT (M — MD)], )
(A6)

where J can take the value 1/2 or 3/2.

APPENDIX B: INTEGRALS IN THE STURMIAN BASIS

Wave functions expanded in the Sturmian basis have
been used by other authors in exploring aspects of heavy-
meson phenomenology [55]. However, to the best of our
knowledge, there have been no prior applications to baryon
phenomenology. We therefore believe that it is useful to outline
some of the steps needed in using this basis for calculations of
the kind that we present.

1. Integrals for Hamiltonian matrix elements

We begin by reminding the reader that, in coordinate space,
say, the spatial wave-function components are written as

Virn e, (0, X) = Y (LM|€,m, &, M —m)

m

X wn,)fpm (p)l//nkZ;AMfm (A,),

with p and A as defined in the main text.
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In the Sturmian basis, evaluation of the matrix elements of
the nonrelativistic kinetic-energy operator, as well as those of
the parts of the potential that depend only on rj; = |r; — 13|,
are relatively straightforward, in the latter case because p =
rin/ V2. However, the evaluation of terms that depend on ry3 or
ry3 is not as straightforward. To illustrate the way in which such
calculations are carried out, we consider the linear potential,
and examine the term

VI =br — 13| = brys. (B1)
We begin by writing
riz = 5lo+ V3 =10 + 1|
= (0" +2v3p - 1+ 33H)2. (B2)

In Eq. (B2), p' = p/~/2 and A = /3/2A. The latter form is
expanded in spherical harmonics, yielding

B 1 ,Oll p/z )L/Z
riy = 4w Xl: QL+ 1) A1+ [(21 13 @- 1)}
x <Yz(ﬁ) : Y1<i>) (B3)

for p’ < 2/, and a similar expression with p’ <> A’ otherwise.
In this expansion,

(Y,(m : Yz(b) =) =D"EY ).

m

(B4)

Calculation of (r3) then requires the evaluation of the
matrix element (L/n;l;n/xlﬂy;(ﬁ) . yg(i)|anlpnkl,\), which
symbolically denotes integrations over the angles defining p
and A. This is done with the use of 6-/ symbols, leaving
integrals over the magnitudes of p and A that can be done
either numerically or analytically. For the potentials we use,
all terms can be handled analytically. Terms in the potential
that depend on r,3 are handled in a similar manner.

2. Integrals for current matrix elements

To evaluate the form factors in the Sturmian basis, integrals
of the form

Vo, @V, (p + ak) Ve, (p)
(p? + @)y [(p + ak)? + o}

L1,42,03

3
z-nl,nz Z/d p

must be calculated. In Eq. (BS), p represents an internal
momentum conjugate to one of the Jacobi coordinates (for
these integrals, p;) and k is the momentum of the daughter
baryon in the frame in which the parent is at rest. The
constant a = —2/3/2my/my,, with m,, being the mass
of the daughter baryon in the decay. The quantities )y (p)
are the vector harmonics, with £; » being the orbital angular
momentum in the initial or final state, respectively, and YV, (p)
arises from the Pauli reduction of the vector or axial current.
For simplicity we choose £; = ¢3 = 0, but this will still be
sufficient to illustrate the method.

(B5)
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With the use of Feynman parametrization, this integral is
first rewritten as
I

PHYSICAL REVIEW C 72, 035201 (2005)

(1= )2 ()Ve(p + ak)

7000 _ 1 1 F(”1+”2)/ f
Mt = Jaz T(n)T(ny)

P +ad) + (1 — 0l +ak)? + pryme

N1 = )" @)Ve(p + ak)

(B6)

1 F(l’l] + ny) / /
\/E T(n)T(n2)

PP+ 2000 =p -k + 21— x) + B2(1 — x) + a2x

XM = X)) Ve(p + ak)

1 T[(n +n2)f /
«/_F(Vll)r(nz)

where the factor of 1/+/4m arises from one of the vector
harmonics with £ = 0.
Defining

=p+a(l —x)k (B7)
and substituting into the integral gives
qoeo _ L T tn) f / Pu
e i DT ()
7N = )27 1Y) Ve (u + axk)

x [u? + a?k2x(1 — x) + a?x + B2(1 — x)m+m’
(B8)

The angular integration can be performed after expanding the
Ye(u + axk) to give

If..nz — a'Y(k )F(m +n2)/ /duu

I'(n)I(n2)
XM= 1+l(1 x)nz 1
T+ a?kx(1—x) + ax + B2 — x)]ntm’

(B9)

Using
/Ood Wno 1 Tm+1/2T(n—m—1/2)

o ulray T 2ammon I(n)

(B10)

in Eq. (B9) gives

C(ny +n2) TG/ (ny +ny —3/2)
L(np)ln2) [(ny + no)

1 x™M l+€(1 _x)nz—]
X,/(; dx 2[a?k?x(1 — x) + a?x + B2(1 — x)]utm2=3/2
IG/2)T(n + na — 3/2)

Tt =a'Vik)

a
= k
@) )
x / s S k)
o 2[la2k2x(1 —x) +a2x + B2(1 — x)|m+m=3/2"

(B11)

{[p +a(l — x)K]? + a?k2x(1 — x) + a2x + B2(1 — x)pmtm’

This integral can now be written as a sum of terms 7", with

(B12)

1 xm
jm = / dx ,
" o (co~c1x 4+ cpx?)yrt1/2
where
2
co = B7,
Each of these terms can then be integrated analytically to give
the required matrix element.
This procedure works as long as 2n > m. When 2n < m, the

last integration leads to logarithms. Such terms are expanded
around k£ = 0 before the form factors are extracted.

c1=a’k*+a*— B o =—d’k*. (B13)

APPENDIX C: EXPRESSIONS FOR THE FORM FACTORS

The analytic expressions that we obtain for the form factors
are shown in the following subsections. The results shown are
valid for single-component wave functions. We separate the
results obtained using the harmonic-oscillator basis from those
obtained using the Sturmian basis.

1. Harmonic-oscillator basis

A.1/2%
2 2
m o o
FI_IH[1+—" <—A *)]
O‘M mg Mg
Mo a,%, a%af
F=—1Iy X
My o, 4a,\/\,mme
2
My o
F3 = _IH_U 2)\ 3
mo o5

G_

|
~
S|

2.2
[1 I ]
IZQAA,mme

2 2.2 2
my o asay, 12m
G2=_IH|: T'\-I- A7) <1+ 5 ):|,

mg o, 12mgmoal,, as;,
2 2,242
Mme o m_ a5 o5
G3:IH[m o +mma ’
o Y oS
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where where
3/2 2 2 5/2 2 2
oy Oty 3m: p o0 3m- p
IH=< 3 ) exXp | — ZOT s IH=< 3 > exXp —2 ZGT ,
RV 2my RIVY Ma, ®
al, = 3(ef + o), and m, is the mass of the light quark. D.3/2
3m m o?, o?
Fi =1y "[1+T“<‘+—A)],
B.1/2} o oy \Mg Mg
22 2
1 m o2 3m; o Sa05,ms
e 20, {(aA ) 303, Lmg (7o = 3a5) my ogon  dag;mgmo
2 3m? « o
o i s
+_)‘(7a2/_3a}2\)i“, F3=—IH|: [ 5 + j|7
mg mo ap,  2mg
2 2 )
o o
F,=—I A Ta? —3a2) [my — —2 Fy = In—0,
: H6mqoz,\,v (s v) | 4m g mg
2 3m o 3mga?
oaym A ’
Py = 1y M0 (703, — 302), 6=t [ g (14 e )|
6moas,, . mo 2mg0s;,
2 2 2 2 3m2 o Myl 02,
G, =1y (OQ Ol;g) . o5 oy (70{2 _ 3a2,) G, =—1y |: g 5 Moy o Q) /\4 (ai)\’ + 12m[2f)j| ’
2a3,, 20t mgmg ~ a Mg 050, 4mgmods,,
2 2
2 2 Ax a5y 2, HMs o o 2
_ o3 2 2 a; G =1y |:— +3m. + B (O‘,w + 6m )] ,
G2 = —Iﬂm I:(7(X)L — 3(1)“) (mg + 6mQ> WLQOli)L, 2 7 mqa/w e
2
o Mmy o
Tm2ed ) Gy =—1Iy |:—A + —= A2 x:| ,
+ PR (otA - ax,) , mg  mgmg a;,
0%
“,%m 2 2 Tm 0‘% 2 2 where
o o /
Gs = _IH674 |:(7oz)\, — 30@) — 5 (a)\ — “w):| , 52 s
Mmooy, myas,, 1 (oo 3m2 p
In=——7\—3 Xpl =5 > 5 |-
where V3N &y 2my o
I — 3 (o 3/2 3m§ p? E.3/2%
T=V3 o? xp Com? o2, ]
AN Ay AN My 5 3
Fi=—-Ilg—|——-—|,
2 lmy mg
P my [ 6mg Say 6m§ak
C.1/27 2 a, | o 2my  aiumg
o 3 1 Mo 0, 2 2
Fi=1Iy— ———], —2207(%—2%)]
6 Lm, mg Mg g
2 m 6m?
B =1, [ng o 2m0(;t)\ _ mgay, i Fy=—I,M |:1 i 20i| ’
@, 2my  moog,,  6mgmoas,, mo VY
2mg
x (305 — Zaf,)] , Fy=1y "y
2 6m?> m m?
F’; — IH Zmoa)» G1 = _IH |: 2(7 - ) 7 + ) g (110[% - 60[%)] s
’ moos, @, mo - 6a;mgmg
2m o Mmyo 6m%:  Sm 2m 50?2 2m2a?
G1=1H[ o % af\z (3a%_2a§,)i|, G2=]H|: - o _ Mo o zax i|
. bmg  bmgmoas, @ 2mg mo - 12mgmo  3aj;mgmg
2m a o Sa2 2
G2=IH [_ z +—)\+ . i|v G3=—IH Mo — % - Mo D) (56(%—20(%/) 5
.,  2my  3mg 2mg  24mgmgo  dmgmood,,
o m 502
Gs = Iy— [1 — " (302 2a§,)] : Gy =—Iy—"—,
3mg 2m g0, 6mym g
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where where
1 ot;\oz,v)wz 3m2 p? (M)Wz
Iy = — exp (- e P ) _ U
"= NE] ( o, P 2my of, Is = ;szz’
‘ [+ 35 4]
mAq ﬂx/
and B = 1(Bi + B).
F.5/2*
3 2 o 2, 2
Fi= Iy 2 [1+—<“—*+“—A>], B.1/2}
oy @i \mg  mg
1 2m6 /3)»
m*:  [3m,a?, 1 Fi=1 { Z_B2) - [—5 -3
Fam i o [ (a4 702 . IR L N PR
mgas, o 4mg
By
ey 3m? - —*<sm —3B)
F3 = _IH_ 1 + ) )
mQ O[M/
(5B, —3Bw) [ms  Bun
2mg F2 = _157 - )
F4 = IH , 3mq ,BA 3mQ
mo m
F; = — (58 — 3B,
3 2 2 3 )
G =1y |: mza _ e m—(gak + 150(A,):| 6m o B
a mo 12mmeotM ) 5
2 T3 1 Gimi| BB P gy g
Gy, =—1y maz |: mgza)\/ + (80{,% + 30[%) 2B B S4mgm g
mges,, o 12mg
4m, B
3m a3, Gy = —Is3 [(5/3A 3B) + ~ (B — Bu)
—== |, q:B)» mo B
I’I’IQC(M\/ ﬂ
vy
Mg 3m2  myal 6m2 + 18mg (585 — ﬂx')} ,
Gy=Ig— |1+ ) 1 3 s
VY mg oy, VY 4mg By
) Gs = —1Is (58 —3B) — B — B |,
2my my o 3mQ,3,v mo B
Gy =1y [y
mg My a5 where
where BB \5/2
7/2 > 2 I — \/_EL
1 (o 3m, p N ) 3 m2 2 13
In=—7\— XP\ =52 2 | [1+3 B ]
2\ oy 2my o, Mg Bl
2. Sturmian basis C.1/2-
A.1/2% 3 1
/ F1=ISISIA§ [———i|
o / m mo
F1=15[1+’" (ﬁ—*+ﬁ>], ’
B \mg  mg 2ms B 2m§ My
F = —Is — 2 -
F I |:ma Br BBy i| B 4my  Bumg  12mgmg
2= —Is | — -——,
my B Omgmg X (5Bx — 3B,
my B 2
Fy=—Ig—2 > =12
mo B moPB
BrBr 2mq , "
01:15[1—18 G = 1| e Py Mo (yp s,
Mg g B 12mg = 36mgmg
meBy  4m2 BB BB 2m, :
G2=—IS|: A Wb BB | Gy = 15| 20 _ P P T =80 |.
mgPr  SmgmoPi,,  18mgmg B,  4m, 6mg 18mq
me B 4m2 B, By B Mg
G3:15[ n , Gy = I |14 B =36 |.
moBiw  Smgmop, T Femg 2mgfon ’
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where
(ﬁéﬁﬂ)s/z
Is=Va—be
3 mg 2 13
[1+ zmm, ﬁl’ ]
D.3/2"
3m, Y )
F =120 [1.,.’”_(/3/\ +ﬁ>]’
B B \my mo
3m? By
=] o _ _3 /
’ ’ [ mg BB 4mme(’3’\ B )]
3m? ,
F3=—Is[ o +ﬂM],
mQﬂ)\A’ 4mQ
F4 — ﬂk)ﬂ
ZmQ
3mg P My
G =1 _ 55, — 238
l S[ B 4mg 60mme( Br. — 23ps )]
3m2 By m,
’ S[mq BB 60mgmg A s
18m3 By ]
7.3)%)L/mme
1 / o / 18 3 ’
G3==k———[ o P mobr ?Uﬁx]’
B 4 Smy 762,m,
1 r o 2mg By
G4=—IS_[/3A+ ,3/\}’
mo | 2 5my
where
BB \3/2
2 o
T
[+ 7]
E.3/2*
o / 1 5
Fl_]smﬂ)n)» 2,
2/3)\ mo qu
me [6my  SP | 6m; m,
B o 5B~ .
2 S Ba |: B 6m, = Pumg 6mymg ). — B
Fy= —Ig—2¢ [ﬂ +18m(27:|
3= S3,3Am A 5 |’
2my B
F4 =7 m ﬁkk ’
3mop;.
mo [ 6ms B My
G =—Ig— _ + (513 _13,)1|’
1 58, |: B,  6mg  bmgmgy
ﬂ)\)\ 6m Smo 2mg ﬂ
G, = [ _dmg o
’ Bx LBrBuv 6mq 3mQ + 72mq = GB+B) |,
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Biv 2
Gy=—1I . 56, —
3 S3,3AmQ |:m 2mq,3,w( B — Bv)
f“6m+mﬂ
ﬁZ
Gy = —157(,3)\' + 356,
Qﬁx
where
5»\/9»\/ 7/2
J6 o (%)
]S = ?ﬁ.
(142557 ]
F.5/2F
3m? s /
F o= Iy [1+ (ﬂ—*+ﬁ)],
IBA Boa mgy mo
[ 3m,
F2= —Igmaﬁ); [ " - 5A j|,
mgPy | B 2mg

Mg 9m2
Fy=—1Is Biv + 2= 1,

3mg B B
2 ,
Fy= [0 'BA,
SMQ ,3)\
3m? My r Smg By
G1:1S[ < — (ﬁ”+ ﬂk)],
‘3)L mQ,B)\ 3 14mq
m2 By 3mg / 8m?2
Gy = Iy P |: B n 5 :|,
myBBr L B 14mg 3moBv
My / meB (2 8m>
Gy =Is [ﬂ“+ oy mabs <—+ 2")]
mof B mg \7 35,
2my r o 2mg By
G4=—Igm |:/3/\,\ mﬁ_xi|
mo 3)/3)L 7mq ﬂx
where
(ﬂAﬁy)7/2
IS = —\/§ Ii“;nz P2 14
[1 + zm{q ﬁi}\,]

APPENDIX D: HADRONIC TENSOR

The hadronic tensor for these semileptonic decays takes the
form

Hyy = —agu + Bi(p+ P + P + B—(p + Py
x(p =P+ B-+(p = Pu(p + Pv + B

x(p = PP = Py +iveumps(p + P (p = P').
The forms of the terms «, B14, and y for the different final
states we consider are given in the following subsections.
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1.1/2%

a(1/27) = 2{[(ma, —ma,)’ — ¢*] F}

+[(map +ma,)” - *]G3}.

i=3,j=3

Boi(1/27) = Z (AijF;Fi + Aj;GiG)),
i=1,j=1

with

Aq
Ap = (ma, +ma,).
Ag
1
T (o
Az = (ma, +ma,),
A‘I
1
Al m ma) —q?].
22 2m3\g [( Ao Aq) ]
1
Ay = m[(ml\g —my,)” 4’
1
A = m—AQ(mAQ —ma,),
2
Ay = Magha, [(mAQ - mf\q) - ‘12]’
2
Ay = K(mAQ —my,),

q

y(1/27) = 4FG;.

2.1/2"

a(1/27) = 2{[(ma, +ma,)’ — ¢*]F?

+[(map —ma,)" - *]G3}.

i=3,j=3

ﬂ++(1/27) = Z (AijFiFj +A;jGiGj)’
i=1,j=1

with

1
Ap = (ma, —ma,),
Q
A = (a7
(Dl) mAQmAq
2
Az = - (ma, —ma,), (D6)
q
- A e
A22=— ma +mAq —q |
ZmﬁQ ¢
r_ 1 2 2
Ay = m[(m/\o +ma,)” = 4],
A‘l
1
Ay = — ,
12 Mg (map +ma,)
Ay = [(mag +ma,)” = 4’]
mAQmAq
, 2
A3 = ma (may +ma,),
y(1/27) =4F Gy
(D3)
3.3/2-
i=4,j=4
a(3/27) = Z 7 (B FiFj+ B},G;G)), (D7)
i=1,j=1
where Y/ = 3migmiq and the nonvanishing coefficients are
2
By = X[(ma, +ma,)” — 612],
2
By = 4migmiq[(m,\g + mAq) - qz],
B4 = B;4 =MpA MA, [mf\g — 2(m3\q +q2)mig
2 2\2
+(my, —a’)]:
2
Bjy = X[(mao —ma,)” = ‘12]’
2
By, = 4migmiq[(mAQ — mAq) - q2],
i=4, j=4
Bir(3/2)= Y 7 AuFiF; + A;GiG)), (D8)
i=1,j=1
(D4) where Y = 12m‘1‘\Qm‘,‘\q, X = (m%\Q + mﬁq - ¢*)? - 4m§\Q
mf\q, and the A;; are
D3) An = A}y = 4Xm} m3
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Ay = me\q[(mAQ + mAq)2 -q°],

Az = Xm3 [(ma, + mAq)2 -4’

Ay = 4m1Qm2A,,[(mAQ + mAq)z -q*],
Ay =4Xmp,my (ma, +my,),

Agz =2Xmp,myp, [(ma, + mAq)2 -q°],

A31 = 4XmiQmAq (mAQ + mAq),
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A = —Sm?\Qm%\q [m o4
— (may — mAq)(mAQ + mA'i)z]’
Ay = dm3y my [(ma, +ma ) - ¢’J[mi, —mi, —a’].

A34:4miQmAq[(mAQ+mA) —q ][mAQ—mi —qz],

Ay = Xm}, [(ma, —ma,)’ =],

Ay = X (s o) ) o
Aly = 4m m}, [(mag —ma,)’ = %]

Aly = 4Xmp my (ma, —ma,),

A/23 = 2xmAQmAq[(mAQ - mAq)Z - qz]’
Ay = 4XmiQmA (mA —mAQ),
Ay = 8miy mi [ma,q® = (ma, +ma,)
2
x (map —ma,)’]:
Apy = dm} i} [(mag —ma,)” = @*][m}, —m}, — 4],
2

—mA,,) —q ][mf\g _mA[, —6]2],
2
3mAQ {[(mAQ Aq) _q2]

X (F1G4mAQmAq + F1G[(ma, +mAq)2 - qz])

2 2
+ F4G4mAQmAq + F4G1mAQmAq

% [(mag +ma,)” =]}

A/34 - 4mAQmA [(

y@3/27) =

4.3/2+
i=4,j=4
a(3/2h) = Z —(B;jF;F; + B};G;G)), (D10)
i=1,j=1
where the nonvanishing coefficients are
2
Bi = X[(ma, —ma,)” = q*],
2
B44 = 4migmiq [(mAQ - mAq) — qz],

Bl4 = Bi4:mAQmAqX,
Biy = X[(ma, +ma,)’ ~ 4]

Bly = 4m3 jm3, [(ma, +ma,)" = ¢*],
i=4, j=4

Brs(3/2) = )

i=1,j=1

v AuFiF; +A};G;G;), (DI1)

where ¥ = 12m‘,‘\Qm‘}\q, and
2 2
A]l = A/ll = 4XmAQmAq,
2 2 2
Ay = Xm3 [(ma, —ma,)” = 4?].

Asz = Xm [(ma, — mAq)z -4,
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Ay = 4miy iy [(ma, — mAq)z -a’],

Ap = 4XmAQm%\q (mAq _mAQ)v
A23 = 2XmAQmAq[(mAQ — nlAq)2 - qz]’
A31 = 4xm3\QmAq (mAq - mAQ)’

Avg = 8my my [ma,q® = (ma, +ma,)
x (ma, —ma,)’].
Ay = 4m2AQm%\q[(mAQ - mAt,)z -q’]
x [mi, —mi, —4’],
Asa = 4m ma [(mag —ma,)” = q’]
x [my, —mi, —4’],

Ay = Xm? [(ma, +ma,)’ =4,

X (D12)
Ay = Xmiy [(mag +ma,)” —q°].
Al = 4 i}, [(mag +ma,)’ 4],
Ay = 4Xmp my (ma, +my,),
Ay =2Xmp,mp,[(ma, +mAq)2 -q’],
A/31 = 4xmA Aq (mAq + mAQ)’
Ay = =8miy iy [mayq® = (ma, —ma,)
(mAQ ) ]’
Ay = 4mAQmA [(ma, + mAq) —q’]
x [m}, —m}, —4*].
Aty =4 ma,[(mag +ma,) =4’
x [my, —mi, —4°],
2 2
r3/20 = 1 llmag +ma) — 4]
Q q
X (F1G4mAQmAq + F1G4
x[(mag —ma,)" = %))
+ F4G4m%\Qm%\q + F4GlmAQmAq
x[(mag —ma,)" = *]}.
5.5/2%
i=4,j=4
a(5/2%) = Y —X(B,FF;+B;GiG)), (DI3)

i=1,j=1
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where the nonvanishing coefficients are

B = X[(mAQ — m‘/\q)2 - qz],
By = 3mﬁgmiq[(mAQ + WlAq)2 - 612]’

/
Bl4 = Bl4 = 2XmAQmAq,

, (D14)
By, = X[(ma, +ma,)’ — ]
Bé’l4 = 3m%\Qm%\q [(mAQ - mAq)2 - qz]’
i=hj=t |
Bri(5/25) =Y AR A};GiG)),
i=1,j=1
where ¥y = 80m} m ,and
Ay = Ay =4X2m; m}, .
Ay = sz%\,,[(m/\g + m/\q)2 -4’],
A33 = sz%\Q[(mAQ + 7nAq)2 - q2]7
A = 4migmiq[(m/\g + mAq)2 - 512]
x[q* = (@3, +m3 )a? + (3, —m3, ],
A = 4X7mp,my (ma, +ma,),
Axz =2X mp, mp,[(ma, + mA,,)2 -q*].
A31 = 4X2m%\QmAt/ (mAQ + mAll)’
A14 = —SXmiQmiq [mAqu - (mAQ - mA,,)
X (mAQ +mA,,)2]s
Apgy = 4Xmigmiq [(mAQ +mA,,)2 - q2][f’l’lig - m%\q - qz]’
A34 — 4Xm3\QmAq [(MAQ +mAq)2 _q2][m3\Q — mi\q —612],

Ay = X2m} [(ma, —ma,)” = 4’],
Ay = X2m} [(ma, —ma,)” = %],
Aly =4 m} [(ma, —ma,)’ =4’

x [q* = (@m3, +m} ) + (mh, — m3))’].
A}, = 4X2mAQm%\q (mAq - mAQ),
Ay = 2X2mp ma,[(ma, —ma,)’ — %],
Ay = 4X2m3\QmAq (ma, —ma,),
Aty = 8Xmiy jm3 [mayq® — (mag +ma,)

x (mag —ma,)’],

Ay =4Xm} 3, [(ma, —ma,)’ —

g*[mi, —mi, —4°];

A/34 = 4xm§\QmAfl [(mAQ - mAq)2 - qz] [m%\Q - m%\t/ - qz]’

2
. mig — mexg (mfxq + qz) + (m%\,, + qz)
V(S/Z )= 4 4
10m m7
Q q

2 2
x{F4G4mAQmAq + FyGump,my,

PHYSICAL REVIEW C 72, 035201 (2005)

x[(mag =ma,)’ = a?]+ [(mag +ma,)’ - ¢*]
X (F1G4mAQmAq+ FiGy[(mp,— mAq)2 - ‘12])}'

APPENDIX E: CONSTRUCTING HIGHER SPIN
REPRESENTATIONS

It is necessary to construct explicit representations for the
spin-3/2 and spin- 5/2 baryons that we treat. In the case of the
former, the vector-spinor field u®(p’, s’) must satisfy

poLu’(p’,s") =0,
Yeu®*(p',s") =0,

p/ua(p/’ sl) — m[\ﬁ/}/z)ua(p/’ S/).

(ED)

A suitable representation can be constructed by use of the
usual Dirac spin-1/2 spinors, together with the “polarization”
vectors €,(p’, s;). These vectors satisfy

P,;EM(P/, 5:) =0, EZ(P,7 Sz)GM(P/7 Sé) = _‘Ssz,.sg- (E2)

Our representation of the spin-3/2 Rarita-Schwinger vector

spinor u,,(p’, M) is given by the Clebsch-Gordan sum

wu(p', M) =" €,(p/, myu(p', M—m)

x (3/2M|1m, 1/2, M — m). (E3)
This satisfies all of the conditions required.

A representation of the spin-5/2 spinor u®?(p’, s) can be
constructed in a similar way, but there are two additional
constraints that must be satisfied. The first is that the spinor
must be symmetric in its Lorentz indices, and the second is
that it must be traceless when the two indices are contracted,
1.€.,

us(p',s) = 0. (E4)
Such a representation can be built in one of two ways. We can

use the previously constructed spin-3/2 spinor and the vector
€ to write

wn(p', M) =Y €u(p', myun(p', M — m)

x (5/2M|1m,3/2, M —m).  (E5)

Alternatively, we can first construct a spin-2 tensor A,,, from
two of the € vectors as

AP, )= €u(p',m)en(p', M —m)(2M|1m, 1, M —m)

(E6)
The symmetry properties of the Clebsch-Gordan coefficients
guarantee that this tensor is symmetric in its indices. The
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spin-5/2 spinor is then
w(p's M) =Y~ Au(p', myu(p', M — m)

x (5/2M[2m,1/2, M —m).  (E7)

These two representations are equivalent, but the manifest
symmetry of the second representation allows us to see the
symmetry in u,, in an obvious way.

The conditions

PLu?(p',s") = ppuf(p',s) =0 (E8)

are clearly satisfied, as each vector € satisfies p’ - € =0 (and
the second equality also follows from the symmetry in the

PHYSICAL REVIEW C 72, 035201 (2005)

indices). It is easy to check that the auxiliary conditions
vt (p'. s") = ypuP(p',s') = 0 (E9)

are satisfied, as are

pu(p', sy = myeomu (pl, ). (E10)
The traceless condition
gaup*(p',s") =0 (E11)

is less obvious, but follows from the tracelessness of A,,.
This, in turn, follows from the symmetry properties of
the Clebsch-Gordan sum in A,, and the properties of the
€ vectors.
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