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Charge transfer fluctuations as a signal for quark-gluon plasma
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In this work, the charge transfer fluctuation that was previously used for pp collisions is proposed for relativistic
heavy-ion collisions as a quark-gluon plasma (QGP) probe. We propose the appearance of a local minimum at
midrapidity for the charge transfer fluctuation as a signal for a QGP. Within a two-component neutral cluster
model, we demonstrate that the charge transfer fluctuation can detect the presence of a QGP as well as the
size of the QGP in the rapidity space. We also show that the forward-backward correlation of multiplicity
can be a similarly good measure of the presence of a QGP. Further, we show that the previously proposed net
charge fluctuation is sensitive to the existence of the second phase only if the QGP phase occupies a large portion
of the available rapidity space.
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I. INTRODUCTION

Active research in relativistic heavy-ion collisions has given
us much information about the hot matter produced in such
collisions. Much attention has been directed to the question
of whether a deconfined quark-gluon plasma (QGP) phase has
been formed. The experimental studies do suggest that strongly
interacting dense matter was formed during the early stage of
reaction, and the energy density of such matter is very high
(see [1–5] and references therein). Most theoretical models for
such hot and dense matter explicitly invoke quark and gluon
degrees of freedom in the elementary processes [6–19]. One
way to detect the presence of a QGP is then to measure the
changes in the fluctuations and correlations that could originate
from the new phase of matter.

In this work, we propose charge transfer fluctuations as
a signal of the presence of a QGP as well as a measure of
the (longitudinal) size of the QGP. Charge transfer fluctuation
for elementary collisions was originally proposed by Quigg
and Thomas [20], who considered a flat charged particle
distribution dNch/dy. This idea was later extended to smooth
distributions by Chao and Quigg [21].

The central result of Refs. [20,21] is the relationship
between the single-particle distribution function dNch/dy and
the charge transfer fluctuation:

Du(y) = κ
dNch

dy
, (1)

where κ is a constant and

Du(y) ≡ 〈u(y)2〉 − 〈u(y)〉2 (2)

is the charge transfer fluctuation. The charge transfer u(y) is
defined by the forward-backward charge difference:

u(y) = [QF (y) − QB(y)] /2, (3)

∗Electronic address: shil@physics.mcgill.ca
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where QF (y) is the net charge in the rapidity region forward of
y and QB(y) is the net charge in the rapidity region backward
of y. The fluctuation Du(y) is then a measure of the correlation
between the charges in the forward and the backward regions
separated by y.

The importance of the relationship (1) lies in the fact
that κ is directly proportional to the local unlike-sign charge
correlation length. Heuristically, this can be explained in
the following way. Suppose all final particles originate from
neutral clusters and each cluster produces one positively
charged particle and one negatively charged particle. Then
the only way u(y) can deviate from zero is when one charged
particle from a cluster ends up in the forward region while the
other ends up in the backward region, as illustrated in Fig. 1.
For each one of these split pairs, the charge transfer u(y)
undergoes a 1-D random walk with a step size 1. Therefore,
the charge transfer fluctuation Du(y) should be proportional
to the number of split pairs, or equivalently the number of
random steps taken.

If λ is the typical rapidity difference between the two
decay particles from a single cluster, then only the clusters
within the rapidity interval (y − λ/2, y + λ/2) can contribute
to Du(y), as illustrated in Fig. 1. The number of such clusters
is then λdNclstr/dy, where dNclstr/dy is the density of the
clusters at y. Since the final particle spectrum dNch/dy should
be proportional to dNclstr/dy, we have Eq. (1) with κ ∝ λ.
Hence the ratio κ = Du(y)/(dNch/dy) is a measure of the
local environment near y: If λ is a function of y, then κ(y)
should also change accordingly.

The fact that κ is constant in elementary collisions indicates
that in such collisions the correlation length is constant
throughout the entire rapidity range (see [21,22] and references
therein). However, if a QGP is produced in the central region
of the relativistic heavy-ion collisions, we can expect the local
charge correlation length λ(y) to increase as y moves away
from central rapidity. This is because the charge correlation
length in a QGP is expected to be much smaller than that in a
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FIG. 1. A schematic illustration of the charge transfer fluctuations
in rapidity space. Only pairs within λ/2 of y can contribute to the
charge transfer fluctuation Du(y). Here λ is the rapidity correlation
length, or the rapidity distance of the decay particles from a single
cluster. If λ is a function of y, then Du(y) also changes with y.

hadronic phase [23,24]. In this case, the ratio

κ(y) = Du(y)

dNch/dy
(4)

will vary from a smaller value to a larger value as one goes
away from the central region toward the forward region.

There have been many studies of the fluctuations and
correlations in heavy-ion collisions [23,25–42]. Most of
these studies concentrate on global information and do not
address possible spatial inhomogeneity of the created matter
in relativistic heavy-ion collisions. For instance, if the QGP
phase is confined to a small rapidity region, the net charge
fluctuation measures proposed in Refs. [30,31] may not be
very sensitive to the presence of a QGP. Hence negative results
from experiments [32,34,35] do not necessarily exclude the
formation of a QGP.

Our expectation that the central rapidity region in heavy-ion
collisions is mostly QGP originates from Bjorken’s seminal
work [43]. In that paper it was assumed that the expanding
QGP evolves in a boost-invariant manner. Such an assumption
naturally leads to the expectation that the central plateau in the
rapidity spectrum is a manifestation of a boost-invariant QGP.
However, recent RHIC results cast some doubts on the boost-
invariant scenario in the central rapidity region: Although the
charged particle distributions as a function of pseudorapidity
shows a central plateau [44,45], the recent rapidity spectrum
of charged particles from the BRAHMS group is consistent
with a Gaussian following the Landau picture [46], although
a plateau within −1 < y < 1 cannot be ruled out [47]. The
elliptic flow spectrum from the PHOBOS group [48] shows no
discernible plateau at all as a function of pseudorapidity. Thus,
a simple boost-invariant scenario in a large range of rapidity
space as originally envisioned by Bjorken [43] may not be
valid. If the QGP phase is produced in relativistic heavy-ion
collisions, a pure phase may very well be confined to a fairly
limited rapidity range. It is, therefore, important to have an
observable that is sensitive to the local presence of a QGP.
The charge transfer fluctuation is such a local measure of a
phase change.

Of course, as emphasized in Ref. [49], a particular type of
fluctuation is just one particular aspect of the underlying corre-
lations. The usefulness of each type of fluctuation then depends
on the sensitivity of the chosen fluctuation to an interesting
aspect of the correlation. For charge transfer fluctuations, that

aspect is the size of the local charge correlation length. Hence
if the QGP phase is spatially confined to a narrow region
around midrapidity, the charge transfer fluctuations can signal
its presence and also can yield information about the size.

In this study, we propose the appearance of a clear minimum
at midrapidity for the ratio κ(y) as a signal for the existence
of two different phases. The slope and the size of the dip
around midrapidity can then reveal the size of the new phase
(presumably a QGP). These features should disappear as the
energy is lowered or the collisions become more peripheral
where a QGP is not expected to form.

In the following, we use a single-component neutral-cluster
model and a two-component neutral-cluster model to study the
purely hadronic case and the mixed-phase case. However, the
fact that the charge transfer fluctuation is a useful measure of
the local correlation length is independent of our particular
choice of models. Hence we expect that the general conclu-
sions drawn in this study should be valid even within more
sophisticated models as well as in real experimental situa-
tions. A case study using several cascade models is under way.

We note here that most of the discussions in this study are
in terms of the rapidity y. However, the validity of our results
does not depend very much on whether we use rapidity y or the
pseudorapidity η. We also note that the argument given here
applies with very little change to any conserved charges such
as the baryon number.

The rest of this paper is organized as follows: In the next
section, we consider the basic phenomenology of the charge
transfer fluctuations. In Sec. III, we consider the net charge
fluctuations and the charge transfer fluctuations in a single-
component model. In Sec. IV, we present our main results for
a two-component model. It is proposed that the presence of a
rising segment of the charge transfer fluctuation as a function
of rapidity can be used as a QGP signal. We also show that the
charge transfer fluctuation can reveal the size of the QGP. A
summary is given in Sec. V.

II. CHARGE TRANSFER FLUCTUATIONS

The charge transfer is defined in Eq. (3). The charge transfer
fluctuation is defined in Eq. (2). Originally Quigg and Thomas
[20], considering a flat dNch/dy, argued that if all hadrons
originated from neutral clusters, then the following relation
should hold:

Du(0) = 4λ

3

Nch

Ymax
, (5)

where λ is the rapidity correlation length of unlike-sign (+−)
pairs originating from a single neutral cluster, Nch is the total
multiplicity of the produced charged particles, and Ymax/2 is
the beam rapidity in the c.m. frame.

Later, this was extended by Chao and Quigg to smooth
charged particle distributions [21] to yield Eq. (1), Du(y) =
κdNch/dy, with κ ∝ λ. The experimental results on pp and
K−p collisions show that this relationship is remarkably good
with κ ranging from 0.62 to 0.85 (see [21,22] and references
therein). We have replotted 205-GeV pp collision results from
Ref. [22] in Fig. 2. Here the proportionality constant κ is
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FIG. 2. The charge transfer fluctuation results from pp collisions
at a beam energy of 205 GeV is shown as a function of rapidity. The
line is the charge yield profile measured in the same reaction scaled
by a factor of 0.62. This is a replot of the results reported in [22].

approximately 0.62. As we shall see later in this section, the
proportionality of the charge transfer fluctuation to the charged
particle spectrum is a strong argument for correlated charge
pairs instead of uncorrelated charged particles.

The charge correlation length λ measures the rapidity
correlations between unlike-sign charges. (This quantity also
plays a central role in two of the proposed QGP signals, namely
the net charge fluctuations and the balance function.) To illus-
trate the relationship between the proportionality constant κ

and the unlike-sign charge correlation length λ in Eq. (1), we
consider a simple “ρ” gas model (see e.g., [50]).

In this model, each ρ± is assumed to decay to a π0π±
pair and each ρ0 is assumed to decay to a π+π− pair. This
is similar to the ρ and ω models used for pp collisions
[21,51]. One should not, of course, regard these ρ’s as physical
ρ mesons. These are just convenient names for charged and
neutral clusters. In particular, they are not isospin triplets.

Consider a set of events where M0 number of ρ0’s and M+
and M− number of ρ+’s and ρ−’s are produced. The full joint
probability for the rapidity of the charged pions for this set is
given by

ρ({ya}) =
M+∏
i=1

g(yi)
M−∏
j=1

g(yj )
M0∏
k=1

f0(y+
k , y−

k ), (6)

where f0(y+, y−) is the probability for the two decay products
of a neutral cluster to have the rapidities y+ and y− and
g(y) is the single-particle distribution function for the charged
particles originating from the charged ρ’s. Averaging over
the distributions of M0,M+, and M− with the condition
Q = M+ − M− = constant, we can easily show that

Du(y) = 2 〈M0〉
∫ y

−∞
dy ′

∫ ∞

y

dy ′′f0(y ′, y ′′)

+〈Mch〉
∫ y

−∞
dy ′g(y ′)

∫ ∞

y

dy ′′g(y ′′), (7)

where Mch = M+ + M−. In arriving at this result, we ne-
glected a contribution that is on the order of 〈u(y)〉2/Nch ∼
Q2/Nch, where Nch = 2〈M0〉+〈Mch〉. This should be small

compared to the terms in Eq. (7) when Q 	 Nch. See
Appendix B for details.

The single-particle rapidity distribution is given by

dNch

dy
= 2 〈M0〉 h(y) + 〈Mch〉 g(y), (8)

where h(y) = ∫ ∞
−∞ dy ′f0(y ′, y).

The Thomas-Chao-Quigg relationship, Du(y) = κdNch/

dy, can be solved explicitly in two extreme cases when either
M0 = 0 or Mch = 0. When M0 = 0, we have∫ y

−∞
dy ′g(y ′)

∫ ∞

y

dy ′′g(y ′′) = κg(y) (9)

and the solution is given by

g(y) = 1

4κ
sech2

( y

2κ

)
, (10)

which can be easily verified using sech2x = d tanh x/dx =
1 − tanh2 x. With κ = O(1), this form alone (basically the
modified Pöschl-Teller potential) is much too sharp to describe
a realistic dNch/dy. Furthermore, it has no room for energy
dependence once κ is fixed. This contrasts with the dNch/dy

spectrum in elementary collisions, which shows no prominent
central peak of a fixed width. Hence the M0 = 0 scenario can
be excluded.

In the Mch = 0 limit, the Thomas-Chao-Quigg relationship
is ∫ y

−∞
dy ′

∫ ∞

y

dy ′′f0(y ′, y ′′) = κ

∫ ∞

−∞
dy ′f0(y ′, y), (11)

To solve for f0(y, y ′), we make an ansatz

f0(y, y ′) = R(yrel)F (Y ), (12)

where yrel = y − y ′ and Y = (y + y ′)/2. The normalization
conditions for R and F are

∫ ∞
−∞ dyR(y) = ∫ ∞

−∞ dyF (y) = 1.
Equation (11) can then be solved by making a change of
variables to yrel and Y. The solution is

f0(y, y ′) = 1

4κ
exp

(
−|y − y ′|

2κ

)
F

(
y + y ′

2

)
, (13)

where the only restriction on F is that the integrals in Eq. (11)
converge and it reproduces the experimental dNch/dy. For
details, see Appendix C. This form of correlation function is
very reasonable as it is nothing but the distribution function of
the decay products of a cluster whose rapidity is distributed
according to F (Y ).

For small enough κ , we should have

F (y) ≈ 1

Nch

dNch

dy
, (14)

where Nch = 2 〈M0〉 is the total charge multiplicity. In this
solution, it is clear that κ is directly related to the correlation
length λ in the relative rapidity space of the pair y − y ′ because

λ = 2κ. (15)

By taking the correlation κ ∼ 1, it is easy to see that the
charged particle spectrum will be a smooth distribution with
typical variation in rapidity of 2κ ∼ 2. This is in good agree-
ment with the pp collision results in Fig. 2. Further, the absence
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of a narrow peak in the central region also excludes any sig-
nificant contribution from the uncorrelated charged particles.

If we have a finite observational window (−yo, yo), the
charge transfer fluctuations are given by

D̄u(y) = 〈M0〉
2

[ ∫ yo

−yo

dy ′
∫ −yo

−∞
dy ′′f0(y ′, y ′′)

+
∫ yo

−yo

dy ′
∫ ∞

yo

dy ′′f0(y ′, y ′′)

+ 4
∫ y

−yo

dy ′
∫ yo

y

dy ′′f0(y ′, y ′′)

]
(16)

where the bar in D̄u indicates that this quantity is measured in a
limited window. With a moderate yo, the Thomas-Chao-Quigg
relationship [Eq. (1)] no longer holds even if the unrestricted
charge transfer fluctuation satisfies it. However, D̄u(y) is still
sensitive to the charge correlation length. To have an idea how
D̄u(y) behaves, we can use a flat F (Y ) following Thomas and
Quigg. If κ is much smaller than the size of the total rapidity
interval Ymax and yo is not too close to Ymax/2, we get

D̄u(y)

〈Nch〉 = κ

2yo

[
3

2
+ 1

2
e−yo/κ − 2e−yo/2κ cosh

( y

2κ

)]
. (17)

If we have a large yo/κ , this becomes constant and we retrieve
the original Thomas-Quigg relationship Eq. (5). With a finite
yo, this is a monotonically decreasing function of y > 0 with
the maximum at y = 0.

The pseudorapidity distribution measured by RHIC ex-
periments does show a plateau within −2 < η < 2 and the
rapidity distribution shows a similar plateau within −1 <

y < 1. Hence, if the correlation length (κ) remains constant
throughout the plateau, one would expect that D̄u(y) measured
within the plateau should also have a maximum at y = 0.
However, if one observes that D̄u(y) has a minimum at y = 0,
then it is a signal that quite a different system (a QGP) is
created near the central rapidity with a much smaller rapidity
correlation length than the rest of the system.

To examine the relationship between the charge transfer
fluctuations and the charge correlation length, we must make
sure that other effects such as the impact parameter fluctuations
and the hadronic correlations do not mimic the effect we
seek. To study the non-QGP effects, we have analyzed 50, 000
HIJING events [52]. The results are shown in Fig. 3. Each point
in the figure represents a 5% bin in the centrality measured by
the number of charged particles within −1 < y < 1. It is quite
obvious from this figure that the charge transfer fluctuations
do not vary with centrality. It is also obvious that D̄u(y) in this
case is a decreasing function of y.

It is interesting to compare Eq. (17) with the results from
HIJING. For this, we used the top 15% central results in Fig. 3
and fitted them with Eq. (17). The best fit gives κ = 0.72
though the results from Eq. (17) are slightly flatter than the
HIJING results. This discrepancy in shape is not unexpected
because the HIJING dNch/dy is not well approximated by a flat
F (Y ). The full pseudorapidity space analysis of 50, 000 HIJING

minimum-bias events are shown in Fig. 4 for three different
centralities. The Thomas-Chao-Quigg relationship works quite
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FIG. 3. The ratio of the charge transfer fluctuations to the number
of charged particles, D̄u(y)/Nch, shown as a function of centrality
Nch/Nmax. The observation window is fixed at (−1.0, 1.0). These
results are from a HIJING calculation for

√
s = 200 GeV Au-Au

collisions. Parameters for the HIJING calculations are dE/dx =
2 GeV/fm and pminijet = 2 GeV with the shadow and the quench
flags on. Each of the two most central bins has 5% of the events; all
other bins contain 10%. A total of 50, 000 HIJING events are analyzed.

well within this model for all centrality classes. In the rapidity
region of y = 0–3, the value of κ is in the range of 0.63–0.68.
This is consistent with the experimental pp result.

In the next two sections, we test our idea against two
scenarios for heavy-ion collisions. In the first scenario, the
created system consists of a single species of neutral clusters,
which may be taken as hadronic clusters. In the second
scenario, the created system contains a second component
with a much smaller correlation length.

III. SINGLE-COMPONENT MODEL

In this section, we consider the charge transfer fluctuations
in a system that consists of only a single species of neutral
clusters (presumably hadronic matter).
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 0.63dNch/dη, 

         (HIJING 0-5%)
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 Du(η), 0-5%
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HIJING 0-5%

HIJING 20-30%

HIJING 40-50%

FIG. 4. The results of analyzing simulated Au-Au events using
HIJING. The lines are scaled pseudorapidity spectra for centrality
classes 0–5%, 20–30%, and 40–50% and the symbols are charge
transfer fluctuations for each class.
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The Thomas-Chao-Quigg relationship was used to justify
the use of the neutral cluster model in pp collisions in the
last section. For heavy-ion collisions, as far as we know there
has been no experimental investigation in this area. For this
study, we take the HIJING simulation results shown in Fig. 4 as
an indication that the single-component neutral-cluster model
is also a good hadronic model of AA collisions and explore
the consequences. A case study with a few hadronic event
generators is under way and will be reported elsewhere.

With only a single species of clusters, the joint probability
to have an event with particle rapidities ({ya}) is simply

ρ({ya}) =
M0∏
k=1

f0(y+
k , y−

k ). (18)

All observables in this model depend only on the pair
distribution function f0(y+, y−). Hereafter, we will drop the
subscript 0 from f0 for brevity. This is pertinent to heavy-ion
collisions at RHIC where the net charge is almost zero in
the central region. For completeness, we have also listed the
formulas for unpaired net charges in Appendix A. Further as
discussed in Appendix B, the contribution of the nonzero net
charges to the charge transfer fluctuations is negligible as long
as Q 	 Nch.

Because of our assumption that the decay products are
identical except for the electrical charges, the two-point
function has the following symmetries:

f (y+, y−) = f (y−, y+), (19a)

f (y+, y−) = f (−y+,−y−). (19b)

We will use these symmetry properties to simplify the
equations for the charge transfer fluctuations and the net charge
fluctuations.

Guided by our discussion of the Thomas-Chao-Quigg
relationship, we use a separable form of pair distribution
function f (y+, y−) = F (Y )R(yrel), where Y = (y+ + y−)/2
and yrel = y+ − y− as in Eqs. (12) and (13). The function
F (Y ) is the rapidity distribution of the clusters and the function
R(yrel) is the relative rapidity distribution of the produced pair.
For the shape of F (Y ), we use a Woods-Saxon form and a
Gaussian form here but more sophisticated forms are certainly
possible. For R(yrel), the following two physically motivated
forms were used in our study:

R(r) = 1

γ
√

2π
exp(−r2/2γ 2), (20a)

R(r) = 1

2γ
exp(−|r|/γ ). (20b)

The function in Eq. (20b) is the same as Eq. (13) with γ = 2κ .
The combination of F (Y ) and R(r) are not arbitrary. Once

we fix the charge correlation length γ for a particular R(r), then
the parameters for F (Y ) are complete determined by the best
fit to the experimental charged particle distributions [44,53].
To test the sensitivity to the different forms of the correlation
function, we use the following four parameter sets in this
section: Parameter set 1 uses a Woods-Saxon form of F (Y ) and
a Gaussian R(yrel). Set 2 uses a Woods-Saxon F (Y ) but R(yrel)

has an exponential from. Parameter set 3 uses a Gaussian F (Y )
and also a Gaussian R(yrel). Set 4 uses a Gaussian F (Y ) but
R(yrel) has an exponential form. These parameter sets will be
used for the net charge fluctuation analysis and the charge
transfer fluctuation analysis.

A. Net charge fluctuation

The STAR Collaboration at RHIC has published its mea-
surement of net charge fluctuations [35] and concluded that
its result is consistent with hadronic gas expectations. In this
section, we use this data to fix the correlation length γ . Since
our previous fit to the HIJING simulations gave γ ∼ 1.3–1.4,
we will look for the correlation length within the range of
1 < γ < 2.

Within the observation window −yo < y < yo, the net
charge and the charge transfer are given by

u(y) = [QF (y) − QB(y)]/2,
(21)

Q(yo) = [QF (y) + QB(y)],

where now QF (y) and QB(y) are measured within
the observational window. Notice that Q(yo) is actually
independent of y. In the limit y = yo, we have u = Q/2.

In terms of the charge pair distribution function, the net
charge fluctuation is given by

δQ2(yo) = 〈Q(yo)2〉 − 〈Q(yo)〉2

(22)

= 4〈M0〉
∫ −yo

−∞
dy−

∫ yo

−yo

dy+f (y+, y−).

In deriving Eq. (22), we have made full use of the symmetry
properties of the pair distribution function, Eqs. (19). Since
the two-particle distribution function f (y+, y−) is peaked at
|y+ − y−| = 0, the net charge fluctuations in Eq. (22) measure
the local correlations at around the edge of the observation
window y ∼ ±yo. One can also see, that, as yo → ∞, the net
charge fluctuation vanishes as it must.

The total number of charged particles in the given rapidity
window (−yo, yo) is

Nch(yo) = 2〈M0〉
∫ yo

−yo

dy−
∫ ∞

−∞
dy+f (y+, y−). (23)

The ratio of the net charge fluctuations to the total number
of charges in the rapidity window (−0.5, 0.5) was measured
in the RHIC experiments, and the value for central collisions
is around δQ2/Nch = 0.8–0.9 after correcting for the global
charge conservation effect [34,35]. The correction is made
through a factor of 1/(1 − p), where p is the fraction of the
charged particles included in the observation compared to
the total number of charged particles produced. From this
value, we can find the correlation length for charged pairs.
The exact value depends slightly on the assumption on the
shape of the pair correlation function R(r) in relative rapidity
space and the charge center distribution F (Y ).

In Fig. 5, we have plotted the ratio of the net charge
fluctuations to the total number of charges, δQ2(yo)/Nch(yo),
as a function of the pair correlation length γ . We only show
here the charge fluctuation results from parameter set 2,
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FIG. 5. The charge-conservation-corrected ratio of the net charge
fluctuations to the total number of charged particles, δQ2(yo)/Nch(yo),
shown as a function of the charge correlation length γ . We show the
ratio at three different rapidity observation windows, |y| < yo, where
yo = 0.5, 1.0, and 1.5 for the three lines, respectively. The parameters
for the charge pair center distribution function F (y) are adjusted to
fit the charged particle distribution data measured by the PHOBOS
group at

√
s = 130 GeV.

where the charge center distribution F (Y ) is of Woods-Saxon
form and the relative rapidity distribution between the pair
R(r) is an exponential decay. The different assumed forms
of the pair distribution function f = F (y)R(r) have little
effect on the net charge fluctuations and are not show here
for clarity. From this figure, one can conclude that the net
charge fluctuations δQ2(yo) are strongly correlated with the
charge correlation length γ in this single-component case.

RHIC experiments can measure the net charge fluctuations
as a function of the observational window size yo. We have
plotted the corrected net charge fluctuations as a function yo in
Fig. 6. As can be seen in this figure, the net charge fluctuations
always decrease when the observation window is enlarged.
This is because the total number of charged particles included
in the observation window is increasing faster than the net
charge fluctuations. The slope, however, is related to the charge
correlation length.
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FIG. 6. The corrected net charge fluctuation ratio δQ2(yo)/
Nch(yo) shown as a function of the observation window size yo for
different values of charge correlation lengths γ = 1.25, 1.5, 1.75, and
2.0, respectively. The net charge fluctuations are decreasing functions
of the observation window.
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FIG. 7. The charge-conservation-corrected ratio of the net charge
fluctuations to the total number of charged particles plotted as
a function of the charge correlation length γ . Set 1 refers to a
Woods-Saxon form for the charge pair center distribution F (y) and
to a Gaussian form for the relative rapidity distribution between the
pair R(r). Set 2 refers to a Woods-Saxon form for F (y) and to an
exponential decay form for R(r). Sets 3 and 4 are for a Gaussian
form of F (y) with a Gaussian or exponential decay form of R(r),
respectively. These results should be compared with data reported
for

√
s = 130 GeV Au-Au collisions at RHIC. Here the observation

window is (−0.5, 0.5) in rapidity.

Using the corrected net-charge-fluctuation ratio data from
STAR [35], we deduce that the charge correlation length is

γ ≈ 1.5. (24)

This deduced value is largely independent of the shape of
the charge pair correlation function R(r) or the pair center
distribution function F (Y ), as shown in Fig. 7. Notice that the
inferred charge correlation length is consistent with the HIJING

results, where κ = γ /2 ≈ 0.7 in the previous simple estimate
within the rapidity window (−1, 1).

B. Charge transfer fluctuations

We now apply our model to the charge transfer fluctuations
using the same parameter sets for the pair distribution function
f (y+, y−) as we have used in the last section.

First, we need to express the charge transfer fluctuations
in terms of the pair distribution function f (y+, y−). With
Eq. (23), we can simplify Eq. (16) to

D̄u(y) = δQ2(yo)

4
− 〈δQF (y) δQB(y)〉

(25)

= δQ2(yo)

4
+ 2〈M0〉

∫ y

−yo

dy−
∫ yo

y

dy+f (y+, y−),

where we have defined δX ≡ X − 〈X〉. Written this way, it is
clear that the charge transfer fluctuations depend on the charge
correlations both at the edges of the observation window y ∼
±yo and at the forward-backward rapidity cut y. From this
expression, one also sees that the lower limit of charge transfer
fluctuations is {D̄u(y)}min = δQ2(yo)/4.

In Fig. 8, we have plotted the ratio of the charge transfer
fluctuation D̄u(y) to the charged particle yield dNch/dy as
a function of pair correlation length γ . Because the observed
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FIG. 8. The ratio of the charge transfer fluctuations D̄u(y) to the
charged particle yield dNch/dy in the observation window (−1.5, 1.5)
plotted as a function of the charged particle correlation length γ . The
different lines represent the results for different forward-backward
rapidity cuts, y = 0.0, 0.3, 0.6, 0.9, and 1.2, respectively. We only
show results from parameter set 2; other parameter sets yield
qualitatively similar results. These results are for the one-component
model.

rapidity spectrum is nearly flat around midrapidity, dividing by
Nch or dNch/dy only affects the overall scale. The value of the
ratio strongly depends on the correlation length γ . Also, the
ratio decreases as the forward-backward separation y increases
at a fixed γ . As mentioned before [cf. Eq. (17)], this decrease
is due to the limited observation window and has nothing to do
with the changing correlation length. This can also be shown
in the following way. If dNch/dy does not vary significantly
within the observational window, then F (Y ) does not vary
significantly within the observational window. In that case,

1

〈M0〉
∂D̄(y)

∂y
≈ −F (0)

∫ yo+y

yo−y

drR(r) < 0 (26)

for y > 0. Therefore, if dNch/dy is flat and the system is
composed of only one species of neutral clusters, D̄u(y) must
be a decreasing function of y > 0. Conversely, if D̄u(y) is
an increasing function of y > 0 while dNch/dy remains flat,
it signals the existence of a new component. We turn to this
possibility in the next section.

IV. TWO-COMPONENT MODEL

In a two-component model, the full joint probability for the
rapidities is given by

ρ({yi}) =
M1∏
j=1

f1(y+
j , y−

j )
M2∏
k=1

f2(y+
k , y−

k ), (27)

where f1 and f2 have different correlations lengths γ1 > γ2.
The pair distribution functions are again taken as the separable
form: fi(y+, y−) = Fi(Y )Ri(r), where Y = (y+ + y−)/2 and
r = y+ − y−. Since the fluctuations add in quadrature, the net
charge fluctuations and the charge transfer fluctuations are just
the sum of contributions from the two components, f1 and f2,
respectively.

Physically, the two-component model is motivated by the
fact that the hot and dense matter produced in the relativistic

heavy-ion reaction is not necessarily homogeneous in rapidity
space as explained before. If the deconfined QGP phase did
exist during the early stage of heavy-ion reaction, it is highly
possible that the QGP phase coexisted with the hadron gas
phase. A simple situation would be a phase separation between
the QGP phase and the hadron gas phase. This could produce
signals that are specific to a phase coexistence scenario. In
the case of the charge transfer fluctuations, a QGP and hadron
gas phase separation could be measured and mapped into the
charge correlations in the relative rapidity space between the
pair of particles. In the following, we will refer to the short
correlation part as a QGP and the long correlation part as a
hadron gas (HG).

In our simple two-component model, we assume the two
components have different correlation lengths and the R(r)
functions are either taken as an exponential form or a Gaussian
form, with the corresponding correlation lengths satisfying
γ1 > γ2. Here γ1 = γHG is the rapidity correlation length of
the hadronic part (labeled 1) and γ2 = γQGP is that of the QGP
part (labeled 2). We let the cluster distribution functions for
the two components be

〈M1〉F1(y) = c1

1 + exp[(|y| − σ0)/a0]
− c2g1(y), (28a)

〈M2〉F2(y) = c2g2(y), (28b)

where c1 is a normalization factor and c2 is the strength of
the QGP phase. To be physically consistent, the value of c2 is
adjusted so that the function F1 is always positive. We then
demand that

∫
R1g1 = ∫

R2g2 so that dNch/dy is independent
of the choices of g1 and g2. The parameters σ0 and a0 are chosen
to fit the experimental data.

For a Gaussian Ri(r), it is convenient to also take the
functional forms of g1(y) and g2(y) to be Gaussian. To
satisfy

∫
R1g1 = ∫

R2g2, the widths of these Gaussians should
be related as follows: ξ 2 = γ 2

1 /4 + σ 2
1 = γ 2

2 /4 + σ 2
2 , where

σi is the width of gi(y) and ξ is the width of the QGP
part of dNch/dy. For an exponential Ri(r), determining the
forms of g1 and g2 is a little more complicated than for the
Gaussian case. However, since this form of the correlation
function satisfies the Thomas-Chao-Quigg relationship, we
will use mainly the exponential form hereafter. As in the
one-component model, both the net charge fluctuation and
the charge transfer fluctuation results are not very sensitive
to the particular choice of functional form of the two-particle
distribution function.

With the exponential Ri(r), the charge center distribution
functions g1(y) and g2(y) can no longer both be Gaussian.
It is convenient to select g1(y) (the hadronic part) to have a
Gaussian form. By using the fact that the function Ri(r) is in
fact a Green function of the differential operator (d/dr)2 −
1/γ 2

i , the function g2(y) (the QGP part) can be obtained as

g2(y) =
(

γ2

γ1

)2

g1(y) +
[

1 −
(

γ2

γ1

)2
]

ρ(y), (29)

where ρ(y) = ∫
R1g1 = ∫

R2g2 is

ρ(y) =
∫ ∞

−∞
dx g1

(
x + y

2

)
1

2γ1
exp

(
−|x − y|

γ1

)
. (30)
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The function ρ(y) is proportional to dNch/dy of the QGP part.
The width ξ of the QGP part is determined by the width of
ρ(y).

In all, we have eight parameters here. We have c1, σ0, a0,
and c2 explicitly appearing in Eq. (28). The parameter σ1 is the
width of the function g1. The parameter ξ is the width of the
function ρ(y) and is connected with the parameter σ1 through
Eq. (30). We also have two charge correlation lengths γ1 and
γ2 with the condition γ1 > γ2.

Among the eight parameters, five are fixed in the following
way. Since we are only interested in the ratio Du(y)/(dN/dy),
the value of parameter c1 is irrelevant and we just fix it
to be 1. The parameters a0 and σ0 are fixed by requiring
that the resulting dN/dy shape describes results from RHIC
experiments. The parameter c2 is always chosen to be the
maximum possible value for the condition F1(y) � 0 given
all other parameters. The parameter σ1 is determined by the
parameter ξ .

The three parameters we are going to vary in the following
are then γ1, γ2, and ξ . An example of the total charged particle
spectrum along with the respective hadron gas and QGP
contributions is plotted in Fig. 9. There is a substantial presence
of QGP around midrapidity, but it becomes less prominent for
|y| > ξ .

A. Net charge fluctuation

As in the one-component model, we first consider the
net charge fluctuations to further fix our parameters. When
there are two distinct species of neutral clusters, the net
charge fluctuation within the rapidity interval (−yo, yo) is
given by

δQ2(yo) = 4〈M1〉
∫ −yo

−∞
dy−

∫ yo

−yo

dy+f1(y+, y−)

+ 4〈M2〉
∫ −yo

−∞
dy−

∫ yo

−yo

dy+f2(y+, y−) (31)
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1.0
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QGP

HG

Total

1.28

γHG=1.75, γQGP/γHG=0.25

dN
ch

/d
y

FIG. 9. The charge yields plotted as a function of rapidity in a two-
component system. The full line represents the total charged particle
yield profile; the dashed and dotted lines represent the contributions
from the hadron gas and the QGP phases, respectively, in a typical
two-component model we used. The QGP size is ξ = 1.28 in this
case.
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FIG. 10. The ratios of the corrected net charge fluctuations to the
total number of charges, δQ2(yo)/Nch(yo), in the rapidity observation
window (−yo, yo) plotted as a function of rapidity yo for the one- and
two-component models. The line for the one-component model is
labeled by the charge correlation length γ = 1.55, and the lines for the
two-component models are labeled by the pair of charge correlation
lengths in the two components (γHG, γQGP/γHG). The corrected net
charge fluctuations are fixed at δQ2(0.5)/Nch(0.5) = 0.85 for all
lines.

and the total charged multiplicity is given by

Nch(yo) = 2〈M1〉
∫ yo

−yo

dy−
∫ ∞

−∞
dy+f1(y−, y+)

+ 2〈M2〉
∫ yo

−yo

dy−
∫ ∞

−∞
dy+f2(y−, y+). (32)

The ratios δQ2(yo)/Nch(yo) corrected as before by a factor
of 1/(1 − p) are plotted as a function of the observation box
size yo in Fig. 10. The lowest solid line is for the one component
model with charge correlation length γ = 1.55 as obtained in
the last section. For the two-component model, four different
choices with γ1 = γHG = 1.75, 2.0 and γ2/γ1 = γQGP/γHG =
0.25, 0.5 are shown. Since the corrected net charge fluctuations
at yo = 0.5 is about 0.8–0.9 [34,35], the QGP width parameters
ξ are chosen in such a way that all net charge fluctuations
have δQ2(yo)/Nch(yo) = 0.85 at yo = 0.5. For instance, for
the parameter set γHG = 1.75 and γQGP = γHG/4 = 0.44, the
width of the QGP part ξ turned out to be ξ = 1.28.

The net charge fluctuations as a function of rapidity is
flatter in the two-component model than in the one-component
model. This is because the two-component results interpolate
between the one-component results with γ = γQGP and γ =
γHG. Since the behaviors of the net charge fluctuations for
the one-component model and the two-component model
are clearly distinct, one is tempted to argue that the flat
δQ2(yo)/Nch(yo) itself is an indication of a second phase.
(A similar idea was suggested in Ref. [54].) Unfortunately,
a totally uncorrelated system also has a flat δQ2(yo)/Nch(yo)
when corrected for the effect of total charge conservation.

In addition, the net charge fluctuation δQ2(yo)/Nch(yo) is
constrained by the fact that, in the limit yo → 0, we should get
the Poisson limit δQ2(yo)/Nch(yo) → 1. This puts a constraint
on the sensitivity of net charge fluctuations to the QGP phase.
In our two-component model, the QGP phase is located mostly
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around midrapidity, and the presence of QGP is reduced at
larger rapidities. Hence to observe the QGP, we need to have
yo ∼ 0. But because of the limiting value at yo = 0, the net
charge fluctuations actually have a reduced sensitivity to the
QGP phase. The charge transfer fluctuation, to which we now
turn our attention, does not have these limitations.

B. Charge transfer fluctuation

The charge transfer fluctuation D̄u(y) is qualitatively
different than the net charge fluctuation δQ2(yo). As will be
shown in this section, the charge transfer fluctuation is capable
of distinguishing the two phases of our two-component model
and hence can be used as a signal for the QGP phase. In our
model, the charge transfer fluctuation D̄u(y) is given by

D̄u(y) = δQ2(y0)

4
+ 2〈M1〉

∫ y

−yo

dy−
∫ yo

y

dy+f1(y+, y−)

+ 2〈M2〉
∫ y

−yo

dy−
∫ yo

y

dy+f2(y+, y−), (33)

and the final particle spectrum is

dNch

dy
= 2〈M1〉h1(y) + 2〈M2〉h2(y), (34)

where hi(y) = ∫ ∞
−∞ dx fi(x, y).

For small γi , it is easy to show that

D̄u(y) ∼ constant + γ1〈M1〉F1(y) + γ2〈2〉F2(y), (35)

and the rapidity spectrum becomes

dNch

dy
∼ 〈M1〉F1(y) + 〈M2〉F2(y). (36)

Hence, changes in the charge transfer fluctuation compared
to the charged particle spectrum reflect changes in the
concentration of the two components and/or the change in
the mean correlation length. When the correlation lengths are
not very small, D̄u(y) is given in terms of the convolution of
F1(y) and F2(y) with the corresponding relative distribution
R1(r) and R2(r). Unless the γ ’s are very large, the ratio
D̄u(y)/(dNch/dy) should still be sensitive to changes in the
composition.

If the net charge fluctuation δQ2(yo) is sizable, its presence
can reduce the sensitivity of the ratio

κ̄(y) = D̄u(y)

(dNch/dy)
(37)

to the changing composition since dNch/dy abruptly decreases
beyond the central plateau. However, since this δQ2(yo) is the
uncorrected net charge fluctuation, it is easy to measure and
subtract it from D̄u. In this case, the relevant ratio becomes

κ̃(y) = D̄u(y) − δQ2(yo)/4

(dNch/dy)
. (38)

If dNch/dy is flat within the observational window, this is
of course not necessary as the δQ2(yo) term just adds a
constant. Also, in the large-yo limit, δQ2(yo) → 0 because
of overall charge conservation and hence this modification is
not necessary.
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FIG. 11. The ratio of the charge transfer fluctuations to the total
number of charges, D̄u(y)/(dNch/dy), in the rapidity observation
window (−1.5, 1.5) plotted as a function of the forward-backward
separation cut y in the one-component and two-component models.
For the one-component model, the charge correlation length is fixed
at γ = 1.55. For the two-component models, the pair of correlation
lengths (γHG, γQGP/γHG) are labeled on each line. For the middle two
lines, the QGP sizes ξ are fixed by requiring the net charge fluctuations
to be constant at δQ2(0.5)/Nch(0.5) = 0.85. The two lines with the
same charge correlation lengths (γHG, γQGP/γHG) = (1.75, 0.25) have
different QGP size.

The quantities κ̄(y) within −1.5 < y < 1.5 are plotted
in Fig. 11 as a function of the forward-backward rapidity
separation y in the one- and two-component models. In reality,
the extreme peripheral collisions and the central collisions
are candidates for the one- and two-component models,
respectively. Because our dNch/dy is almost flat within this
window, we do not need to subtract the δQ2(yo) part. The shape
for the one-component model is completely fixed by the charge
correlation length γ = 1.55 as before, and it is a decreasing
function of y. For the dashed and the dotted lines, we use the
same parameters as obtained in the last section based on the
experimentally observed net charge fluctuations. Even though
the one- and two-component cases have a common net charge
fluctuation at yo = 0.5, the charge transfer fluctuation patterns
are quite different: The most prominent feature for the two
component model is the appearance of the minimum for κ̄(y)
at y = 0 for γQGP < 0.5γHG, whereas the single-component
case always has a maximum at y = 0.

The minimum appears at midrapidity because that is where
the QGP component is concentrated. As y increases, the
fraction of QGP matter decreases. Hence, κ̄(y) increases
as a function of y > 0. The point where the slope of κ̄(y)
changes sign must be directly related to the width of the QGP
component. Unfortunately, when the size of the observation
window and the width of the QGP component are similar,
the sensitivity to the size of the QGP component is partially
lost because κ̄(y) must decrease as y approaches the edge. To
measure the size of the QGP component well, one needs to
have yo  ξ . This prompts us to extend the rapidity window
of our observation in the two-component calculations.

In Fig. 12, we plot κ̄(y) with two different ξ ’s as a function
of y. The observation window used is (−6.0, 6.0), which is
large compared to the size of the QGP component. One can
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FIG. 12. The charge transfer fluctuations D̄u(y)/(dNch/dy)
shown as a function of the forward-backward rapidity cut y in the
two-component system. The QGP size is indicated by the parameter
ξ . We have also plotted the corresponding hadron gas charge profiles,
dNch/dy(HG), for the two sets of calculations.

conclude that the width of the depression around midrapidity
does reflect the width of the QGP component. A nearly flat
κ̄(y) for y > |ξ | is expected since in this region we should
recover the single-component result. The decrease near the
edge is again due to the finite window size. Also shown are
the shapes of the HG contribution to the rapidity spectrum as a
reference. The charge transfer fluctuations with the same two
ξ ’s as before are also shown in Fig. 11. In the case of a more
limited window, sensitivity to the size of the QGP component
is reduced because the size of yo is in fact about the same as
the width of the QGP part ξ .

The charge transfer fluctuation D̄u(y) is completely dif-
ferent from the net charge fluctuation δQ2(yo) as far as the
observation window size effect is concerned. As discussed
before, having a larger observation window cannot increase
the sensitivity of the net charge fluctuations to the QGP phase
when it is confined to a small region around midrapidity.
However, for charge transfer fluctuations, having a large
observation window increases the sensitivity since the window
now encompasses more of the QGP part. Enlarging the
observation window also reduces the edge effect, increasing
the sensitivity even more. An additional advantage for the
charge transfer fluctuations is that there is no global charge
conservation correction, unlike for the net charge transfer
fluctuations.

For further reference, we show the result of analyzing
50,000 minimum-bias HIJING events for Au-Au collisions at√

s = 200 GeV in Fig. 13 for three different centrality classes.
Again the analysis is carried out in pseudorapidity space. The
data points used are the same as in Fig. 4 except that the
charge transfer fluctuations are corrected for the overall net
charge fluctuations as in Eq. (38). The fact that δQ2 �= 0 even
in full phase space is due to the spectators. Since the net charge
carried by spectator nucleons fluctuates, so does the net charge
of the produced particles. In the usual way of characterizing the
centrality classes (by Nch or ET ), this is unavoidable. It should
be observed that for all centrality classes, the ratio κ̃(η) =
(Du(η) − δQ2/4)/(dNch/dη) is essentially flat. It is somewhat
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FIG. 13. A plot of ratios (Du(η) − δQ2/4)/(dNch/dη) for three
different centrality classes using 50,000 minimum-bias HIJING events
for Au-Au collisions at

√
s = 200 GeV.

surprising that the Thomas-Chao-Quigg relationship works
well for HIJING events given the fact that no “cluster” appears
explicitly within HIJING.

The two-component model discussed here is admittedly a
best-case scenario. It is possible that the reduced net charge
fluctuations from QGP are realized by some mechanism
other than neutral-cluster formation. In that case, the charge
correlation length does not have to be smaller than the hadronic
one and κ(y) will not have a minimum.

One possible concern is the effect of kinetic focusing
caused by the radial flow. If the charge correlation length is
significantly reduced by the strong radial flow at midrapidity,
one may also observe a minimum at the center. Fortunately,
this is not the case for RHIC energy reactions. By calculating
the momentum changes of the correlated pion pairs resulting
from the flow, we find that the change of (pseudo)rapidity
charge correlation length is less than 2%.

C. Forward-backward multiplicity correlation

The key points in our discussion thus far are as follows:
(i) There are primordial clusters that produce multiple parti-
cles, (ii) a local cut separates the phase space into two regions,
and (iii) one can define observables that only count the primor-
dial clusters that have their decay products separated by the
local cut (cf. Fig. 1). These points imply that such observables
are sensitive to the local properties around the cut. Hence, if
the nature of the “clusters” changes in different regions of the
phase space, then these observables can detect the changes.

In some experiments, such as PHOBOS at RHIC, charge
states of the produced particles cannot be determined. In this
case, charge transfer fluctuation cannot be used. However,
since the essence of the current method is to have a cut
that separates produced particles, just measuring the forward-
backward multiplicity correlation,

w(η) = 〈NF (η)NB(η)〉 − 〈NF (η)〉〈NB (η)〉, (39)

may be enough to detect the change in correlation length.
Here NF (η) is the charged multiplicity in the region forward
of the pseudorapidity η and NB(η) is the charged multiplicity
in the region backward of η. This is a slight variation of
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the charge transfer fluctuations and was also studied in early
NN reactions [55–57].

In this section, we switch to the pseudorapidity η since
without particle identification one cannot determine the rapid-
ity y. However, in the current formulation of the problem, the
only change this switch introduces is that instead of rapidity
correlation function fi(y, y ′) we have the pseudorapidity
correlation function fi(η, η′).

Using the two-component model [Eq. (27)], one can show
that

w(η) = 4
(〈
δM2

1

〉 − 〈M1〉
) ∫ ηo

η

dη h1(η)
∫ η

−ηo

dη h1(η)

+ 4
(〈

δM2
2

〉 − 〈M2〉
) ∫ ηo

η

dη h2(η)
∫ η

−ηo

dη h2(η)

+ 2〈M1〉
∫ ηo

η

dη′
∫ η

−ηo

dη′′f1(η′, η′′)

+ 2〈M2〉
∫ ηo

η

dη′
∫ η

−ηo

dη′′f2(η′, η′′), (40)

where the correlation functions f1 and f2 are functions of
pseudorapidities and we defined

hi(η) =
∫ ∞

−∞
dη′fi(η

′, η). (41)

The nontrivial part of this expression is essentially the same
as the charge transfer fluctuations. The sensitivity of this
observable to changes in the pseudorapidity correlation length
depends crucially on the size of the first two terms containing
〈δM2

i 〉 − 〈Mi〉. If the number fluctuations of the clusters obey
Poisson statistics, then these two terms vanish. In that case,
w(η) is as sensitive as the charge transfer fluctuation to the
presence of the second phase. In the limit where there is only
a single species of clusters and also ηo → ∞, we have an
additional Thomas-Chao-Quigg relationship

w(η) ≈ κ
dNch

dη
, (42)

with a constant κ , provided that 〈δM2〉 = 〈M〉.
The ratio of the forward-backward multiplicity correlation

w(η) to the charged particle yield dNch/dη is plotted in
Fig. 14. When the clusters are distributed according to Poisson
distributions, the Thomas-Chao-Quigg relationship holds for
a single-component model and the ratio of w(η)/(dNch/dη)
is flat in the central region (the solid line in Fig. 14). For
a two-component model with Poisson statistics (long dashed
line), we see a minimum at midrapidity just as in the charge
transfer fluctuation.

When the statistics deviate from Poisson, the factor
〈δM2

i 〉 − 〈Mi〉 is nonzero. Then the first two terms in Eq. (40)
contributes. These terms decrease with η and hence partially
compensate the rising part that results from the correla-
tion change. However, the qualitative trend of the forward-
backward multiplicity correlation remains valid: The local
minimum is still present in the two-component model and
is an indication of the presence of a QGP.

For heavy particles originating from a thermally equi-
librated system, the multiplicity fluctuation should follow

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

 1-comp, 0%
 1-comp, 15%
 2-comp, 0%
 2-comp, 15%

w
(y

)/
(d

N
ch

/d
y)

y

FIG. 14. The ratio of the forward-backward multiplicity correla-
tion w(η) to the charged particle yield dNch/dη plotted as a function of
η for one-component and two-component models. The fluctuations
of the total number of charged particles are also indicated for the
corresponding lines. The distribution of Mi (i = 1 or 2), deviates
from a Poisson distribution by 0%, that is, 〈δM2

i 〉 − 〈Mi〉 = 0. We
have also included the results for 15% deviations.

Poisson statistics. For light particles, 〈δM2〉 can deviate up
to 15% from the Poisson value. As an estimate, in Fig. 14 we
show our results with 〈δM2

i 〉 − 〈Mi〉 = 0.15 〈Mi〉. One can
still see a clear dip near midrapidity.

Coincidentally, the PHOBOS group has also measured a
variation of the signal we proposed here (see Ref. [53]).
The difference between the forward-backward multiplicity
correlation w(η) and the “charged particle multiplicity fluctu-
ations” σ (C) used by the PHOBOS group is subtle but results
in quite different sensitivity. The signal σ (C) in Ref. [53]
measures the correlations between rapidity regions of (−η −
�η/2,−η + �η/2) and (η − �η/2, η + �η/2), with each
region covering the same rapidity window of �η = 0.5, 1.0,
and 1.5. Typically these two rapidity regions do not have a
common edge. In our case, the two pseudorapidity regions
are (−ηo, η) and (η, ηo). They share a common edge at η,
but the two regions are generally of different size. In the
case where the two regions are separated, the multiplicity
correlations measure the “long-range correlations” [58–60].
Where the two regions share a common edge, the correlations
measure the “short-range correlations,” as we have shown in
this paper. For the special case of η = �η/2 in the PHOBOS
study, σ (C) is the same as the forward-backward multiplicity
correlation w(0) as we proposed here. However, as we have
shown in this paper, a point in the fluctuation measurement can-
not distinguish between one-component and two-component
models because the charge correlation length can be adjusted
to fit this single point. One must measure w(η) as a func-
tion of η to get full information on possible phase change.

V. SUMMARY

In this paper, we proposed charge transfer fluctuations as
a signal for the QGP phase of matter. The essence of our
argument is very simple. Suppose there are strong unlike-sign
correlations in the underlying system, then the charges are
locally conserved. With a separating wall in the local region
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where we want to explore, the correlations (or fluctuations)
of charges across this wall are sensitive to the local charge
correlation length. The pairs created far away from the
separating wall contribute little to the fluctuations since they
have little chance of being separated by the wall. This is
essentially the idea behind the charge transfer fluctuations
proposed for earlier pp collisions.

Since the charge transfer fluctuation Du(y) is a local
measure of the unlike-sign correlation length, it can be used to
detect the presence of a second phase in AA collisions. Quite
generally, one can say that the presence of a local minimum
at y = 0 for the ratio κ(y) = Du(y)/(dNch/dy) is a signal for
the second (presumably QGP) phase. This minimum appears
because (i) a QGP phase should appear around midrapidity
where the density is the highest and (ii) hadrons coming out
of a QGP phase should have a markedly short unlike-sign
correlation length compared to that of the hadronic matter.
The size of the depression near midrapidity in turn contains
information on the size of the QGP phase. If one has a large
observation window, the extent of the second phase in the
rapidity space can be in fact estimated by the width of the dip.

Extending the idea of charge transfer fluctuations, we also
proposed the forward-backward multiplicity correlation as a
possible signal for the presence of a QGP. A case study with a
few hadronic event generators is under way.
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APPENDIX A: EFFECT OF NET POSITIVE CHARGES

For the uncorrelated charged particles in the system,
keeping the total charge constant in the system, we find the
charge transfer fluctuations to be

D̄u(y) = 〈Mch〉
4

∫ yo

−yo

dy ′g(y ′)

− 〈Mch〉
4

(∫ yo

y

dy ′g(y ′) −
∫ y

−yo

dy ′g(y ′)
)2

. (A1)

In deriving this result, we have assumed that the positive
and negative charges have the same normalized distribution,
g(y). Otherwise, we have to count the contributions from
both positive and negative charges separately in Eq. (A1),
and additionally there will be an extra term corresponding to
the difference of the positive and negative charge forward-
backward asymmetry.

The first term in Eq. (A1) comes from the overall fluctu-
ations of charged particle number in the observation window
and its value is the same as in the net charge fluctuations
case (except for a factor of 4). The second term is due to the

forward-backward asymmetry in the charge transfer definition.
In the limit that the observation window is sufficiently large,
Eq. (A1) reduces to the second integral in Eq. (7).

In the case that the system has both uncorrelated charges and
correlated charges, we only need to add the result in Eq. (A1)
to the previous result for correlated charges, Eq. (25). This
will not change the quantitative features of the charge transfer
fluctuations as a function of rapidity. The first term in Eq. (A1)
is independent of y and will not affect any of our discussion
except by adding a constant. The second term is a decreasing
function of y. Therefore, the contribution from uncorrelated
charges is still a decreasing function of the forward-backward
rapidity cut y. This is in line with the results for correlated
charges. The decreasing trend of the charge transfer fluctua-
tions as a function of the forward-backward rapidity cut y in a
uniform system is unchanged by this additional contribution.
The existence of a local minimum will still be a signal
of a second phase with smaller charge correlation length.

Since in realistic heavy-ion collisions at RHIC energies
most positive and negative charges are created together with
an opposite charge to conserve net total charge, we can safely
assume that uncorrelated charges are rare. The net positively
charged particles originating from the projectile and the targets
is only a small fraction of the total number of charged particles
in RHIC energy heavy-ion collisions. For this reason, the
corrections from uncorrelated charges are ignored in most
of this study. The qualitative features of the charge transfer
fluctuations will not be sensitive to this correction term.

We can make a simple estimate of the corrections from these
uncorrelated charges by assuming the uncorrelated charges are
from the protons in the initial collision system. The maximum
of the second term in Eq. (A1) scales as p2M+/M0, where
p is the fraction of observed uncorrelated charges to the total
number of uncorrelated charges. In RHIC energy heavy-ion
reactions, M+/M0 ∼ 0.04 and p is typically around 5% in
the central region. Indeed, the corrections from uncorrelated
charges is quite small, of order 10−4. The corrections to the
net charge fluctuations from the uncorrelated charges are of
the same order of magnitude as the corrections to the charge
transfer fluctuations. The net charge fluctuations Dc(yo) and
the total number of charges Nch(yo) both acquire additional
terms and they are both equal to four times the first term in
Eq. (A1).

APPENDIX B: NONZERO CHARGE TRANSFER CASE

When the charge transfer u(y) in Eq. (3) does not average
to zero, the charge transfer fluctuations will acquire additional
terms that are quadratic to the average charge transfer.

In the neutral-cluster model, the full result for the charge
transfer fluctuations is

D̄u(y) = 〈M0〉
2

(WL + WR + 2Wy)

+ 〈u(y)〉2

〈M0〉2

(〈
δM2

0

〉 − 〈M0〉
)
. (B1)

The weights for left and right edges of the observation
window (−yo, yo) and for the forward-backward rapidity cut y
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are defined as

WL =
∫ −yo

−∞
dy ′

∫ yo

−yo

dy ′′, f0(y ′, y ′′),

WR =
∫ yo

−yo

dy ′
∫ ∞

yo

dy ′′, f0(y ′, y ′′), (B2)

Wy =
∫ y

−yo

dy ′
∫ yo

y

dy ′′f0(y ′, y ′′).

The last term in Eq. (B1) stems from the nonzero average
charge transfer in the system. An estimate would give
〈u(y)〉 � 10 and 〈δM2

0 〉 − 〈M0〉 ∼ 0.1M0, and the error from
neglecting this nonzero average charge transfer is typically
less than 10−5.

APPENDIX C: SOLUTION OF EQ. (11)

The Thomas-Chao-Quigg equation for the neutral-cluster
distribution function is given by∫ z

−∞
dy

∫ ∞

z

dx f0(x, y) = κ

∫ ∞

−∞
dy f0(y, z). (C1)

We make the following ansatz:

f0(x, y) = g(r)F (Y ), (C2)

where r = x − y and Y = (x + y)/2 and with g(−r) = g(r).
Changing variables to r and Y, we rewrite Eq. (C1) as∫ ∞

0
dr g(r)

∫ z+r/2

z−r/2
dY F (Y ) = κ

∫ ∞

−∞
dr g(r)F (z+r/2). (C3)

We can now Taylor-expand both
∫ z+r/2
z−r/2 dYF (Y ) and F (z +

r/2) with respect to r and get the following relationship
between the moments of g(r):

R2n+1/R2n = 2 κ(2n + 1), (C4)

where

Rs ≡
∫ ∞

0
dr g(r)rs (C5)

and we used the fact that g(r) is an even function.
Note that ∫ ∞

0
dx e−x/2κxn = 2n+1κn+1n! (C6)

so that∫ ∞
0 dx e−x/2κx2n+1∫ ∞

0 dx e−x/2κx2n
= 22n+2κ2n+2(2n + 1)!

22n+1κ2n+1(2n)!
= 2κ(2n + 1).

(C7)

Therefore

g(r) = C exp(−|r|/2κ), (C8)

where C is a normalization constant. Hence, the solution of
Eq. (11) is given by

f0(x, y) = N exp(−|x − y|/2κ)F ((x + y)/2), (C9)

where F (Y ) can be quite arbitrary as long as its derivatives are
all finite and the integrals in Eq. (11) are well defined.
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