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Using the color-singlet free energy F1 and total internal energy U1 obtained by Kaczmarek et al. (hep-lat/
0309121) for a static quark Q and an antiquark Q̄ in quenched QCD, we study the binding energies and
wave functions of heavy quarkonia in a quark-gluon plasma. By minimizing the grand potential in a simplified
schematic model, we find that the proper color-singlet Q-Q̄ potential can be obtained from the total internal
energy U1 by subtracting the gluon internal energy contributions. We carry out this subtraction in the local
energy-density approximation in which the gluon energy density can be related to the local gluon pressure by the
quark-gluon plasma equation of state. We find in this approximation that the proper color-singlet Q-Q̄ potential
is approximately F1 for T ∼ Tc and it changes to 3

4 F1 + 1
4 U1 at high temperatures. In this potential model, the

J/ψ is weakly bound above the phase-transition temperature Tc, and it dissociates spontaneously above 1.62Tc,
whereas χc and ψ ′ are unbound in the quark-gluon plasma. The bottomium states ϒ, χb, and ϒ ′ are bound in the
quark-gluon plasma and they dissociate at 4.1Tc, 1.18Tc, and 1.38Tc respectively. For comparison, we evaluate
the heavy quarkonium binding energies also in other models using the free energy F1 or the total internal energy
U1 as the Q-Q̄ potential. The comparison shows that the model with the new Q-Q̄ potential proposed here
gives dissociation temperatures that agree best with those from spectral function analyses. We evaluate the cross
section for σ (g + J/ψ → c + c̄) and its inverse process to determine the J/ψ dissociation width and the rate of
J/ψ production by recombining c and c̄ in the quark-gluon plasma.
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I. INTRODUCTION

The stability of heavy quarkonia in the quark-gluon plasma
is an interesting subject of current research in high-energy
heavy-ion collisions as Matsui and Satz have suggested that
the suppression of J/ψ production can be used as a signature
of the quark-gluon plasma [1]. DeTar [2,3], Hansson, Lee, and
Zahed [4], and Simonov [5–7] argued however that because
the range of the strong interaction is not likely to change
drastically across the phase transition, low-lying mesons
including J/ψ may remain in relatively narrow states and the
suppression of J/ψ is not a signature of the deconfinement
phase transition [3]. Whether or not J/ψ production will
be suppressed depends on the screening between the heavy
quark Q and the heavy antiquark Q̄ when the quarkonium is
placed in the quark-gluon plasma. The degree of screening
is highly nonperturbative at temperatures near the phase-
transition temperature [8]. The related question of quarkonium
stability must be examined in nonperturbative QCD using, for
example, lattice gauge theory.

Recent investigations of masses and widths of heavy
quarkonia in quenched lattice QCD calculations were carried
out by Asakawa and Coworkers [9,10] and Petreczky et al.
[11–13] using the spectral function analysis and the maximum
entropy method. They found that the width of J/ψ remains
relatively narrow up to 1.6 times the critical phase-transition
temperature Tc. Reconsidering the properties of the quark-
gluon plasma also led Zahed and Shuryak to suggest that
quark-gluon plasma at temperatures up to a few Tc supports
weakly bound meson states [14–17]. They have also estimated
the binding energy of J/ψ and found it to be stable up to
2.7Tc [15]. The possibility of weakly bound meson states in the

quark-gluon plasma was suggested earlier by DeTar [2,3] and
Hatsuda and Kunihiro [18]. Phenomenological discussions on
medium modifications of charmonium in high-energy heavy-
ion collisions have been presented recently by Grandchamp,
Rapp, and Brown [19]. Summaries of recent developments in
heavy quarkonium suppression and deconfinement have also
been reported by Petreczky [20] and Karsch [21].

Because knowledge of the stability of J/ψ has important
implications on the fate of J/ψ in the quark-gluon plasma,
it is important to obtain an independent assessment of the
binding of heavy quarkonia, in addition to those from previous
analyses. Spectral function analyses of heavy quarkonia using
gauge-invariant current-current correlators have been carried
out in the quenched approximation. Within the quenched
approximation, independent lattice gauge calculations have
also been carried out using the correlation of Polyakov lines,
from which the free energy F1 and the total internal energy U1

can be calculated [22]. The two-body potential obtained from
lattice gauge theory can be used to study the dissociation of
heavy quarkonia. It is of interest to ask whether, within the
same quenched approximation, the spectral function analysis
and the potential model analysis will lead to consistent results
concerning the stability of quarkonia in the quark-gluon
plasma. As we shall deal with lattice results from quenched
QCD only, the quark-gluon plasma we shall consider consists
of gluons. For convenience, we shall continue to refer to such a
gluon medium from quenched QCD as a quark-gluon plasma.

Besides checking the consistency of independent quenched
lattice gauge calculations, we would like to use the potential
model to examine many physical quantities of interest. If
quarkonia is indeed stable in the plasma, it is useful to find
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out how strongly bound they are. Furthermore, J/ψ can
dissociate by collision with constituents of the plasma. In such
a collisional dissociation, the rate of dissociation depends on
the cross section for the reaction g + J/ψ → c + c̄. We would
like to evaluate this cross section as a function of temperature T,
which can be obtained by using the bound-state wave functions
in the potential model. Knowledge of the dissociation cross
section allows a determination of the collisional dissociation
width.

In energetic heavy-ion collisions, many pairs of charm
quarks and antiquarks may be produced in a single central
collision [23,24]. These charm quarks and antiquarks can
recombine to form J/ψ in the quark-gluon plasma. We also
wish to find out the rate of producing J/ψ through such a
reaction. The production rate depends on the cross section
for the reaction c + c̄ → J/ψ + g. The latter quantity can
be obtained from the cross section for the inverse reaction
g + J/ψ → c + c̄, which we already intend to calculate.

Previously, the effects of temperature on the stability of
heavy quarkonium was studied by Digal et al. [25,26] and
Wong [27,28] using the free energy and assuming that the
effects of entropy are small. It was, however, pointed out by
Zantow, Kaczmarek, Karsch, and Petreczky [8,29,30] that the
effects of entropy depend on the separation distance between
c and c̄. They suggested that the total internal energy U1,
instead of the free energy F1, may be used as the QQ̄ potential
for the calculation of heavy quarkonium bound states. As
the theoretical basis for this suggestion has not been fully
explained in the literature, we shall go into details to examine
the theoretical questions on the proper potential for Q-Q̄ states.
We find that the proper Q-Q̄ potential involves the Q and Q̄

internal energy U
(1)
QQ̄

. We shall show that in the local energy-

density approximation, U
(1)
QQ̄

= 3F1/(3 + a) + aU1/(3 + a),
where a = 3p/ε is given by the quark-gluon plasma equation
of state.

When a heavy quarkonium is placed in a quark-gluon
plasma, in the conventional description it is assumed that the
medium effect is dominated by the effect of Debye screening
[1,8], which leads to a decrease in the attractive interaction
between the heavy quark and antiquark. We would like to
study the effects of antiscreening resulting from the deconfined
gluons and the relationship between antiscreening and the area
law of spatial Polyakov loops [2,3,31,33,34]. We would like to
show that because the Gauss law of QCD contains a nonlinear
term involving the gluon field, the gluon field induces color
charges at the field points. These induced color charges act
to antiscreen the interaction between the heavy quark and the
antiquark. We shall show that the strength of the antiscreening
effect increases with an increase in the gluon correlation length
and is proportional quadratically to the magnitude of the gluon
fields. The antiscreening effects resulting from deconfined
gluons bring an additional degree of freedom to mediate the
interaction between the quark and the antiquark.

This paper is organized as follows. In Sec. II, we review
the heavy quarkonium production mechanism and the thermal-
ization of the quark-gluon medium in high-energy heavy-ion
collisions. We examine the evidence for rapid thermaliza-
tion as revealed by the elliptic flow and hydrodynamics.

In Sec. III, we review the lattice gauge calculations for the
interaction between a heavy quark and a heavy antiquark
and the gauge dependence of the interaction in bound-state
problems. In Sec. IV, we show that the total internal energy
U1 contains contributions from the internal energy of the
Q-Q̄ pair and the internal energy of the gluons. In Sec. V,
we use an appropriate variational principle to obtain the
equation of motion for the quarkonium single-particle states
and find that the proper Q-Q̄ potential involves only the Q-Q̄
internal energy. To obtain the internal energy of the heavy
quark pair, the gluon internal energy must be subtracted from
the total internal energy U1. In Sec. VI we show how such
a subtraction can be carried out in the local energy-density
approximation, using the quark-gluon plasma equation of
state and the first law of thermodynamics. In Sec. VII, we
show how the color-singlet F1 and U1 obtained by Kaczmarek
et al. [22] in quenched QCD can be parametrized and the
proper Q-Q̄ potential can be obtained as a linear combination
of F1 and U1 from the lattice gauge results. Using this heavy
quark-antiquark potential, we calculate the eigenenergies and
eigenfunctions for charmonia in the quark-gluon plasma as
a function of temperature in Sec. VIII. The locations of the
dissociation temperatures at which heavy quarkonia begin
to be unbound are then determined. The heavy quarkonium
dissociation temperatures are compared with those determined
from spectral function analyses. In Sec. IX, we calculate the
eigenenergies and eigenfunctions for bb̄ bound states in the
quark-gluon plasma as a function of temperature. We discuss
the effects of antiscreening resulting from deconfined gluons
in the quark-gluon plasma in Sec. X. In Sec. XI, we discuss how
the J/ψ bound-state wave function can be used to calculate
the cross section for g + J/ψ → c + c̄ after the J/ψ absorbs
an E1 gluon, using the formulation of gluon dissociation
cross section presented previously [28]. The dissociation cross
sections and collisional dissociation widths of J/ψ in the
quark-gluon plasma are then determined as a function of
temperature in Sec. XII. In Sec. XIII, we evaluate the cross
section for the inverse process of c + c̄ → J/ψ + g using
the cross section of g + J/ψ → c + c̄ obtained in Sec. XII.
The rate of J/ψ production by recombining c and c̄ in a
quark-gluon plasma is estimated. We conclude our discussion
in Sec. XIV. In the Appendix, we show that the integral of the
gauge fields along a spacelike Polyakov loop obeys an area
law if the gauge fields are correlated. This result is used in
Sec. X to explain the antiscreening effect.

II. HEAVY QUARKONIA PRODUCTION AND THE
THERMALIZATION OF THE MEDIUM

We are interested in using a heavy quarkonium to probe
the properties of the matter produced in central high-energy
heavy-ion collisions. In the collider frame, the colliding nuclei
have the shape of Lorentz-contracted disks. The collisions are
known to be highly inelastic in which a large fraction of the
incident collision energy is released after the collision. What is
the rate of the relaxation of the initial configuration to thermal
equilibrium?

From the experimental viewpoint, recent RHIC experi-
ments by the STAR [35], PHENIX [36], and PHOBOS [37]
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Collaborations reveal the presence of an elliptic collective
flow in noncentral Au-Au collisions at RHIC energies. The
occurrence of such a flow indicates that the initial azimuthally
symmetric momentum distribution of particles is deformed
into an azimuthally asymmetric momentum distribution. The
magnitude of the azimuthally asymmetry is sensitive to the
time at which the free streaming of particles terminates
and the dynamics of a thermally equilibrated system begins
[38–40]. Too late a thermalization time will lead to a spatially
more extended system with a lower pressure gradient and a
smaller azimuthal asymmetry. The azimuthal asymmetry is
also sensitive to the number of degrees of freedom in the
equation of state. The magnitude of the asymmetry can be
well explained in terms of a hydrodynamical model of the
quark-gluon plasma by assuming thermalization at an initial
time about 0.6 fm/c [38]. We infer from the experimental
elliptic flow data and its hydrodynamical description that the
thermalization in the central region of a RHIC nucleus-nucleus
collision is very rapid, as short as 0.6 fm/c after the collision.

From theoretical viewpoints, it was first pointed out
by Landau [41] that the initial configuration after a high-
energy nuclear collision consists of matter at an extremely
high energy density in a very thin disk. The great magnitude
of the energy density means that the number density of quanta
of matter is very large. Such a large number density in a thin
disk of matter leads to a very small mean free path compared
to its dimensions, leading to a rapid relaxation to thermal
equilibrium. According to Landau, “in the course of time, the
system expands, the property of the small mean-free path must
be valid also for a significant part of the process of expansion
and this part of the expansion process must have hydrody-
namical character” [41]. Landau hydrodynamics provides a
reasonable description of the widths of the rapidity distribution
for high-energy hadron-hadron and nucleus-nucleus collisions
from

√
s = 3 GeV to RHIC collisions at 200 GeV [42,43].

A hydrodynamical description with a rapid thermal relaxation
also provides a good description of the elliptic flow of matter
after a Au-Au collision at RHIC, as previously indicated.

It is also useful to point out that not only does quanta in
nonequilibrium QCD matter interact with other quanta (gluons
and quarks) in two-body processes in terms of two-body
collisions, but the quanta also interact with the fields generated
by all other quanta. Because of the non-Abelian nature of
the QCD interaction, the fields generated by other quanta are
also sources of color fields and the quanta must in addition
interact with the color fields generated by the fields of all
other particles, in a highly nonlinear manner (see Sec. X for
another manifestation of the nonlinear nature of the gauge
field). Thus, quanta interact with other quanta not only by
direct short-range two-body collisions but also by highly
nonlocal action-at-a-distance long-range interactions, through
the fields generated by the fields of other quanta. There is
thus an additional nonlinear and long-range mechanism of
thermalization in non-Abelian interactions that provides an
extra push for rapid relaxation to thermal equilibrium.

The rate of thermalization of a quark-gluon system after
an ultrarelativistic heavy-ion collision is the subject of current
theoretical research and has been discussed by Wong [44]
and Molnar and Gyulassy [45]. The small mean free path

has also been discussed by Shuryak [46] and Gyulassy and
McLerran [47] (see also Ref. [48]). The focus of the research
is on trying to understand the phenomenologically fast rate of
thermalization as indicated be the experimental elliptic flow
evidence. For example, Molnar and Gyulassy [45], found it
necessary to shorten the parton mean free path by an order
of magnitude to reproduce the magnitude of the elliptic flow.
Similarly, in parton cascade, Lin, Ko, and Pal [49] found it
necessary to increase the parton-parton cross section by a large
factor to describe the dynamics in nucleus-nucleus collisions
at RHIC.

To use heavy quarkonia as a probe of the quark-gluon
plasma, we need knowledge of the heavy-quarkonium pro-
duction mechanism. In a nucleus-nucleus collision at high
energies, the partons of one nucleon and the partons of
another nucleon can collide to produce occasionally a heavy
quark-antiquark pair. The time scale for the production is of the
order of h̄/2mQ, where mQ is the mass of the heavy quark. It is
of order 0.06 fm/c for a c-c̄ pair and of order 0.02 fm/c for a b- b̄
pair. As the initial partons carry varying fractions of the initial
momenta of the colliding nucleons, the heavy quark pair will
come out at different energies. Depending on the Feynman
diagram of the production process, the produced Q-Q̄ pair
after the hard scattering process may be in a purely color-
singlet quarkonia state or a coherent admixture of color-singlet
and color-octet states [50,51]. The projection of different
final states from a coherent admixture gives the probability
amplitude for the occurrence of the final states. A color-octet
state will need to emit a soft gluon of energy Egluon to become
subsequently a color-singlet state in an emission time of order
h̄/Egluon. For the emission of soft gluon of a few hundred MeV,
the time for the emission is of order 0.5–1.0 fm/c.

From these considerations on the rapid thermalization of
the quark-gluon plasma and the time for the production of
heavy quarkonia, one envisages that, by the time the colliding
matter is thermalized at about 0.6 fm/c, a large fraction of the
quarkonia has already been formed, although in various energy
states. The quark-gluon plasma is expected to have a lifetime of
a few fm/c, which is longer than the heavy quarkonium orbital
period of order h̄/(0.5 GeV). It is therefore meaningful to
study the fate of a produced heavy quarkonia in a thermalized
quark-gluon plasma at a finite temperature. The behavior of
the heavy quarkonium system before the quark-gluon plasma
reaches thermal equilibrium and the interaction of a coherent
Q-Q̄ color admixture in the thermalized quark-gluon plasma
are topics that are beyond the scope of the investigation of the
present manuscript.

It should be pointed out that for a heavy quarkonium
system in a quark-gluon plasma the thermalization of the
quark-gluon medium does not necessarily imply the ther-
malization of the heavy quarkonium system. The former
arises from the interaction among the light quarks and
gluons, whereas the latter depends on the interaction between
the heavy quarkonium and the constituents of the quark-
gluon plasma. Our previously mentioned evidence concerning
the rapid thermalization refers to the thermalization of the
quark-gluon plasma and not necessarily to the thermalization
of the heavy quarkonium system in the quark-gluon plasma.
If an isolated heavy quarkonium is placed in the thermalized
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quark-gluon plasma, the heavy quarkonium system is not in
thermal equilibrium with the medium. It will interact with the
medium as its density matrix will evolve with time. Given
a sufficient time that is longer than the heavy quarkonium
thermalization time, the heavy quarkonium will also reach
thermal equilibrium with its thermalized quark-gluon plasma.
The thermalization status of a heavy quarkonium system
can be inferred from the occupation number distribution
of heavy quarkonium single-particle states. The occupation
numbers in a thermalized heavy-quarkonium system will obey
a Bose-Einstein distribution characterized by temperature. In
our present work, we shall study both a thermalized heavy
quarkonium system and an isolated QQ̄ bound state in the
quark-gluon plasma.

III. LATTICE GAUGE CALCULATIONS

In a quark-gluon plasma, a quarkonium is actually a heavy
quark and a heavy antiquark each surrounded by a cloud of
gluons and quarks. In the quenched approximation in which
there are no dynamical quarks, the cloud surrounding the heavy
quark and antiquark is approximated to consist of gluons only.
Because gluons are involved, the quark-antiquark system will
be in different color states at different instances. We shall
be interested in those systems in which the heavy quark and
antiquark exist in the color-singlet state. Only in the color-
singlet state will be the effective interaction between a quark
(plus its cloud) and an antiquark (plus its cloud) be attractive.
Such a color-singlet system can further absorb a gluon and
become a color-octet system and we shall also study the cross
section for such a process.

The interaction between a heavy quark and a heavy
antiquark in the color-singlet state was studied by Kaczmarek,
Karsch, Petreczky, and Zantow [22]. They calculated 〈trL(r/2)
L†(−r/2)〉 in the quenched approximation and they obtained
the color-singlet free energy F1(r, T ) from

〈trL(r/2)L†(−r/2)〉 = e−F1(r,T )/kT , (1)

where trL(r/2)L†(−r/2) is the trace of the product of two
Polyakov lines at r/2 and −r/2. The quark and the antiquark
lines do not, in general, form a close loop. As a gauge
transformation introduces phase factors at the beginning and
the end of an open Polyakov line, 〈trL(r/2)L†(−r/2)〉 is not
gauge invariant under a gauge transformation. Calculations
have been carried out in the Coulomb gauge, which is the
proper gauge to study bound states.

It should be noted that although the interaction between the
quark and the antiquark is gauge dependent, the bound state
energies are physical quantities and they do not depend on
the gauge. As we explain in the following, a judicial choice
of the Coulomb gauge in the bound-state calculation will
help in avoiding spurious next-to-leading contributions and
singularities, which can be removed in other gauges only by
additional laborious effort [52–54].

To study the bound states of a heavy quarkonium, we need a
bound-state equation, such as the Bethe-Salpeter equation, and
the interaction kernel in the equation. The nonrelativistic ap-
proximation of the Bethe-Salpeter equation leads to the usual

Schrödinger equation with the gauge-boson-exchange interac-
tion [55,56]. It is necessary to choose a gauge to specify the
gauge-boson-exchange interaction. We can consider the case
of QED, from which we can get good insight into the gauge
dependence. For the static nonrelativistic problem, the natural
choice in the gauge-boson-exchange potential is the Coulomb
gauge, in which the 1/q2 behavior is found in single-Coulomb
photon exchange. The binding energy, which is of order α2,
has corrections only in the α4 order. It gives the correct
Breit equation with the proper spin properties when we
expand the interaction to the next order. Graphs with the
cross two-Coulomb-exchange diagrams vanish in the static
limit, and uncrossed multiple Coulomb exchanges are strictly
iterations of the potential [52]. In any other gauge, the
zero-zero component of the photon propagator has some
residual noninstantaneous contributions. A large number of
Bethe-Salpeter kernels need to be included to eliminate the
spurious contributions in the next order of α3 and α3/ ln α

corrections [53,54]. Therefore, in their work on the static
potential in QCD, Appelquist, Dine, and Muzinich [52]
suggested that the gauge freedom can be used to eliminate
spurious long-range forces at the outset. They found that the
Coulomb gauge continues to be useful in the static potential
in QCD. The dynamics is now considerably complicated but
spurious contributions are still eliminated [52].

Thus, it is therefore important to recognize, as in QED,
that there is a gauge dependence in the two-body bound-
state potential in the Bethe-Salpeter equation but it is most
appropriate to solve the bound-state problem using two-body
potentials obtained in the Coulomb gauge, as was obtained by
Kaczmarek et al. [22].

IV. HEAVY QUARKONIUM STATES IN A THERMALIZED
QUARK-GLUON PLASMA

The state of a heavy quarkonium in a quark-gluon plasma
can be described by a density matrix. The set of single-particle
states for this density matrix can be chosen such that they
can be represented well by quarkonium states in a Q-Q̄
potential, and the residual interaction between the gluons
with the quarkonium can be treated as a perturbation. In this
single-particle basis, the heavy quarkonium density matrix can
be approximated to contain only diagonal matrix elements
representing the probabilities for the occupation of different
single-particle states. What is the Q-Q̄ potential that enters into
the Schrödinger equation for these quarkonium single-particle
states?

The Q-Q̄ potential in perturbative QCD has been studied
by Petreczky [20]. We would like to examine here the
Q-Q̄ potential in nonperturbative lattice QCD calculations.
In previous analyses, the Q-Q̄ potential was taken to be
the free energy F1 for a pair of correlated Polyakov lines,
assuming that the effects of entropy are small [25–28]. It
was, however, pointed out by Zantow, Kaczmarek, Karsch, and
Petreczky [8,29,30] that the effects of entropy are large and the
total internal energy U1, may be used as the Q-Q̄ potential. As
the theoretical basis for these suggestions has not been fully
discussed in the literature, we shall go into details of the proper
description of the Q-Q̄ potential and single-particle states.
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We start first by studying the auxiliary problem of a static
color-singlet Q-Q̄ pair at a separation r in a thermalized
quark-gluon plasma. In the quenched approximation, the color-
singlet free energy F1(r, T ) for such a static pair can be written
from Eq. (1) explicitly in the Euclidean time τ = it as [31]

e−βF1(r,T ) = Z(r, T )/Z0(T ), (2)

Z(r, T ) =
∫

[dA]WQQ̄(A, T , r), (3)

Z0(T ) =
∫

[dA]W0(A, T ), (4)

WQQ̄(A, T , r) = tr

{
P̂ exp

[∫ β

0
g(τ )dτA0(r/2, τ )

]

× exp

[∫ 0

β

g(τ )dτA0(−r2, τ )

]}
W0(A, T ),

(5)

W0(A, T ) = exp

{
−1

4

∫ β

0
dτ

∫
d3xFµνF

µν

}
, (6)

where β = 1/kT is the inverse temperature, Z(r, T ) is the
partition function when a color-singlet Q and Q̄ separated
by a distance r is placed in the gluon medium, and Z0(T )
is the partition function in the absence of Q and Q̄. The
operator P̂ is the path-order operator, which is the time-order
operator T̂ for exp{∫ β

0 g(τ )dτA0(r/2, τ )} and is the reverse

time-order operator for exp{∫ 0
β

g(τ )dτA0(−r/2, τ )}. The free
energy F1(r, T ) with the Q-Q̄ pair is measured relative to the
free energy F0(T ) without the Q-Q̄ pair. We rewrite Eq. (2) as

Z0(T ) =
∫

[dA]eβF1(r,T )tr

{
P̂ exp

[∫ β

0
g(τ )dτA0(r/2, τ )

]

× exp

[∫ 0

β

g(τ )dτA0(−r/2, τ )

] }

× exp

{
−1

4

∫ β

0
dτ

∫
d3xFµνF

µν

}
. (7)

Taking the derivative of this equation with respect to β, we
obtain for the derivative of the left-hand side,

∂{LHS}
∂β

=∂Z0(T )

∂β
=

∫
[dA]

{
−1

4

∫
d3xFµνF

µν

}
W0(A, T ),

(8)

and for the derivative of the right-hand side, we get

∂{RHS}
∂β

=
∫

[dA]eβF1(r,T )

[{
F1(r, T ) + β

∂F1(r, T )

∂β

− 1

4

∫
d3xFµνF

µν

}
WQQ̄(A, T , r)

+ tr

{
g(T )(A0(r/2, T ) − A0(−r/2, T ))P̂

× exp

[ ∫ β

0
g(τ )dτA0(r/2, τ )

]

× exp

[ ∫ 0

β

g(τ )dτA0(−r/2, τ )

]}
W0(A, T )

]
.

(9)

We equate Eq. (8) to Eq. (9). Using eβF1(r,T ) = Z0(T )/Z(r, T )
and dividing the resultant equation by Z0(T ), we obtain
the proper thermodynamic equality relating F1, S1, and U1,
for a system with a color-singlet Q and Q̄ separated r at
temperature T,

F1(r, T ) + T S1(r, T ) = U1(r, T ), (10)

where S1(r, T ) = −∂F1(r, T )/∂T is the color-singlet entropy
with the Q-Q̄ pair and is measured relative to the entropy
S0(T ) = −∂F0(T )/∂T without the Q-Q̄ pair, and U1(r, T ) is
the total color-singlet internal energy given explicitly by

U1(r, T ) = U
(1)
QQ̄

(r, T ) + U (1)
g (r, T ) − Ug0(T ), (11)

Ug0(T ) =
∫

[dA]

{
1

4

∫
d3xFµνF

µν

}
W0(A, T )

÷
∫

[dA]W0(A, T ), (12)

U (1)
g (r, T ) =

∫
[dA]

{
1

4

∫
d3xFµνF

µν

}
WQQ̄(A, T , r)

÷
∫

[dA]WQQ̄(A, T , r), (13)

and

U
(1)
QQ̄

(r, T ) =
∫

[dA]tr

{
g(T )[A0(r/2, T ) − A0(−r/2, T )]P̂

× exp

[∫ β

0
g(τ )dτA0(r/2, τ )

]

× exp

[ ∫ 0

β

g(τ )dτA0(−r/2, τ )

]}
W0(A, T )

÷
∫

[dA]tr

{
P̂ exp

[∫ β

0
g(τ )dτA0(r/2, τ )

]

× exp

[∫ 0

β

g(τ )dτA0(−r/2, τ )

] }
W0(A, T ).

(14)

We may attempt to give names to the various mathematical
expressions. In Euclidean time, the quantity FµνF

µν/4 is equal
to (E2 + B2)/2, the gluon energy density [31,32]. The quantity
Ug0(T ) is the expectation value of

∫
d3x(E2 + B2)/2 with the

weight function W0(A, T ), and it corresponds to the gluon
internal energy in the absence of the heavy quark pair. It is
independent of the separation r between Q and Q̄. In contrast,
U (1)

g (r, T ) is the expectation value of
∫

d3x(E2 + B2)/2 with
the weight function WQQ̄(A, T , r), and it corresponds to the
gluon internal energy in the presence of the heavy quark pair.
Consequently, U (1)

g (r, T ) depends on the separation r between
Q and Q̄. The difference between the total internal energy
U1 and gluon internal energy difference U (1)

g (r, T ) − Ug0(T )

is the quantity U
(1)
QQ̄

(r, T ), the internal energy of the heavy

quark pair, including the interaction between Q and Q̄ as
well as the interaction between Q with gluons and Q̄ with
gluons.

Equations (10)–(14) show that the total internal energy
U (1)(r, T ) contains the gluon internal energy difference
U (1)

g (r, T ) − Ug0(T ). To obtain the r dependence of the
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internal energy of the heavy quark pair U
(1)
QQ̄

(r, T ), it is
necessary to subtract the gluon internal energy difference
U (1)

g (r, T ) − Ug0(T ) from the total internal energy U1(r, T ). In
Sec. VI we shall show a method to carry out such a subtraction
in the local energy-density approximation.

V. EQUATION OF MOTION FOR Q- Q̄
SINGLE-PARTICLE STATES

Lattice gauge calculations provide information on the free
energy F1 and the total internal energy U1 for a static color-
singlet Q and Q̄ separated by a distance r. Quantities for
Q and Q̄ in the color-octet state can be similarly obtained.
For simplicity, we shall limit our consideration to a system
of color-singlet Q-Q̄ states. The generalization to a system
color-octet states can be easily carried out.

We use an appropriate variational principle to obtain the
equation of motion for the color-singlet quarkonium states
in a quark-gluon plasma. For such a purpose, we consider a
schematic toy model that retains the relevant features of the
system. In the quenched approximation without dynamical
light quarks, the quark-gluon plasma consists of gluons only.
The quark Q and antiquark Q̄ are in dynamical motion in
different single-particle states. For simplicity, we presume that
the color degree of freedom has been integrated out. The
dynamical degrees of freedom in our schematic model are then
the Q-Q̄ and gluon states, ψi(r) and φi(r), which can be bound
or unbound, the corresponding Q-Q̄ and gluon state occu-
pation numbers, ni(QQ̄) and nj (g), and the total number
of gluons, Ng . In the schematic toy model, we represent
the Q-Q̄,Q-g, Q̄-g, and g-g interactions when Q and Q̄

belong to a color-singlet state by VQQ̄, VQg, VQ̄g , and Vgg

respectively.
The equilibrium of the system at a constant temperature T is

characterized by minimizing the grand potential A appropriate
for the color-singlet Q and Q̄ in dynamical motion in the
quark-gluon plasma given by

A = F1 − µ(QQ̄)NQQ̄ − µ(g)Ng

= U1 − T S1 − µ(QQ̄)NQQ̄ − µ(g)Ng, (15)

where F1 is free energy, U1 the total internal energy, and S1

the total entropy for Q and Q̄ in dynamical motion in the
quark-gluon plasma. Only in their static limits when the heavy
quark and antiquark are held spatially fixed can F1,U1, and
S1 be equal to their corresponding static thermodynamical
quantities F1, U1, and S1. The quantities µ(QQ̄) and µ(g) are
the chemical potentials of Q-Q̄ and gluons, respectively, and
NQQ̄ and Ng are the numbers of Q-Q̄ and gluons respectively.
Strictly speaking the number of gluons at thermal equilibrium
depends on the length scale (the Q2 value of the measuring
probe) under consideration. In our schematic model, we can
fix the length scale appropriate for Q-Q̄ bound states in the
quark-gluon plasma, and in that length scale the number of
gluons, for the fixed spatial volume under consideration at
thermal equilibrium at T, can be determined. We shall also
ignore the annihilation of Q-Q̄ into light quarks or photons
and the corresponding inverse production so that the number

of Q-Q̄ pair can be considered fixed also. In Eq. (15), we
need to add the Lagrange multipliers λi(QQ̄) and λj (g) to
the grand potential to constrain the normalization of the wave
functions.

To carry out the minimization of the grand potential to
obtain the equation of motion of the single-particle states, we
can follow Bonche, Levit, and Vautherin [57–61] and write
down the grand potential A explicitly. The internal energy U1

in Eq. (15) isU (1)
QQ̄

+ U (1)
g − Ug0, the sum of the internal energy

of the heavy quark pair and the gluons, relative to the gluon
internal energy when the heavy quark pair is not present. In
terms of the wave function and occupation number degrees of
freedom, the grand potential A can be written explicitly as

A =
∑

i

ni(QQ̄)
∫

drψ†
i (r)

[
h̄2p2

2µred
+ VQQ̄(r)

]
ψi(r)

+
∑
i,j

ni(QQ̄)nj (g)〈ψiφj |VQg + VQ̄g|ψiφj 〉

+
∑

j

nj (g)
∫

dr′φ†
j (r′)

√
p2

g + m2
effφj (r′)

+
∑
j,k

nj (g)nk(g)〈φjφk|Vgg|φjφk + φkφj 〉/2 − Ug0

+ T
∑

i

[ni(QQ̄) ln ni(QQ̄) − {1 + ni(QQ̄)}

× ln {1 + ni(QQ̄)}] + T
∑

j

[nj (g) ln nj (g)

−{1 + nj (g)} ln{1 + nj (g)}]
−µ(QQ̄)

∑
i

ni(QQ̄) − µ(g)
∑

j

nj (g)

−
∑

i

λi(QQ̄)〈ψi |ψi〉 −
∑

j

λj (g)〈φj |φj 〉. (16)

Here p and µred are the relative momentum and the reduced
mass of Q-Q̄, pg and meff are, respectively, the momentum
and the effective mass of the gluon, and the dependence of
various quantities on the temperature is made implicit. In this
expression for the grand potential, the first two terms giveU (1)

QQ̄
,

the third and fourth terms give U (1)
g , and the sixth and seventh

terms give the entropy T S1. The matrix element 〈ψiφj |VQg +
VQ̄g|ψiφj 〉 is

〈ψiφj |VQg + VQ̄g|ψiφj 〉 =
∫

drdr′ ψ†
i (r)φ†

j (r′)[VQg(r′ + r/2)

+VQ̄g(r′ − r/2)]ψi(r)φj (r′),
(17)

and the matrix element 〈φjφk|Vgg|φjφk + φkφj 〉 is

〈φjφk|Vgg|φjφk + φjφk〉 =
∫

dr′dr′′ φ†
j (r′)φ†

k(r′′)Vgg(r′ − r′′)

× [φj (r′)φk(r′′) + φk(r′)φj (r′′)].
(18)

When we carry out the minimization of the grand potential
with respect to the dynamical degrees of freedom, we obtain
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five equations [Eqs. (24)–(28)]. By minimizing with respect to
ψ

†
i (r), we obtain the equation of motion for ψi(r) of the Q-Q̄

system as{
h̄2p2

2µred
+ V1(r, T ) − ε′

i(QQ̄)

}
ψi(r) = 0, (19)

where the color-singlet single-particle potential V1(r, T ) is

V1(r, T ) = VQQ̄(r) +
∑

j

nj (g)
∫

dr′φ†
j (r′)[VQg(r′ + r/2)

+VQ̄g(r′ − r/2)], (20)

and ε′
i(QQ̄) = λi(QQ̄)/ni(QQ̄). We note that in this equation,

the quantity ∑
j

nj (g)φ†
j (r′)φj (r′) = ρg(r′) (21)

is the gluon density ρg(r′). The color-singlet potential V1(r, T )
is

V1(r, T ) = VQQ̄(r, T ) +
∫

dr′ρg(r′, T )

× [VQg(r′ + r/2) + VQ̄g(r′ − r/2)], (22)

which represents the internal energy of a static color-singlet Q
and Q̄ at a separation r in the quark-gluon plasma. It has the
same physical meaning as internal energy U

(1)
QQ̄

(r, T ) of a static

color-singlet Q and Q̄ at a separation r in the lattice gauge
calculations. It is therefore reasonable to identify the Q-Q̄
internal energy U

(1)
QQ̄

(r, T ) of the lattice gauge calculations
as the single-particle potential V1(r, T ) in the Schrödinger
equation (19) and write it as{

h̄2p2

2µred
+ U

(1)
QQ̄

(r, T ) − ε′
i(QQ̄)

}
ψi(r) = 0. (23)

It is simplest to recalibrate the energy (and, similarly, the
chemical potential) by εi(QQ̄) = ε′

i(QQ̄) − UQQ̄(r)r→∞ and
rewrite this equation as{
h̄2p2

2µred
+ U

(1)
QQ̄

(r,T )−U
(1)
QQ̄

(|r| → ∞,T )−εi(QQ̄)

}
ψi(r) = 0.

(24)

This Schrödinger equation involving U
(1)
QQ̄

(r, T ) is the proper
equation of motion for quarkonium single-particle states.

From these considerations, the Q-Q̄ potential in the
equation of motion of quarkonium single-particle states is
U

(1)
QQ̄

(r, T ). Lattice calculations so far provide information
only on the free energy F1(r, T ) and the total internal energy
U1(r, T ). It will be of great interest in future lattice work to
evaluate U

(1)
QQ̄

(r, T ) so that it can be used as the proper Q-Q̄
potential in quarkonium studies. In the next section, we shall
present a method by which U

(1)
QQ̄

(r, T ) can be approximately
evaluated by using the quark-gluon plasma equation of state.

The minimization of the grand potential with respect to the
gluon wave function φ

†
j (r) gives the equation of motion for the

gluon states,{√
p2

g + m2
eff +

∑
i

ni(QQ̄)
∫

drψ†
i (r)[VQg(r′ + r/2)

+VQ̄g(r′ − r/2)]ψi(r) − εi(g)

}
φj (r′) +

∑
k

nk(g)

×
∫

dr′′φ†
k(r′′)Vgg(r′′ − r′)[φk(r′′)φj (r′) + φk(r′)φj (r′′)]

+
∑
λ,k

nλ(g)nk(g)
∫

dr′′φ†
λ(r′)φ†

k(r′′)
∂Vgg(r′′ − r′)

∂ρg

× [φk(r′′)φλ(r′) + φk(r′)φλ(r′′)]nj (g)φj (r′) = 0, (25)

where we have taken the density-dependent interaction as a
delta function in r′′ − r′ as in the Skyrme interaction [62,
63]. The minimization of the grand potential with respect to
ni(QQ̄) and nj (g) yields

ni(QQ̄) = 1

e[εi (QQ̄)−µ(QQ̄)]/T − 1
(26)

and

nj (g) = 1

e[εj (g)−µ(g)]/T − 1
, (27)

which are the well-known Bose-Einstein distributions.
The variation of the grand potential A of Eq. (15) with

respect to Ng gives

∂A/∂Ng = µ(g).

The requirement that thermal equilibrium is reached when the
variation of A with respect to Ng is a minimum leads to [64]

µ(g) = 0. (28)

The number of gluons at level j, nj (g), can then be obtained
from Eq. (27) with µ(g) = 0, and the total number of gluons
Ng is given by

Ng =
∑

j

nj (g). (29)

These considerations give a set of equations [Eqs. (24)–
(28)] for a system in which both the quark-gluon plasma and
the Q-Q̄ are in thermal equilibrium. If a quarkonium is placed
in a thermalized quark-gluon plasma for a period longer than
the time needed for it to thermalize, the heavy quarkonium
will reach thermal equilibrium and the Q-Q̄ system will be
described by this set of single-particle states with the Bose-
Einstein distribution of occupation numbers.

Other cases of our interest are those in which the quark-
gluon plasma has reached thermal equilibrium whereas the
Q-Q̄ system, which arises from the independent mechanism
of nucleon-nucleon hard scattering, may not have. For such
a case, the equations of motion for the gluon states and
gluon occupation numbers, Eqs. (25) and (27), remain valid,
except that in Eq. (25) the Q-Q̄ occupation numbers ni(QQ̄)
will no longer obey the Bose-Einstein distribution (27). The
equation of motion for the Q-Q̄ single-particle states, Eq. (24),
remains valid, as it depends on the gluon density. Because
the heavy quark pair is a rare occurrence and gluons are
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much greater in number, we expect that the gluon density
and wave functions obtained in Eq. (25) are insensitive to
the status of Q-Q̄ thermalization, and they depend mainly
on the thermalization of the gluons themselves. Therefore,
single-particle states of the Q-Q̄ system, ψi(r), which depend
on the gluon density as given by Eq. (23), are relatively
insensitive to the thermalization status of Q-Q̄, and they
depend mainly on the thermalization status of the gluons.

In view of these considerations, the set of Q-Q̄ single-
particles states ψi(r) of Eq. (24) can be used to examine
the states of a Q-Q̄ system, whether the Q-Q̄ has reached
thermal equilibrium or not. For example, one can introduce a
bound Q-Q̄ state ψλ into a thermalized quark-gluon plasma of
temperature T. Such a system is described by a density matrix
with an initial occupation number ni(QQ̄) = δiλ at t = 0. The
collision of the Q-Q̄ with gluons in the medium will lead to
the evolution of the occupation numbers of the Q-Q̄ states
as a function of time, leading eventually to the Bose-Einstein
distribution characterized by the temperature of the medium.

The Q-Q̄ system can exist in color-singlet and color-octet
states. The consideration we have given can be generalized to
color-octet states. The Schrödinger equation for the different
single-particle color states a will depend on U

(a)
QQ̄

(r, T ). For

the same reason that the Q-Q̄ single-particle states depend on
the thermalization status of the gluons and are insensitive to
the thermalization status of Q-Q̄, these single-particle states
can be used to examine a Q-Q̄ system in thermalized gluon
matter. When the Q-Q̄ also reaches thermal equilibrium, the
set of states with occupation numbers given by Eqs. (26) will
include both color-singlet and color-octet states.

VI. COLOR-SINGLET Q- Q̄ POTENTIAL

From the variational principle of minimizing the grand
potential, we find that the Schrödinger equation (24) contains
the Q-Q̄ internal energy U

(1)
QQ̄

as the quarkonium Q-Q̄
potential. Lattice calculations so far provide information only
on the free energy F1(r, T ) and the total internal energy U1(r),
but not U

(1)
QQ̄

. While we await accurate lattice gauge results for

U
(1)
QQ̄

, we can obtain an approximate U
(1)
QQ̄

from F1 and U1 by
using the equation of state of the quark-gluon plasma and the
first law of thermodynamics.

In the quenched approximation, the quark-gluon plasma
consists of gluons only. We shall use the following strategy to
obtain U

(1)
QQ̄

. From lattice gauge calculations, we can calculate
F1 − U1, which is equal to the entropy content T S1 of the
whole system. As the heavy quark Q and antiquark Q̄ are held
fixed in the lattice calculation, the entropy T S1 comes entirely
from the deconfined gluons, and it contains no contribution
from the heavy quark Q-Q̄ pair. From the entropy content
of the gluon medium T S1, we can deduce approximately the
gluon internal energy U (1)

g by using the gluon medium equation
of state and the first law of thermodynamics. Then, knowledge
of the approximate gluon internal energy U (1)

g and the total

internal energy U1 gives a color-singlet potential U (1)
QQ̄

in terms
of F1 and U1.

Following such a strategy, we consider a deconfined gluon
medium at temperature T with a static color-singlet Q and Q̄

separated by a distance r. We focus our attention on a volume
element dV of gluons at spatial position x in which the gluon
internal energy element is dU (1)

g and the gluon entropy element
is dS1. At this spatial location, a gluon experiences an external
potential V(x) exerted by the color-singlet Q and Q̄, other
constituents, and induced charges. Hydrostatic equilibrium is
reached when the local gluon pressure p(1)(x) at the volume
element counterbalances the external forces. We can begin in
the nonrelativistic description in which the total external force
acting on a unit volume at x is ρg(x)∇xV(x) and hydrostatic
equilibrium is reached when [65]

∇xp
(1)(x) + ρg(x)∇xV(x) = 0. (30)

In the relativistic case, one can describe the external interaction
V(x) as part of the g00 metric, g00 = 1 + 2ρg(x)V(x)/ε(x), and
hydrostatic equilibrium is reached when [66,67]

∇xp
(1)(x) + {p(1)(x)

+ ε(1)
g (x)}∇x

√
1 + 2ρg(x)V(x)/ε(1)

g (x) = 0. (31)

Thus, the external forces determine the gluon pressure p(1)(x)
required to maintain hydrostatic equilibrium. At thermal
equilibrium, the local gluon pressure is related to the local
gluon entropy and the local gluon energy density. The external
force therefore leads to a change of the gluon local entropy
and the local gluon energy density.

According to this picture, the change in entropy is zero
when the heavy quark sits on top of the heavy antiquark at r =
0, because the color charges will neutralize for a color-singlet
Q-Q̄. As Q separates from Q̄, the local gluon pressure, energy
density, and entropy will increase in the vicinity of Q and Q̄

to counterbalance the forces due to Q and Q̄. The increase in
entropy will reach a constant value at large separations when
the Q and Q̄ each independently causes a modification of the
gluon distribution in its vicinity.

Under the temperature T and pressure p(1)(x), the gluon
internal energy element dU (1)

g and the gluon entropy element
dS1 at x are related by the first Law of thermodynamics,

dU (1)
g = T dS1 − p(1)(x)dV, (32)

where the superscript (1) denotes that the heavy quark Q-Q̄
pair is in a color-singlet state. The local gluon internal energy
density ε(1)

g (x) is therefore related to the local gluon entropy
density dS1/dV and local gluon pressure p(1)(x) by

ε(1)
g (x) = dU (1)

g

dV
(x) = T

dS1

dV
(x) − p(1)(x). (33)

The equation of state of a homogeneous quark-gluon plasma
(gluon medium only in the case of the quenched approxima-
tion) has been obtained in previous lattice calculations [68].
It can be represented by expressing the ratio p/(ε/3) as a
function a(T ) of temperature,

a(T ) = p(T )

εg(T )/3
. (34)

We shall make the local energy-density approximation in
which the local gluon energy density ε(1)

g (x) and the local gluon
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pressure p(1)(x) under the temperature T obey the equation of
state for the (homogeneous) bulk quark-gluon plasma so that

p(1)(x)

ε
(1)
g (x)/3

= a(T ), (35)

as in the usual hydrodynamical description of the quark-gluon
plasma. We then have

dU (1)
g

dV
(x) = 3

3 + a(T )

T dS1

dV
(x). (36)

When we integrate the local gluon energy density over the
whole volume of x under consideration, we obtain

U (1)
g (r, T ) =

∫
dx

dU (1)
g

dV
(x) = 3

3 + a(T )

∫
dx

T dS1

dV
(x)

= 3

3 + a(T )
T S1(r, T ). (37)

In a lattice gauge calculation, the large degrees of freedom
of the gauge field and the maintenance of a thermal bath
of constant temperature T make it reasonable to assume
local thermal equilibrium and use the equation of state of
homogeneous bulk matter to relate the local energy density to
the local pressure in the local energy-density approximation. It
will be of great interest to check Eq. (37) in future lattice gauge
calculations to test the validity of the local energy-density
approximation.

For the case in the absence of the Q-Q̄ pair, the gluon
internal energy Ug0(T ) and the gluon entropy S0(T ) are
similarly related by

Ug0(T ) = 3

3 + a(T )
T S0(T ). (38)

We therefore have

U (1)
g (r, T ) − Ug0(T ) = 3

3 + a(T )
T {S1(r, T ) − S0(T )} .

(39)
In the previous discussions from Eq. (32) to Eq. (39), we

have followed the standard practice of using the convention
of “absolute” units in which the entropy S1(absolute) and
S0(absolute) are measured relative to zero entropy. However,
in lattice calculations and in Sec. IV, we have used the “lattice
gauge calculation” convention in which the entropy S1(lattice)
and the free energy F1(lattice) with the Q-Q̄ pair are measured
relative, respectively, to the entropy S0(absolute) and free
energy F0(absolute) without the Q-Q̄ pair [i.e., S1(lattice) =
S1(absolute) − S0(absolute) and F1(lattice) = F1(absolute) −
F0(absolute)]. Henceforth, we shall switch back to the “lattice
gauge calculation” convention in which the entropy S1(r, T )
and the free energy F1(r, T ) with the Q-Q̄ pair are measured
relative to those in the absence of the Q-Q̄ pair. In this lattice
gauge convention, Eq. (39) can be rewritten as

U (1)
g (r, T ) − Ug0(T ) = 3

3 + a(T )
T S1(r, T ). (40)

Using the relation T S1 = U1 − F1 of Eq. (10) in lattice
gauge theory, we can express U (1)

g (r, T ) − Ug0(T ) in terms of

F1(r, T ) and U1(r, T ) as follows:

U (1)
g (r, T ) − Ug0(T ) = 3

3 + a(T )
{U1(r, T ) − F1(r, T )}. (41)

Substituting this equation in Eq. (11), we obtain

U
(1)
QQ̄

(r, T ) = 3

3 + a(T )
F1(r, T ) + a(T )

3 + a(T )
U1(r, T ). (42)

The Q-Q̄ potential that appears in the Schrödinger equation
for quarkonium bound states, Eq. (24), is then

U
(1)
QQ̄

(r, T ) − U
(1)
QQ̄

(r → ∞, T )

= fF (T ) {F1(r, T ) − F1(r → ∞, T )}
+ fU (T ) {U1(r, T ) − U1(r → ∞, T )} , (43)

where

fF (T ) = 3

3 + a(T )
, (44)

fU (T ) = a(T )

3 + a(T )
, (45)

and fF (T ) + fF (T ) = 1. We shall use such a relation to obtain
an approximate Q-Q̄ potential from F1 and U1.

Equation (43) has been obtained for a color-singlet Q-Q̄
pair in the quenched approximation. It can be easily general-
ized to the case of the unquenched full QCD with dynamical
light quarks. In that case, the function a(T ) corresponds to the
p/(ε/3) appropriate for the equation of state of the quark-gluon
plasma under consideration, Ug0(T ) of Eq. (42) becomes
Uqgp(T ), the internal energy of the quark-gluon plasma in
the absence of the Q-Q̄ pair, and Eq. (43) remains unchanged.

We show ε/T 4 and p/T 4 obtained in quenched QCD
by Boyd et al. [68] as a function of T/Tc in Fig. 1(a).
In Fig. 1(b) the function a(T ), defined as the ratio 3p/ε,
is plotted as a function of T/Tc. The free energy fraction
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FIG. 1. (a) The energy density and pressure of a SU(3) gauge
theory as a function of the temperature obtained by Boyd et al. [68].
(b) The ratio of 3p/ε as a function of T/Tc. (3) The weight fF of F1

and the weight fU of U1 that comprise the Q-Q̄ potential according
to Eq. (43).
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fF (T ) and the internal energy fraction fU (T ) calculated using
this ratio of a(T ) are shown in Fig. 1(c). One finds that at
temperatures close to Tc, fF is close to unity, and the Q-Q̄
potential is close to the free energy F1(r). As temperature
increases, the F1 fraction decreases but approaches fF ∼ 0.75
at very high temperatures. The U1 fraction is nearly zero
at temperatures near Tc and it increases monotonically as a
function of temperature, reaching a value of 0.25 at very high
temperatures.

It is of interest to discuss the conditions under which
the application of the static potential U

(1)
QQ̄

(r, T ) and its
representation in terms of F1 and U1 as given in Eq. (43)
can be reasonable concepts. For the static potential and the
quark-gluon plasma equation of state to be applicable, the time
for the quark-gluon plasma to reach thermal and hydrostatic
equilibrium must be short compared with the time for the
periodic motion of the Q and Q̄. The time for the quark-gluon
plasma to reach thermal equilibrium is of the order 0.6 fm/c, as
one may infer from the discussion in Sec. II. The orbiting time
for a heavy quarkonium is of order 2rrms/v, where rrms is the
root-mean-square radius of the heavy quarkonium system and
v is the relative velocity, which is at most of order 0.5 for heavy
quarks. The spatial scale of the heavy quarkonia in the quark
gluon plasma is quite large. As we shall see in Secs. VIII and
IX rrms = 0.88 fm at T/Tc = 1.13 for J/ψ and it increases
to rrms = 5.3 fm at T/Tc = 1.65. For ϒ, rrms = 0.25 fm at
T/Tc = 1.13 and it increases to rrms = 0.59 fm at T/Tc = 2.6.
The large spatial scales arises because these heavy quarkonium
states are basically only weakly bound. The orbiting time for
heavy quarkonia in the quark-gluon plasma is much greater
than the quark-gluon plasma thermalization time. It is therefore
reasonable to use a static Q-Q̄ potential and the equation of
state of the quark-gluon plasma to study heavy quarkonium in
the quark-gluon plasma.

VII. SIMPLE PARAMETRIZATIONS OF U1 AND F1

Kaczmarek et al. [22] obtained the color-singlet free energy
F1(r, T ) and internal potential U1(r, T ) in quenched QCD as a
function of r = |r| and T. The radial dependences of F1(r, T )
and U1(r, T ) in quenched QCD can be adequately represented
by a screened Coulomb potential with a screening mass µi ,
a coupling constant αi , and an asymptotic potential horizon
Ci(T ) at |r| → ∞, where the subscript i = F and U stands
for the free energy or the internal energy, respectively:

F1(r, T ) = CF (T ) − 4αF (T )

3

e−µF r

r
(46)

and

U1(r, T ) = CU (T ) − 4αU (T )

3

e−µU r

r
. (47)

The parameters Ci, αi , and µi for the quenched lattice QCD
results of F1(r, T ) and U1(r, T ) of Kaczmarek et al. [22] are
shown in Figs. 2 and 3, and the corresponding fits to the lattice
F1 and U1 results are shown in Figs. 4 and 5. The coupling
constant αF (T ) is 0.44 at T = 1.05Tc. As the temperature
increases, αF decreases and saturates at αF ∼ 0.3 at T ∼ 3Tc.

0.0
0.2
0.4
0.6
0.8
1.0

C
F / 

T
c

0.0

0.2

0.4

α F

1.0 1.5 2.0 2.5 3.0
T/Tc

0.0
0.2
0.4
0.6
0.8

µ F
 (

G
eV

)

FIG. 2. The color-singlet parameters CF , αF , and µF for the free
energy F1(r, T ) as given in Eq. (46).

The screening mass µF is about 0.25 GeV at temperatures just
above Tc and it increases to 0.8 GeV at 3Tc.

The coupling constant αU (T ) is quite large at temper-
atures slightly above the phase-transition temperature. At
T = 1.13Tc, αU = 1.26. As the temperature increases, αU

decreases and saturates at αU (T ) ∼ 0.4 at T ∼ 4Tc. The
screening mass µU is small at temperatures just above Tc. As
the temperature increases, the screening mass µU increases to
about 0.8 GeV at T ∼ 4.5Tc.

The comparison in Figs. 4 and 5 shows that the free energy
F1 and the internal energy U1 with the set of parameters in
Figs. 2 and 3 adequately describe the lattice gauge data and
can be used to calculate the eigenvalues and eigenfunctions of
heavy quarkonia. In the local energy-density approximation,
the Q-Q̄ potential is given by

U
(1)
QQ̄

(r, T ) − U
(1)
QQ̄

(r → ∞, T )

= − 4

3

fF (T )αF (T )e−µF r + fU (T )αU (T )e−µU r

r
. (48)

0
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2
3
4
5

C
U / 

T
c

0.0

0.4

0.8

1.2

α U

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
T/Tc

0.0
0.2

0.4

0.6

µ U
  (

G
eV

)

FIG. 3. The color-singlet parameters CU, αU , and µU for the total
internal energy U1(r, T ) as given in Eq. (47).
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1.0
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1(r
,T

)  /
  σ

1/
2

T/Tc=1.05

          1.20
          1.50
          3.00

FIG. 4. The symbols represent the quenched lattice QCD free
energy, F1(r, T )/σ 1/2, of Kaczmarek et al. [22] at selected distances
and the curves are the fits using the screened Coulomb potential,
Eq. (46), with parameters given in Fig. 2. Here σ 1/2 = 425 MeV.

VIII. CHARMONIUM IN THE QUARK-GLUON PLASMA

In the quenched approximation, the transition temperature
is Tc = 269 MeV [8]. To evaluate the energy levels of different
heavy quarkonia, we use this value of Tc to express the potential
in GeV units.

For a given temperature, we use the U
(1)
QQ̄

(r, T ) potential
given in Eq. (43) to calculate the charmonium energy levels and
wave functions. In these calculations, we employ charm quark
masses mc = 1.3 and 1.5 GeV [69] to provide an indication of
the uncertainties of the eigenenergies.

Energy levels of charmonium calculated with the
U

(1)
QQ̄

(r, T ) potential are shown in Fig. 6 as a function of
temperature. The J/ψ and ηc states are weakly bound at
temperatures slightly greater than Tc. The eigenenergies of
J/ψ and ηc are −0.045 GeV at T = 1.13Tc for mc = 1.5 GeV
and their energies increase as the temperature increases. The
J/ψ and ηc state eigenenergies are −0.0004 GeV at T =
1.65Tc for mc = 1.5 GeV. If one extrapolates the eigenenergy
from lower temperature points, one infers that the J/ψ and
ηc spontaneous dissociation temperature is 1.52Tc for mc =
1.3 GeV and is 1.72Tc for mc = 1.5 GeV, with a mean
value of 1.62Tc. There are no bound χc, ψ

′, and η′
c states

for temperatures above Tc.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

rσ1/2

-2

-1

0

1

2

3

4

U
1(r

,T
)  / 

 T
c

T/T
c
=1.13

          1.18
          1.25
          1.40
          1.65
          1.95
          2.60
          4.50

FIG. 5. The symbols represent the quenched lattice QCD total
internal energy, U1(r, T )/Tc, of Kaczmarek et al. [22] at selected
distances and the curves are the fits using the screened Coulomb
potential, Eq. (47), with parameters given in Fig. 3. Here Tc =
269 MeV and σ 1/2 = 425 MeV.

1.0 1.2 1.4 1.6 1.8 2.0
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-0.8
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-0.2

0.0

mc = 1.3 GeV
mc = 1.5 GeV-0.04
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ε 
  (
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)
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 (
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χ

J/ψ , ηc

ψ′ ,ηc′

(b) 

J/ψ , ηc

(a)  
UQQ Potential

F1 Potential

U1 Potential

(1)

FIG. 6. Energy levels of charmonium in the quark-gluon plasma
as a function of temperature calculated with (a) the F1(r, T ) and
U

(1)
QQ̄

(r, T ) potentials for J/ψ and ηc, and (b) the U1(r, T ) potential
for J/ψ, ηc, χc, ψ

′, and η′
c. The dashed curves are obtained with

mc = 1.3 GeV and the solid curves with mc = 1.5 GeV. Note the
difference in the enegy scales in (a) and (b).

In the spectral function analyses of Asakawa et al. [9,10]
and Petreczky et al. [11–13], the widths of J/ψ begin to be
broadened at ∼1.6Tc and the χc states are found to be dissolved
already at 1.13Tc. The width of J/ψ can be broadened by
gluon dissociation g + J/ψ → c + c̄, which is presumably
a possible process in the lattice gauge calculations in the
spectral function analysis. The gluon dissociation width is
however of the order of 0.05–0.1 GeV as one can infer
later from Sec. XII. In the numerical results of the spectral
function analysis [9,10], the width appears to be broadened
by an amount significantly greater than this amount for
gluon dissociation. It is therefore reasonable to associate
the broadening of the width of a heavy quarkonium in the
spectral function analysis with the occurrence of spontaneous
dissociation, when the heavy quarkonium becomes unbound.
The temperature at which the width of a quarkonium begins
to broaden significantly can be taken as the dissociation
temperature for spontaneous dissociation of the quarkonium
in the spectral function analysis.

In Table I we list the dissociation temperatures of different
quarkonia obtained in quenched QCD. A comparison of the
dissociation temperatures from the spectral function analysis
[9–13] and from the U

(1)
QQ̄

(r, T ) potential model indicates the
agreement that J/ψ is bound up to about 1.6Tc and is unstable
at very high temperatures. There is also the agreement that the
χc and ψ ′ states are unbound in the quark-gluon plasma.

It is instructive to compare the eigenenergies obtained
by using other potential models. We calculate the heavy
quarkonium eigenenergies with the F1(r, T ) potential as in
Refs. [25–28] by replacing U

(1)
QQ̄

in Eq. (24) with F1(r, T ). In
Fig. 6(a), we show the charmonium energies calculated with
the F1(r, T ) potential. One finds that J/ψ is weakly bound,
but the dissociation temperature lies in the range 1.33–1.46Tc
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TABLE I. Dissociation temperatures obtained from different analyses in quenched QCD.

Heavy quarkonium U
(1)
QQ̄

(r, T ) potential F1(r, T ) potential U1(r, T ) potential Spectral analysis

J/ψ, ηc 1.62Tc 1.40Tc 2.60Tc ∼1.6Tc

χc unbound in QGP unbound in QGP 1.19Tc dissolved below 1.1Tc

ψ ′, η′
c unbound in QGP unbound in QGP 1.20Tc

ϒ, ηb 4.10Tc 3.50Tc ∼5.0Tc

χb 1.18Tc 1.10Tc 1.73Tc

ϒ ′, η′
b 1.38Tc 1.19Tc 2.28 Tc

for mc = 1.3–1.5 GeV, with a mean value of 1.40Tc. This
dissociation temperature is lower than that inferred from the
spectral function analysis. The χc and ψ ′ states are unbound
in this potential.

We also calculate the heavy quarkonium eigenenergies with
the total internal energy U1(r, T ) as the Q-Q̄ potential as
in Refs. [25–28]. The eigenenergies for charmonium states
are shown in Fig. 6(b). Because the total internal energy U1

contains a deeper potential well, the charmonium states are
deeply bound. The binding energy is about 0.8 GeV at 1.13Tc,
and the state becomes unbound at 2.50–2.71Tc, with a mean
value of 2.60Tc. This dissociation temperature is much higher
than the dissociation temperature of about 1.6Tc obtained
from the spectral function analysis. There are uncertainties
in the spontaneous dissociation temperatures owing to the
differences in the degrees of freedom assumed in lattice QCD
calculations. For example, using the total internal energy U1

extracted from the full QCD with two flavors obtained by
Kaczmarek et al. [70], Shuryak found that the dissociation
temperature of J/ψ is about 2.7Tc [15]. In this model, the
χc, ψ

′, and η′
c states are bound at temperature slightly above

Tc and they become unbound at 1.2Tc. The binding of χc states
is in disagreement with the results of the dissolution of χc states
in the spectral function analysis.

Our comparison of these results indicate that the model
that compares best with the spectral function analysis is the
U

(1)
QQ̄

(r, T ) potential [Eq. (43)] obtained from a variational
principle and the quark-gluon plasma equation of state.
However, as the results from the spectral function analysis are
still scanty, more results from the spectral function analysis
are needed to test further the potential model.

The solution of the Schrödinger equation (19) gives both
eigenenergies and eigenfunctions. We show in Fig. 7 the wave
functions of J/ψ calculated with the U

(1)
QQ̄

potential and mc =
1.5 GeV. They are normalized according to

∫ ∞

0
|u1S(r)|2dr =

∫ ∞

0
|rψ1S(r)|2dr = 1, (49)

as in Eq. (4.18) of Blatt and Weisskopf [71]. As the temperature
increases, the binding of the state becomes weaker and the
wave function extends to greater distances. The rms r of the
J/ψ wave function is 0.88 fm at 1.13Tc. At T = 1.65Tc,
which is near the temperature for spontaneous dissociation,
the binding energy is 0.0004 GeV. The rms r of the J/ψ wave
function is 5.30 fm, which is much greater than the theoretical
rms r of 0.404 fm for J/ψ at zero temperature [72].

IX. BOTTOMIUM BOUND STATES IN THE
QUARK-GLUON PLASMA

One can carry out similar calculations for the energy levels
and wave functions of the b- b̄ system. We take the mass of
the bottom quark to be 4.3 GeV, which falls within the range
of 4.1–4.5 GeV in the PDG listing [69]. The energy levels
of the lowest b- b̄ bound states calculated with the U

(1)
QQ̄

(r, T )
potential are shown in Fig. 8 as a function of temperature. We
find that at T = 1.13Tc, the ϒ state lies at about −0.3 GeV
and the state energy increases as the temperature increases.
The ϒ state remains bound by 0.028 GeV at T = 2.5Tc. If
one extrapolates from lower temperatures, the dissociation
temperature of ϒ and ηb is 4.10Tc. For this potential, the
χb,ϒ

′, and η′
b states are weakly bound at temperatures slightly

greater than Tc. The χb states become unbound at 1.18Tc and
the ϒ ′ and η′

b become unbound at 1.38Tc.
As a comparison, we calculate the bottomium eigenen-

ergies using other potential models. If we assume that the
Q-Q̄ potential is the free energy, F1(r, T ), we find that ϒ is
bound by about 0.2 GeV at 1.13Tc and it becomes unbound
at 3.50Tc, as shown in Fig. 9(a). The χb states are unbound at
1.10Tc, and the ϒ ′ and η′

b states are bound by 0.003 GeV at
1.13Tc, which should be close to its dissociation temperature.

If we assume that the Q-Q̄ potential is the total internal
energy, U1(r, T ), we find that the bottomium states become
deeply bound, as shown in Fig. 9(b). At 1.13 Tc, the ϒ and ηb

states are bound by about 3 GeV. The binding energy decreases
slowly as a function of temperature. The small binding energy
at T = 4.5Tc indicates that the ϒ dissociation temperature is
close to and slightly greater than T ∼ 5.0Tc. Because of the

0 2 64 8 10 12
r  ( fm)

0.0

0.5

1.0

 r
 ψ

 (
r)

   
  (

fm
-1

/2
)

1.13
1.18
1.25
1.40
1.65

T/Tc

mc=1.5 GeV

FIG. 7. J/ψ wave function calculated with the U
(1)
QQ̄

(r, T ) poten-
tial for different temperatures.
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FIG. 8. Energy levels of b- b̄ bound states as a function of
temperature, calculated with the U

(1)
QQ̄

(r, T ) potential.

small screening mass near Tc, the potential for temperatures
near Tc is approximately a Coulomb potential but with a large
coupling constant. Hence, χb and ϒ ′, η′

b states are nearly
degenerate. They lie at −0.5 GeV for T = 1.13Tc and begin
to be unbound at 1.73Tc and 2.28Tc, respectively.

The b- b̄ bound state wave functions can be obtained
by solving the Schrödinger equation (19). We show in
Fig. 10 the ϒ radial wave functions as a function of
temperature. The wave function extends to greater distances
as the temperature increases. The root-mean-square radius
rrms is 0.25 fm at T/Tc = 1.13 and it increases as the
temperature increases. At T = 2.6Tc, which lies very close to
the temperature for spontaneous dissociation, the rms r value
is 0.59 fm, which is substantially greater than the rms r of
0.25 fm at 1.13Tc.
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FIG. 9. Energy levels of b- b̄ bound states as a function of
temperature calculated with (a) the F1(r, T ) potential and (b) the
U1(r, T ) potential.
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FIG. 10. ϒ wave function rψ(r) as a function of temperature.

Our comparisons of the charmonium eigenenergies with
those from the spectral function analysis indicate that the
results obtained by using the U

(1)
QQ̄

potential agree best with the
spectral function analysis. As different models give different
predications on the bottomium dissociation temperatures,
further tests of the models can be carried out by calculating
the dissociation temperature of bottomium states using the
spectral function analysis.

X. ANTISCREENING BY DECONFINED GLUONS

As one crosses the phase-transition temperature Tc from
below, quarks and gluons becomes deconfined. The Debye
screening resulting from the interaction between the heavy
quark and antiquark with medium particles is considered to be
the dominant effect when a heavy quarkonium is placed in a
quark-gluon plasma [1]. It is argued that Debye screening leads
to a decrease in the attractive interaction between the heavy
quark and antiquark and results in the spontaneous dissociation
of the heavy quarkonium in the quark-gluon plasma. The
suppression of J/ψ production was suggested as a signature
for the quark-gluon plasma [1].

In perturbative QCD, there is a relation between the screen-
ing mass µ, coupling constant g = √

4παs , and temperature
T in a quark-gluon plasma given by [73–77]

µ2 = g2T 2(Nc + Nf /2)/3. (50)

For the quenched approximation with Nf = 0, perturbative
QCD gives µ = gT . A comparison of the effective coupling
constants αF and αU of either F1 or U1 with the screening mass
µF and µU at temperatures near Tc indicates that the screening
mass is much smaller than the estimates in the perturbative
QCD limit, indicating that the large-distance behavior cannot
be qualitatively described by perturbative QCD. The perturba-
tive QCD limit for the large-distance behavior can be reached
only at temperatures above 6Tc [78,79]. In fact, Kaczmarek
et al. [79] pointed out that for temperatures close to Tc the
QCD phase should be more appropriately described in terms
of remnants of the confinement part of QCD rather than a
strongly coupled Coloumbic force [14,15]. To understand this
“remnant of QCD confinement above Tc,” it is of interest to
examine the effects of antiscreening above Tc by deconfined
gluons.
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FIG. 11. (a) The coordinate system used in the evaluation of the
induced color charge density ρ

λ(2)
ind (r′, r) at r′. (b) A heavy quark

of color source at O induces color charges of the same sign in the
direction forward of r and color charges of the opposite sign in the
direction backward of r.

In a related topic, Svetitsky, Yaffe, DeTar, and DeGrand
previously found that large spacelike Wilson loops in the
quark-gluon plasma have an area law behavior [2,3,31,33,34].
As the area law of the spatial Polyakov loop does not change
drastically across the phase transition, DeTar [2,3], Hansson,
Lee, and Zahed [4], and Simonov [5–7] argued that low-lying
mesons including J/ψ may remain in relatively narrow states
owing to the attractive interaction between the quark and the
antiquark and that the suppression of J/ψ is not a signature
of the deconfinement phase transition [3]. It is of interest
to examine the consequence of the spatial area law to see
whether it will lead to antiscreening between a heavy quark
and antiquark.

The mechanism of antiscreening by virtual gluons at T = 0
is well known (see, for example, Peskin and Schroeder,
Gottfried and Weisskopf [80] and [81]). We follow similar
arguments to study the mechanism of antiscreening by de-
confined gluons above the phase-transition temperature Tc.
We consider the color electric field generated by a static
color source ρ

a(0)
ext (r) = δ(r)δaλ with a unit color charge of

index λ placed at the origin, in the presence of an external
gauge field [Fig. 11(a)]. We fix the gauge to be the Coulomb
gauge and represent the deconfined gluons in terms of an
external transverse gluon field Abi(r), where the first index
b = 1, . . . , 8 is the color index and the second index i = 1, 2, 3
is the spatial coordinate index.

The color electric field Eai(r) generated by the source is
determined by the Gauss law

∂iE
ai(r) = gδ(r)δaλ + gf abcAbi(r)Eci(r) (51)

(Eq. (16.139) of Peskin and Schroeder [81]). Here repeated
indices are summed over and the first index of Eai(r) is the
color index and the second index is the spatial coordinate index.
Because of the nonlinear nature of the second term, which
arises from the non-Abelian nature of QCD, the external color
source δ(r)δaλ and the external gauge field Aai(r) induce a
color source ρ

a(1)
ind (r), which in turn induces an additional color

source ρ
a(2)
ind (r). How do these induced color charges depend

on the external gauge field Abi(r)?
We consider an expansion of the source in terms of the

external source and the induced sources, in powers of the

coupling constant

∂iE
ai(r) = gδ(x)δa1 + gρ

a(1)
ind (r) + gρ

a(2)
ind (r) + · · · . (52)

In the Coulomb gauge, the color field Eci(1)(r), arising only
from the external static source δ(r)δaλ, is

Eai(1)(r) = gδaλ ri

r3
. (53)

From the nonlinear term in Eq. (51), the color charge density
induced at r by the external gauge field Aβi(r) and the electric
field Eci(1)(r) of the external color source is

ρ
a(1)
ind (r) = f aβγ Aβi(r)Eγi(1)(r) = gf aβγ Aβi(r)

δγλri

r3
. (54)

An induced color-charge element ρ
a(1)
ind (r)�r at r will generate

a field Eai(2)(r′, r) at r′ and this field is pointing along the
direction of r′ − r,

Eai(2)(r′, r) = g
[
ρ

a(1)
ind (r)�r

] (r ′i − ri)

|r′ − r|3 . (55)

From the nonlinear term in Eq. (51), the color charge density
element ρ

a(2)
ind (r′, r)�r, which is induced at r′ by the external

gauge field Abi(r′) and the electric field Eci(2)(r′, r) at r′, is
therefore

ρ
a(2)
ind (r′, r)�r

= f abcAbi(r′)Eci(2)(r′, r)

= g2f abcAbi(r′)
[
f cβγ Aβj (r)

δγλrj

|r|3 �r
]

(r ′i − ri)

|r′ − r|3 . (56)

Because the external source has the color index λ, we would
like to study the induced color charge of index λ to see whether
the induced color charges lead to screening or antiscreening.
From Eq. (54), we have

ρ
λ(1)
ind (r) = 0, (57)

as f λβλ = 0 on account of the antisymmetric property of
f. For the next-order induced color charge density element
ρ

a(2)
ind (r′, r)�r, we can write out explicitly the summations of

color and spatial indices of Eq. (56),

ρ
λ(2)
ind (r′, r)�r = g2

8∑
b,c,β=1

f λbcf cβλ

×
3∑

i,j=1

Abi(r′)(r ′i − ri)Aβj (r)rj

|r|3|r′ − r|3 �r. (58)

We note that
8∑

c=1

f λbcf cβλ = −F (λ, b)δbβ, (59)

where F (λ, b) is a non-negative quantity defined by

F (λ, b) =
8∑

c=1

(f λbc)2, (60)

which can be easily evaluated. For example, F (1, b) is
{0, 1, 1, 1/4, 1/4, 1/4, 1/4, 0} for b = 1, 2, . . . , 8. In terms of
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F (λ, b), the induced charge density is

ρ
λ(2)
ind (r′, r)�r = −g2

8∑
b=1

F (λ, b)�r

×
3∑

i,j=1

Abi(r′)Abj (r)(r ′i − ri)rj

|r|3|r′ − r|3 . (61)

Note that F (λ, λ) = 0. The contribution of the external
gauge field to the sum over b comes only from those color
components of Abi that are transverse to the color axis λ of the
external point source.

The product Abi(r′)Abj (r) in Eq. (61) involves spatial gauge
fields at different spatial locations. Previously, Svetitsky, Yaffe,
DeTar, and DeGrand found that large spacelike Wilson loops
in the quark-gluon plasma have an area law behavior. Such
a behavior indicates that the spatial gauge fields Abj (r) at
different spatial locations are correlated [2,3,31,33,34]. As
shown in the Appendix, if the gauge fields Abi at different field
points r> and r< with |Abi(r>)| > |Abi(r<)| are correlated as

Abi(r<) = Abi(r>)e−|r>−r<|/ξ , (62)

then the integral of Abi(r) along a spacelike loop
∮

Abidxi

obeys an area law, when the linear dimensions of the loop
are small compared with the correlation length. Consequently,
within the vicinity of the correlation length ξ , we can express
the thermal average of the Abi(r′)Abj (r) in terms of the relative
coordinate and the correlation length ξ :

〈Abi(r′)Abj (r)〉 ∼ Abi(r)Abj (r)e−|r′−r|/ξ , (63)

where we have considered the case when |Abi(r′)| < |Abi(r)|.
[The case of |Abi(r′)| > |Abi(r)| can be treated in an analogous
way.] The quenched QCD calculations in SU(3) is in the
universal class of three-dimensional Z(3) symmetry. It has
a first-order phase transition and it possesses a large but finite
correlation length at Tc [2,3,31,33,34,82–86].

To study the sign of the induced color charges, we choose
a spatial coordinate system with the z axis along r as shown in
Fig. 11(a). In this coordinate system, we label the angular
coordinates of r′ − r and Ab(r) by (θ ′, φ′) and (θb, φb),
respectively. We shall study the induced charge at r′ within
the vicinity of the correlation length ξ of r. Then, after taking
the thermal average, the induced color charge density is then

ρ
λ(2)
ind (r′, r)�r

= −g2
8∑

b=1

F (λ, b)�r
|Ab(r)|2e−|r′−r|/ξ

r2|r′ − r|2
× cos θb[cos θb cos θ ′ + sin θb sin θ ′ cos(φb − φ′)]. (64)

If we average over the azimuthal angle φ′, the second term in
the square brackets drops out and we have

ρ
λ(2)
ind (r′, r)�r = −g2

8∑
b=1

F (λ, b)�r

× |Ab(r)|2 cos2 θbe
−|r′−r|/ξ cos θ ′

r2(r2 + |r′ − r|2 + 2r|r′ − r| cos θ ′)
.

(65)

One readily observes that the induced color charge density
ρ

λ(2)
ind (r′, r) at r′ is negative in the forward hemisphere in

the direction forward of r (with π/2 � θ ′ � 0). It changes
to positive in the backward hemisphere, in the direction
backward of r (π � θ ′ � π/2). In the region of r′ within
the vicinity of the correlation length from r, the induced
charge surrounding r is a color-dipole-type density dis-
tribution with the color charge of the same sign at dis-
tances closer to the color source and of the opposite
sign at distances farther to the color source [Fig. 11(b)].
This is the antiscreening behavior resulting from the presence
of the external gauge field Abi(r) at r. The magnitude of the
induced color charges will increase with an increases in the
correlation length ξ and the magnitude of the gluon field.
The antiscreening effects will enhance the attractive interaction
between the heavy quark and antiquark and will reduce the
screening mass from the Debye screening predictions.

The antiscreening effect arises from the nonlinear prop-
erties of the non-Abelian gauge field whereas the effects of
Debye screening arises from the interaction between the quark
and antiquark with gluons. Both effects are present and the
antiscreening effects resulting from deconfined gluons will
act to counterbalance the effects of Debye screening. At the
onset of the phase transition, the correlation length is large
[2,3,31,33,34,82–88] and deconfined gluons are present; there
can also be “remnants of the confinement part of QCD” at
temperatures slightly above Tc, as pointed out by Kaczmarek
et al. [79]. At a much higher temperature, a greater thermal
fluctuation leads to a smaller correlation length, reducing the
effects of antiscreening, and Debye screening dominates.

XI. DISSOCIATION OF J/ψ IN
COLLISION WITH GLUONS

It is not necessary to reach the spontaneous dissociation
temperature with zero binding energy for a quarkonium to
dissociate. In a quark-gluon plasma, gluons and quarks can
collide with a color-singlet heavy quarkonium to lead to the
dissociation of the heavy quarkonium. Dissociation by the
absorption of a single gluon is allowed as the color-octet final
state of a free quark and a free antiquark can propagate in the
color medium, in contrast to the situation below Tc in which
the quark and the antiquark are confined. We shall consider
dissociation of heavy quarkonium by gluons in the present
work. The collision of a heavy quarkonium with light quarks
can also lead to the dissociation of the heavy quarkonium, but
through higher order processes. They can be considered in a
future refined treatment of the dissociation process.

Previous treatment of the dissociation of heavy quarkonium
by the absorption of a gluon was carried out by Peskin and
Bhanot [89,90]. They use the operator product expansion and
the large-Nc limit. They sum over a large set of diagrams
and show that, to obtain gauge-invariant results, they need to
sum over diagrams in which the external gluon is coupled
to the gluon that is exchanged between the heavy quark and
the heavy antiquark. They use the hydrogen wave function
and hydrogen states to evaluate the transition matrix elements.
Their expression for the dissociation cross section of σ (g +
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(QQ̄)1S → Q + Q̄) is

σ (g + (QQ̄)1S → Q + Q̄)

= 2

3
π

(
32

3

)2 (
4

3α2
s

)
1

m2
Q

(E/B)3/2

(E/B + 1)5
. (66)

where E is the nonrelativistic kinetic energy of the dissociated
Q and Q̄ in the center-of-mass system. In this short-distance
approach of Peskin and Bhanot, the quark and the antiquark
form a color-dipole pair and the gluons couple to the Wilson
loop (the quarkonium) via simple dipole interactions. The
dissociation cross section of Eq. (66) is, in fact, the dissociation
of the quarkonium through the absorption of E1 gluon
radiation.

Peskin and Bhanot’s analytical result for the dissociation
cross section has been applied to many calculations [23,24,91].
In heavy quarkonia of interest, the radial dependence of the
quark-antiquark potential often differs from the Coulomb
potential. The calculation of the dissociation cross section
requires a new formulation, which can be best described by
the potential model introduced previously [28,51], following
the results of Blatt and Weisskopf [71] obtained for the
photodisintegration of a deuteron. The dissociation process is
schematically illustrated in Fig. 12. An initial bound (QQ̄)1S

state with a binding energy B in the color-singlet potential
V1(r) absorbs a gluon of energy h̄ωg and is excited to the
color-octet final state (Q + Q̄)1P with a kinetic energy E above
the rest mass of mQ + mQ̄. The interaction V8(r) between
Q and Q̄ in the color-octet state will be different from the
interaction V1(r) in the color-singlet state, as shown in Fig. 12.
At low energies, the dominant dissociation cross section is the
E1 color-electric-dipole transition for which the final state
of Q + Q̄ will be in the 1P state in the continuum. The
dissociation cross section σ (g + J/ψ → c + c̄) for such a
color E1 transition can be obtained from the analogous result
in QED [28,71], and the result is [28]

σE1
dis (Egluon) = 4 × π

3
αgQ(k2 + γ 2)k−1I 2, (67)

V
(r

)

Color-Octet State (Q + Q)1P

Color-Singlet State  (Q Q)1S

Color-Octet Potential V8(r)

Color-Singlet Potential  V1(r)

0
hωg

r

g + (Q Q)1S→  (Q + Q)1P

B

E

FIG. 12. The quarkonium dissociation process in the potential
model.

where

Egluon = B + E, γ 2 = 2µB, k2 = 2µE, (68)

I =
∫ ∞

0
u1P (r) r u1S(r)dr, (69)

αgQ = αs

∣∣∣〈8c|λ
c

2
|1〉

∣∣∣2
= αs × 1

6
, (70)

and αs is the gluon-(heavy quark) coupling leading to the
dissociation of the heavy quarkonium. Here, we use the same
notation and normalization as in Blatt and Weisskopf. The
bound-state wave function u1S has been normalized according
to Eq. (49) as in Eq. (XII.4.18) of Blatt and Weisskopf [71],
and the continuum wave function u1P is normalized according
to

u1P (r)|r→∞ → krj1(kr) = sin(kr)

kr
− cos(kr), (71)

as in Eq. (XII.4.32) of Blatt and Weisskopf [71]. The result
from the potential model agrees with the analytical results of
Bhanot and Peskin for the case they considered (hydrogen
wave function, large-Nc limit,. . .) [28]. Such an agreement
was further confirmed by numerical calculations according to
Eq. (67) using the hydrogen wave function for u1S and the
plane wave continuum wave function for u1P , as assumed
by Peskin and Bhanot [89,90]. The potential model has the
practical advantage that it can be used for a Q-Q̄ system with
a general potential.

XII. J/ψ COLLISIONAL DISSOCIATION RATE
AND DISSOCIATION WIDTH

We have represented the color-singlet potential between a
heavy quark and antiquark by a screened Coulomb potential
and have obtained the J/ψ wave function. To study the
gluon dissociation of J/ψ , we need the color-octet potential
V8(r, T ) = U

(8)
QQ̄

(r, T ) experienced by the Q and Q̄ in the
final state. We shall assume the generalization that the color
dependence of the potential [Eq. (46)] is simply obtained by
modifying the color factor from −4/3 for the color-singlet
state to 1/6 for the color-octet state:

U
(i)
QQ̄

(r, T ) − U
(i)
QQ̄

(r → ∞, T )

= Cf

fF αF e−µF r + fUαU e−µU r

r
, (72)

Cf =
{−4/3(i = 1, color singlet),

1/6(i = 2, color octet).
(73)

We also need the gluon-quark coupling constant αs in
Eq. (70) to evaluate the dissociation cross section. We shall
consider the screened Coulomb potential (67) obtained in the
lattice gauge theory as arising from the exchange of a virtual
nonperturbative gluon and assume that the coupling of the
gluon to the heavy quark leading to quarkonium bound states,
fF αF + fUαU , is the same coupling leading to the dissociation
of the quarkonium. The J/ψ dissociation cross section can
then be calculated using Eq. (67). The results of the J/ψ

dissociation cross section for different temperatures are shown
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FIG. 13. J/ψ dissociation cross section as a function of gluon
energy at various quark-gluon plasma temperatures.

in Fig. 13. The cross section increases up to a maximum
value and decreases as the gluon energy increases. As the
temperature decreases the maximum height of the dissociation
cross section increases, but the width of the cross section
decreases. We shall limit our attention to the dissociation of
J/ψ by the absorption of E1 radiation in the present analysis.
When the dissociation threshold decreases, higher multipole
dissociation may become important. It will be of interest
to study dissociation arising from gluon radiation of higher
multipolarity in future work.

If we place a J/ψ in a quark-gluon plasma at a tempera-
ture T, the average E1 dissociation cross section is

〈
σE1

dis

〉 = gg

2π2

∫ ∞

0
σE1

dis (p)
p2dp

ep/T − 1

/
ng, (74)

where gg = 16 is the gluon degeneracy and ng is the gluon
density, given by

ng = gg

2π2

∫ ∞

0

p2dp

ep/T − 1
. (75)

Using the energy dependence of the dissociation cross section
as given in Fig. 13, we can calculate the average dissociation
cross section 〈σE1

dis 〉. From 〈σE1
dis 〉, we obtain the rate of J/ψ

dissociation (by E1 transition) given by

dnJ/ψ

dt
= −ng

〈
σE1

dis

〉
. (76)

This dissociation rate leads to the collisional dissociation width
�E1 resulting from the absorption of E1 gluon radiation,

�E1 = ng

〈
σE1

dis

〉
. (77)

We show in Fig. 14 the temperature dependence of 〈σE1
dis 〉

and �E1. One observes that the average cross section is in
the range of 0.2–0.8 mb. The collisional dissociation width
resulting from E1 gluon absorption is of the order of 0.05–
0.11 GeV, and the mean life of J/ψ in the quark-gluon plasma
resulting from the absorption of gluons to the 1P state is
therefore of order 2–4 fm/c.
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FIG. 14. (a) Thermally averaged dissociation cross section as a
function of temperature. (b) J/ψ collisional dissociation width �E1

as a function of temperature.

XIII. J/ψ PRODUCTION BY THE COLLISION
OF c AND c̄ IN QGP

In high-energy nuclear collisions, elementary nucleon-
nucleon collisions lead to the production of open heavy quark
mesons. Although the probability for such a production is
small for a single nucleon-nucleon collision, there are many
nucleon-nucleon collisions in a central nucleus-nucleus colli-
sion. The large number of binary nucleon-nucleon collisions
can produce many pairs of open charm mesons, and these
open charm mesons can recombine to produce J/ψ . It is of
interest to estimate the elementary reaction cross section for
c + c̄ → J/ψ + g and obtain the rate of J/ψ production in a
nucleus-nucleus collision.

The reaction c + c̄ → J/ψ + g is just the inverse of g +
J/ψ → c + c̄. Their cross sections are therefore related by
[92]

σE1(c + c̄ → J/ψ + g) = | p1|2
| p3|2

σE1(J/ψ + g → c + c̄),

(78)

where p1 is the momentum of one of the particles in the J/ψ +
g system, and p3 is the momentum of one of the particles in
the c + c̄ system, both measured in the center-of-mass frame.
With Eq. (78) and the results of σE1(J/ψ + g → c + c̄) in
Fig. 14, the production cross section σE1(c + c̄ → J/ψ + g)
can be calculated. The cross section as a function of the kinetic
energy of c and c̄ in the center-of-mass system are shown
in Fig. 15. One observes that the cross section peaks at low
kinetic energies near the threshold, and the magnitude of the
cross section decreases with temperature. The maximum cross
section at T/Tc ∼ 1.13 is of order 0.7 mb.

The rate of J/ψ production can be obtained when the
momentum distribution f (y, pt ) of the produced c and c̄

is known. For simplicity, we consider charm quarks and
antiquarks to be contained in a spatial volume V with a uniform
distribution. The probability of producing a J/ψ in the volume
V per unit time by the collision of charm quark and antiquark is
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FIG. 15. Cross section for the production of J/ψ by the collision
of c and c̄.

σ (c + c̄ → J/ψ + g)v12/V , where v12 is the relative velocity
between c and c̄. The number of J/ψ produced per unit time
from collision of c and c̄ is therefore

dNJ/ψ

dt
=

∫
dy1dp1t dy2dp2t f (y1, p1t )f (y2, p2t )

× σ (c + c̄ → J/ψ + g)v12/V . (79)

When we neglect initial- and final-state interactions, the
momentum distribution of charm is given by

f (y, pt ) = Nbin
EdN

pp
cc̄

d p
. (80)

Here f (y, pt ) is normalized to the total number of charm
quarks Nc and antiquarks Nc̄ produced in the nucleus-nucleus
collision, Nc = Nc̄ = ∫

(d p/E)f (y, pt ) = NbinN
pp
cc̄ , Nbin is

the number of binary nucleon-nucleon collisions, and N
pp
cc̄

is the number of c-c̄ pairs produced in a single nucleon-
nucleon collision. From the charm production data in d-Au
collisions and PYTHIA calculations, Tai et al. [93], Adams
et al. [94], and the STAR Collaboration inferred that at√

s = 200 GeV the charm production cross section per
nucleon-nucleon collision is σ

pp
cc̄ |STAR = 1.18 ± 0.21(stat) ±

0.39(sys) mb [93] and σ
pp
cc̄ |STAR = 1.4 ± 0.2 ± 0.4 mb [94]. If

one uses the transverse momentum distribution measured and
parametrized by Tai et al. [93] and assumes a Gaussian rapidity
distribution, the charm momentum distribution of Adams
et al. [94] per nucleon-nucleon collision can be represented
by

EdN
pp
cc̄

d p
(PYTHIA(STAR)) = Edσ

pp
cc̄

∣∣
STAR

σind p
= A

e−y2/2σ 2
y

(1 + pt/pt0)n
,

(81)

where σin = 42 mb is the nucleon-nucleon inelastic cross sec-
tion, A = 4.4 × 10−3 GeV−2, σy = 1.84, pt0 = 3.5 GeV, and
n = 8.3. The number of cc̄ pairs produced per nucleon-nucleon
collision is N

pp
cc̄ |STAR = 1.4 mb/42 mb = 0.033 ± 0.0107.

The PHENIX Collaboration obtained σ
pp
cc̄ |PHENIX = 622 ±

57(stat) ± 160(sys) µb [95] for the open charm produc-
tion cross section per nucleon-nucleon collision at

√
s =

200 GeV, and N
pp
cc̄ |PHENIX = 0.0148 ± 0.004. With this total

charm production cross section, the theoretical results from
the PYTHIA calculations of the PHENIX Collaboration can be
parametrized as [95,96]

EdN
pp
cc̄

d p
(PYTHIA(PHENIX)) = A′ e−y2/2σ ′2

y

(1 + pt/p
′
t0)n′ , (82)

where A′ = 6.48 × 10−4 GeV−2, σ ′
y = 1.85, p′

t0 = 5.06 GeV,
and n′ = 7.0.

We shall focus attention on central Au-Au collisions
within the most inelastic 10% of the reaction cross section.
The average number of binary collisions for these central
Au-Au collisions at RHIC is Nbin = 833. For these central
nucleus-nucleus collisions at

√
s = 200 GeV, the average

numbers of c and c̄ produced are Nc = Nc̄ = 27.8 ± 8.9, if
we use the cross section of the STAR Collaboration [94],
and Nc = Nc̄ = 12.34 ± 3.4, if we use the cross section of
the PHENIX Collaboration [95]. The rate of J/ψ production
can then be obtained from Eqs. (79)–(82) by carrying out the
sixfold integration.

In Fig. 16 we show the quantity V dNJ/ψ/dt as a function
of temperature for the most inelastic (10%) central Au-Au
collisions at

√
s = 200 GeV. The estimate of the rate of J/ψ

production, using the momentum distribution of Eq. (81) from
the PYTHIA calculations of the STAR Collaboration [94], is
greater than the corresponding estimate, using the momentum
distribution of Eq. (82) from the PYTHIA calculations of the
PHENIX Collaboration [94,96], by a factor of about 10. This
factor is larger than the factor of 2.25 of the nucleon-nucleon cc̄

production cross section of the STAR Collaboration, relative to
the corresponding cross section of the PHENIX Collaboration
at

√
s = 200 GeV. The large difference of these two factors

arises because the charm momentum distribution from the
PYTHIA calculations of the STAR Collaboration has a greater
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FIG. 16. The rate of J/ψ production as a function of temperature,
for the most inelastic (10%) central Au-Au collision at

√
s =

200 GeV. Curve A is based on the charm momentum distribution
of Eq. (81) using the PYTHIA calculations of the STAR Collaboration
[94]; curve B is based on the charm momentum distribution of Eq. (82)
using the PYTHIA calculations of the PHENIX Collaboration [94,96].
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magnitude at low pT , and c and c̄ recombine more readily at
low relative energies, as indicated in Fig. 16.

We can illustrate the magnitude of the rate of J/ψ

production by considering a Au-Au central collision with a
transverse area of π (7 fm)2 and a longitudinal initial time (and
longitudinal length) of 1 fm. The initial volume containing the
charm quarks and antiquarks is about 150 fm3. If the initial
temperature is 1.4Tc, the initial rate of J/ψ production will be
about 3 × 10−4 to 3 × 10−3 fm/c. As the volume expands, the
temperature decreases. The results of Fig. 16 can be used to
provide an estimate of the rate of J/ψ production.

XIV. DISCUSSION AND CONCLUSIONS

We use the color-singlet free energy F1 and internal energy
U1 obtained by Kaczmarek et al. [22] in quenched QCD
to study the energy levels of charmonium and bottomium
above the phase-transition temperature. From a variational
principle in a schematic model, we find that the Q-Q̄ potential
involves only the Q-Q̄ internal energy U

(1)
QQ̄

, which can be
obtained from the total U1 by subtracting the gluon internal
energy contributions. We carry out this subtraction using
the local energy-density approximation in which the gluon
energy density can be related to the local gluon pressure by
the quark-gluon plasma equation of state. We find that the
Q-Q̄ potential is U

(1)
QQ̄

= 3F1/(3 + a) + aU1/(3 + a), where
a = 3p/ε is given by the quark-gluon plasma equation of state.
Such a U

(1)
QQ̄

potential leads to weakly bound J/ψ and ηc at
temperatures above the phase-transition temperature and they
become unbound at 1.62Tc. The χc, η

′
c, and ψ ′ states are found

to be unbound in the quark-gluon plasma. In this potential
model, ϒ, ηb,ϒ

′, η′
b, and χb are bound at temperatures above

Tc; ϒ and ηb dissociate spontaneously at 4.10Tc, χb at 1.18Tc,
and ϒ ′ and η′

b at 1.38Tc.
The results from the U

(1)
QQ̄

potential need to be tested against
results from spectral function analysis. For completeness, we
have also calculated heavy quarkonium binding energies using
the free energy F1 [25–28] and the total internal energy U1 as
the potential [8,29,30].

The comparison shows that different models give very
different heavy quarkonium binding energies. The potential
that agrees best with results obtained from spectral func-
tion analysis is the U

(1)
QQ̄

potential deduced in the present
analysis. The agreement with spectral function analysis and
the theoretical foundations presented here provide support
for the use of U

(1)
QQ̄

as the proper Q-Q̄ potential in heavy
quarkonium studies. Conversely, the agreement also lends
support to the quantitative features concerning the stability of
heavy quarkonia in the spectral function analyses of Asakawa
et al. [9,10] and Petreczky et al. [11–13].

The spectral function analysis for the bottomium states
has not yet been carried out. Because the predications for
the dissociation temperatures for bottomium states are quite
different from different potential models, it will be of great
interest to calculate the bottomium dissociation temperatures
in lattice gauge spectral function analysis so as to test the
potential models further.

In a nucleus-nucleus collision, charm quarks and antiquarks
are produced in hard-scattering processes in nucleon-nucleon
collisions. During the time of a central nuclear reaction, these
heavy quarks and antiquarks will be present in the quark-gluon
plasma and can interact to form J/ψ . We have calculated
the cross section for J/ψ production by the collision of a
charm quark and an antiquark. The cross section is energy
dependent, and the maximum cross section increases as the
temperature decreases. The production cross section can be
used to study the rate of J/ψ production in nucleus-nucleus
collisions.

We have carried out the investigation using the quenched
QCD. It will be of interest to carry out similar investigations
using unquenched QCD. Results of the full QCD in two flavors
[70] and in three flavors [97] have been obtained recently, and
an investigation on J/ψ dissociation temperatures in QCD
with two flavors has been initiated [15]. A thorough study
of how the dynamical quarks will affect the stability, the
dissociation, and the inverse production of heavy quarkonium
will be of great interest.

It is necessary to emphasize that the present Q-Q̄ potential
U

(1)
QQ̄

of Eq. (43) extracted from F1 and U1 has been obtained
in the local energy-density approximation. It would be of
great interest in future lattice gauge calculations to evaluate
the U

(1)
QQ̄

(r) directly to check the validity of the local energy-
density approximation.

The color-singlet correlator of the Polyakov lines in
Eq. (1) is not gauge invariant. It has been suggested that
one can dress the Polyakov lines to make a gauge-invariant
definition of the color-singlet potential. The dressing of the
source may be viewed as a gauge transformation and is
equivalent to the choice of a certain gauge [98] with the
requirement that the gauge-fixed Polyakov loop correlation
function in the singlet channel falls off with gauge-invariant
eigenvalues of the Hamiltonian. This requirement may be
satisfied for the Coulomb gauge and other time-local gauges.
Recent calculations by Belavin et al. [99] show however that
the color-singlet potential depends on the choice of the gauges
even among these time-local gauges. It has been found that at
finite temperatures all channels receive contributions only from
the color-singlet channel. The extraction of the color-singlet
potential from the “color-singlet” Polyakov correlator of
Eq. (1) may include additional r and/or T dependence, which
is not shared by the physical states [100]. Clearly, much work
remains to be carried out to clarify the proper color-singlet
potential in lattice gauge calculations.
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APPENDIX: SPACELIKE AREA LAW AND THE
CORRELATION OF GAUGE FIELDS

We focus our attention on the x–y plane so that the
z coordinate can be omitted and consider a loop integral∮
L

Aidxi along the loop L defined by (0, 0) → (Lx, 0) →
(Lx,Ly) → (0, Ly) → (0, 0). The integral around this loop
of area LxLy is given approximately by∮

L

Aidxi = Ax

(
Lx

2
, 0

)
Lx + Ay

(
Lx,

Ly

2

)

×Ly − Ax

(
Lx

2
, Ly

)
Lx − Ay

(
0,

Ly

2

)
Ly.

(A1)

We can write the right-hand side in the form∮
L

Aidxi = cLxLy, (A2)

where

c = Ax(Lx/2, 0) − Ax(Lx/2, Ly)

Ly

− Ay(Lx,Ly/2) − Ay(0, Ly/2)

Lx

. (A3)

If the gauge fields A at different field points are correlated by a
correlation length ξ such that for two points r> and r< where
|Ai(r>)| > |Ai(r<)| and

Ai(r<) = Ai(r>) e−|r>−r<|/ξ , (A4)

then we have
Ax(Lx/2, 0) − Ax(Lx/2, Ly)

Ly

=
{

(1 − e−Ly/ξ )Ax

(
Lx

2 , 0
)/

Ly if Ax

(
Lx

2 , 0
)

> Ax

(
Lx

2 , Ly

)
,

(e−Ly/ξ−1)Ax

(
Lx

2 ,Ly

)/
Ly if Ax

(
Lx

2 , 0
)

< Ax

(
Lx

2 , Ly

)
.

(A5)

The second term in Eq. (A3) can be similarly evaluated. In
the case of a correlation length ξ that is large compared with
the loop lengths Lx and Ly , the quantity c in Eq. (A2) can be
evaluated and we obtain the area law∮

L

Aidxi = 1

ξ
(A>

x − A>
y )LxLy, (A6)

where

A>
x =

{
Ax(Lx/2, 0) if Ax(Lx/2, 0) > Ax(Lx/2, Ly),

−Ax(Lx/2, Ly) if Ax(Lx/2, 0) < Ax(Lx/2, Ly)
(A7)

and

A>
y =

{
Ay(0, Ly/2) if Ay(0, Ly/2) > Ay(Lx,Ly/2),

−Ay(0, Ly) if Ay(0, Ly/2) < Ay(Lx,Ly/2).
(A8)

Equation (A6) shows that if spacelike gauge fields at different
points are correlated by Eq. (A4) with a large correlation
length, the integral of the gauge fields along a spacelike
Polyakov loop will satisfy an area law.
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