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Pedestal and peak structure in jet correlation
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We study the correlation characteristics between particles in jets produced in heavy-ion collisions. In the
framework of parton recombination we calculate the η and φ distributions of a pion associated with a trigger
particle. The origin of the pedestal in �η is related to the longitudinal expansion of the thermal partons that are
enhanced by the energy loss of hard partons traversing the bulk medium. The peaks in �η and �φ are related
to the same angular spread of the shower partons in a jet cone. No artificial short- or long-range correlations are
put in by hand. A large part of the correlation between hadrons in jets is due to the correlation among the shower
partons arising from momentum conservation. Recombination between thermal and shower partons dominates
the correlation characterisitics in the intermediate-pT region.
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I. INTRODUCTION

The discovery of the medium effects on jets produced
at the relativistic heavy-ion collider (RHIC) has contributed
greatly to the understanding of the physics underlying hard
partons traversing a hot and dense quark-gluon system [1,2].
Subsequently, numerous experimental investigations have
revealed details of the properties of jets, both on the near side
and on the away side, in heavy-ion collisions [3–8]. Particle
correlations within jets are shown to have distinctive properties
in the azimuthal angles φ and in pseudorapidities η of the
associated particles. Of particular noteworthiness is the peak
in �η between the η values of the trigger and the associated
particles on the near side: It sits above a flat plateau or a
pedestal [3]. No pedestal is found in �φ, although a peak in
that variable is prominent. It is our aim in this paper to study the
peaks and pedestal in �φ and �η and to discuss the physical
origins of these jet characteristics.

Our approach to the problem of correlation between
particles in jets will be based on parton recombination, which
has been shown to be successful in reproducing the single-
particle distributions in Au + Au collisions [9] and in d + Au
collisions [10]. It has also been applied to the study of dihadron
correlations [11,12]. However, since those investigations were
carried out in the framework of the one-dimensional (1D)
formulation of the recombination model, a generalization to
account for the 3D geometry of the problem is necessary if
we are to describe the features in the φ and η variables. Once
we consider the 3D aspects of jets the angular distribution
of the shower partons in the jet cone becomes an important
new feature. Our treatment will be phenomenological, since
no results from perturbative QCD considerations can reliably
be applied to the intermediate-pT region, which is where the
data on correlations are taken.

The basic assumption crucial to the origin of correlations
in our treatment is that the shower partons in a jet are
dynamically independent but kinematically constrained. The
consequences of that assumption on the dihadron correlation
in pT have been extensively investigated in [12]. Here for

correlation in �η and �φ we assume in addition that the
shower partons have an angular distribution relative to the jet
axis that is Gaussian and that it is the same distribution in
�η and �φ. We trace the origin of the pedestal phenomenon
to the enhancement of the thermal partons by the energy
transferred from the hard parton to the medium surrounding
its trajectory. The width of the angular distribution in the
jet cone and the magnitude of the thermal enhancement are
determined by fitting the data, since such properties at low
and intermediate pT are nonperturbative and uncalculable.
The recombination model provides a framework in which the
pedestal and peak features can be described in analytical terms
and be brought to the stage where comparison with data is
possible.

Our approach to the problem, though not based on first
principles, provides the first theoretical interpretation of the
pedestal and peak structure of the jets produced at RHIC
in quantitative terms. The roles that shower and thermal
partons play in the hadronization process are found to be
crucial.

It should be mentioned that Fries et al. have also con-
sidered the �φ structure in the recombination model [13].
In the absence of shower partons in their treatment, they
have introduced some correlation by inserting a constant
term in the four-parton distribution. They have found rea-
sonable agreement with the data on associated yield by
an appropriate choice of the magnitude of the correlation
constant.

In Sec. II we describe how the 3D properties of jets are in-
corporated in the recombination formalism. In Sec. III the
pedestal phenomenon is investigated; this is followed by the
study of the peaks in �η and �φ distributions in Sec. IV.
The conclusion is given in the last section.

II. TWO-PARTICLE DISTRIBUTION

In the framework of parton recombination formulated in 1D
for particle production in heavy-ion collisions [9–12], let us
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start by writing down the single-and two-particle distributions:

dNπ1

p1dp1
= 1

p2
1

∫
dq1

q1

dq2

q2
F2(q1, q2)Rπ1 (q1, q2, p1), (1)

dNπ1π2

p1p2dp1dp2
= 1

p2
1p

2
2

∫ 
 4∏

j=1

dqj

qj


 F4(q1, q2, q3, q4)

×Rπ1 (q1, q3, p1)Rπ2 (q2, q4, p2), (2)

where the recombination function (RF) for a pion is [14]

Rπ (q1, q2, p) = q1q2

p2
δ

(
q1

p
+ q2

p
− 1

)
. (3)

The two- and four-parton distributions, F2 and F4, can be
written in terms of their components as

F2(1, 2) = (T T +T S+SS)12, (4)

F4(1, 2, 3, 4) = (T T +T S+SS)13(T T +T S+SS)24. (5)

The thermal parton distribution is

T (q) = Cqe−q/T , (6)

and the shower partons in a jet have the form

S(q) = ξ
∑

i

∫
dk kfi(k)Sj

i (q/k), (7)

where fi(k) is the distribution of hard parton i in a heavy-
ion collision and ξ is the average fraction of hard partons
that emerge from the thermal medium to hadronize. S

j

i is
the shower-parton distribution (SPD) of parton j in a shower
initiated by a hard parton i; their parametrizations for various i
and j are given in [15]. For the sake of clarity we have omitted
the labels for parton species for T and S in these equations
and in what follows, except when the identity of a parton is
needed for emphasis.

It is important to recognize that Eq. (7) should not be applied
to every S that appears in Eqs. (4) and (5) because all the
shower partons in F2 and F4 are created in the same jet, so all
theSS · · · terms share the same hard parton with momentum k.
Thus for two shower partons (SS), their joint distribution is

(SS)(q1, q2) = ξ
∑

i

∫
dk kfi(k)

{
S

j

i

(q1

k

)
, S

j ′
i

(
q2

k − q1

)}
,

(8)

where the quantity in the curly braces has the following form
in terms of momentum fractions x1 and x2:{

S
j

i (x1), Sj ′
i

(
x2

1 − x1

)}

= 1

2

[
S

j

i (x1)Sj ′
i

(
x2

1 − x1

)
+ S

j

i

(
x1

1 − x2

)
S

j ′
i (x2)

]
. (9)

This is done to guarantee momentum conservation x1 + x2 � 1
and to symmetrize the order of emission of the two partons.
Equation (8) should apply not only to two adjacent shower
partons, as in (SS)13 and (SS)24, which recombine to form the
pions at p1 and p2, respectively, but also to two shower partons
as in (T S)13(T S)24, which do not recombine with each other

but combine separately with thermal partons. It is the structure
in Eq. (8) that gives rise to correlation between two shower
partons in a jet and thereby endows the detected hadrons at high
pT with correlation. However, this is sufficient primarily in the
case when only the correlation among momentum magnitudes
in 1D is considered.

To generalize to three dimensions, let us focus our attention
first on the (T S) components in Eq. (5) that give the most
important contribution to the trigger and associated particles
in central collision. To be specific let us further designate the
trigger particle to be a π+ and the associated particle to be a
π−. The 3D expression for Eq. (2) in that case is

dNπ+π−

p1dp1dηtrdφtrp2dp2dηdφ

= 1

(p1p2)2
ξ

∑
i

∫
dk kfi(k)

∫ 
 4∏

j=1

d3rj

d3qj

qj




× Su
i (�r1, �q1)T d̄ (�r3, �q3)R(3)

π+(�r1, �r3, �rp1 ; �q1, �q3, �p1)

× Sd
i (�r2, �q2)T ū(�r4, �q4)R(3)

π−(�r2, �r4, �rp2 ; �q2, �q4, �p2), (10)

where R(3) is the 3D version of the RF and it includes the spatial
coordinates. Since recombining partons must not only have
collinear momenta but also overlapping wave functions, there
are many narrow Gaussian distributions in R(3) that reduce the
phase space of integration. Let us first restrict our attention
to the x-z plane (i.e., the plane containing the hard parton
momentum �k and the longitudinal direction ẑ), and assume
that all �qi vectors are in that plane so that we may write

�qi = (qi, θi), �p1 = (p1, θtrig), �p2 = (p2, θ ) (11)

and

ηi = ln cot
θi

2
, ηtrig = ln cot

θtrig

2
, η = ln cot

θ

2
. (12)

We further assume that �q1 is in the direction of �k and that the
trigger momentum �p1 is also along �k. This is a simplification
that does not compromise the angular correlation between the
trigger and associated particles, which we shall study in detail.
Since R(3) requires the wave functions of the recombining
partons to overlap, the shower and thermal partons at �r1 and
�r3 should be nearby. These assumptions allow us to reduce the
trigger momentum part of Eq. (10) to the usual 1D formulation,∫

d3r1d
3r3

d3q1

q1

d3q3

q3
Su

i (�r1, �q1)T d̄ (�r3, �q3)

×R
(3)
π+ (�r1, �r3, �rp1 ; �q1, �q3, �p1)

=
∫

dq1

q1

dq3

q3
Su

i

(q1

k

)
T (q3, θ3)

∣∣∣∣
θ3=θ1=θtrig

R
(1)
π+ (q1, q3, p1) ,

(13)

where R(1) is the usual RF in 1D, given in Eq. (3). The
superscript d̄ on T is omitted on the right-hand side since
the flavor dependence of the thermal partons is negligible and
ignored. We shall assume that at midrapidity, −0.7 < ηtrig <

+0.7, the thermal distribution does not contain essential
dependence on η3 so that the condition θ3 = θ1 = θtrig does not

034903-2



PEDESTAL AND PEAK STRUCTURE IN JET CORRELATION PHYSICAL REVIEW C 72, 034903 (2005)

lead to any restriction that would cause T (q3, θ3) to deviate
from the usual parametrization given in Eq. (6).

In the case of the associated particle we must recognize that
the shower parton �q2 may be emitted at an angle ψ relative
to the hard parton momentum �k. Since �k forms an angle θ1

with the z axis (after identifying the direction q̂1 with k̂), we
have

ψ = θ2 − θ1. (14)

The recombination of the shower parton at �q2 with a thermal
parton at �q4 requires that they must not only be collinear
but also overlap spatially. There are therefore δ functions,
δ(θ2 − θ4)δ [(θ2 + θ4)/2 − θ ], that force the momentum �p2 of
the associated particle to be in the same direction as q̂2 and q̂4.
The corresponding 3D integrations result in∫

d3r2d
3r4

d3q2

q2

d3q4

q4
Sd

i (�r2, �q2) T ū (�r4, �q4)

×R
(3)
π− (�r2, �r4, �rp2 ; �q2, �q4, �p2)

=
∫

dq2

q2

dq4

q4
Sd

i

(
q2

k − q1
, ψ

)
T (q4, θ4)

∣∣∣∣
θ4=θ2=θ1+ψ

×R
(1)
π− (q2, q4, p2) . (15)

This equation is very similar to Eq. (13) but with one crucial
difference: The shower parton distribution now depends on ψ .
In Eq. (13) no angular dependence of the shower parton �q1 is
assumed for simplicity, since it is only the difference between
�q1 and �q2 that matters. That angular difference, ψ , made
explicit in Eq. (14), is translated into the angular difference
between �p1 and �p2. We have tacitly assumed that the thermal
partons have local angular spread that allows �q3 to recombine
with �q1 to form �p1, and similarly �q4 with �q2 to form �p2, in
such a way that �p1 and �p2 are in the directions of �q1 and �q2,
respectively.

The dependence of a SPD on ψ cannot be determined from
perturbative QCD, since the values of pT concerned lie in the
1 < pT < 4 GeV/c range. We shall assume that the SPD in
Eq. (15) can be written in the following factorizable form:

Sd
i

(
q2

k − q1
, ψ

)
= Sd

i

(
q2

k − q1

)
G

(
ψ,

q2

k

)
, (16)

where the dependence on ψ has a Gaussian distribution

G(ψ, x) = exp

[
− ψ2

2σ 2(x)

]
, (17)

whose half-width depends on the momentum fraction x of the
shower parton

σ (x) = σ0(1 − x) (18)

with σ0 being a parameter that is adjustable. Sd
i on the right-

hand side of Eq. (16) is to be symmetrized with Su
i in Eq. (13)

without further complication from angular consideration. The
momentum fraction relevant for σ (x) is q2/k, independent of
q1. Once we obtain Eq. (16), where G(ψ, q2/k) stands as a
modifying factor, it is reasonable to liberate that factor from
the way in which it is derived and allow it to assume a 3D
property so that when we later consider the �φ behavior in
the transverse plane the same factor G(ψ, q2/k) applies to the

azimuthal angle between �p1 and �p2 with ψ replaced by �φ.
Using Eqs. (12) and (14) we obtain with θ = θ2

tan
ψ

2
= tan

θ − θ1

2
= g(η, η1) = e−η − e−η1

1 + e−η−η1
, (19)

where η1 is to be identified with ηtrig.
We now can write Eq. (10) with the help of Eqs. (3), (13),

and (15) in the simpler form

dNTSTS
π+π−

p1dp1dη1dφ1p2dp2dηdφ

= 1

(p1p2)3
ξ

∑
i

∫
dk kfi(k)

∫
dq1

∫
dq2θ (k − q1 − q2)

×
∑
j,j ′

T (p1 − q1, η1)

{
S

j

i

(q1

k

)
, S

j ′
i

(
q2

k − q1

)}

× T (p2 − q2, η) G
(
ψ,

q2

k

)∣∣∣
ψ=2 tan−1 g(η,η1)

, (20)

where i is summed over all hard parton species. If i is a valence
quark of π+ or π−, the corresponding SPD is K, whereas if i is
a sea quark, the corresponding SPD is L in the notation of [15],
where K = Sval+sea

i and L = Ssea
i . The integral over k will, in

practice, be from 3 to 30 GeV/c, and qi will be integrated
from 0 to pi , although the formalism is not reliable for any
transverse momentum less than 1 GeV/c. Equation (20) is the
basic expression that shows how the original formulation of
the recombination model in 1D is extended to accommodate
the 3D geometry, with the angular dependence introduced
through the function G. There are other terms of F4 contained
in Eq. (5) that can be written out as in Eq. (20), but these will
not be detailed here.

III. PEDESTAL AND BACKGROUND SUBTRACTION

The experimental procedure of making background sub-
traction involves multiple considerations, and the result is
that there remains a residual pedestal in �η in central
collisions, but no pedestal in �φ, where �η and �φ are
differences in η and φ between the associated particle and
the trigger. In [11] the dihadron correlation is calculated with
the assumption that the factorizable part of the two-particle
distribution corresponds to the background. That leaves only
the (T S + SS)13(T S + SS)24 terms of F4 to consider. We
now find that to understand the origin of the pedestal the
background must be reconsidered.

The first point that we want to address is the effect of energy
loss of hard partons traversing the hot medium. The parameter
ξ in Eqs. (7) and (8), being only 0.07 as determined in [9] for
central Au + Au collisions, implies that a large fraction of the
hard partons produced gets absorbed or attenuated by the bulk
medium. Those that emerge to hadronize outside must have
been created near the surface. In the short distance that such
a parton travels in the medium it must on average lose some
energy and locally enhance the thermal motion of the partons
in the environment. Those enhanced thermal partons should
have an effective inverse slope T that is slightly higher (by �T )
than that of the usual thermal partons not influenced by the
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passage of any hard partons. The latter corresponds to what is
measured for the low-pT pions in single-particle distribution,
which for pT < 2 GeV/c has led to the determination of
T = 0.317 GeV/c in [9]. If �T is small, as we expect it to be,
it does not make too much difference in the calculation of the
single-particle distribution in the intermediate-pT region.
However, in principle, in thermal-shower recombination the
shower partons recombine with the enhanced thermal partons
that are in the immediate vicinity of the hard parton that
creates the shower. To distinguish the two values of the inverse
slope, let us use T to denote the one for the enhanced thermal
parton, since that is the only physically relevant one for T S
recombination [i.e., it is what appears in Eq. (6) for T ]. Let
us use T0 to denote the inverse slope for the thermal medium
undisturbed by jet quenching (i.e., T0 = 0.317 GeV/c). We
define

�T = T − T0, (21)

which is a parameter to be determined phenomenologically in
this paper, although it can presumably be determined directly
by dedicated experimentation. We shall relate �T to the
pedestal. The physics involved is sensible, since the pedestal
is seen only for central collisions where T S recombination
is important. In peripheral collisions thermal partons play a
minor role and there are few of them to be enhanced.

To summarize the foregoing arguments for considering an
increase in T, we see that it is conservation of energy that
requires the thermal energy of the medium to increase in
response to the absorption of the energy lost by the passing
hard parton. It is a complicated process that involves gluon
radiation, rescattering of the gluons in the hot medium, and
thermalization. None of the subprocesses is calculable in the
pT range considered, let alone the spatial range around the
hard parton trajectory that is affected. In the expression for
the SPD given in Eq. (7), ξ represents the average fraction
of hard partons to emerge to generate the shower and is
determined by phenomenology. So also here �T will similarly
be determined by data fitting and cannot at this stage be related
quantitatively to the energy lost by the hard parton, no more
than what can be elucidated about ξ . Our assumption is that
the feedback of energy thermalizes fast enough to affect the
hadronization through T S recombination.

We now give an argument why the pedestal is seen in �η

but not in �φ. When a hard parton is first scattered or created
at a large angle relative to the incident beam direction, the
bulk medium is in a highly compressed state. As it expands
longitudinally, the region of enhanced thermal partons expands
with the whole system, although limited to the neighborhood
of where the hard parton traverses the thin layer close to the
surface. Thus a section at midrapidity can have enhanced
T. In the transverse plane, in contrast, the expansion is in
the radial direction only; that is, there is no mixing across
different azimuthal sections. The subtraction scheme carried
out by STAR [3] defines the yield dN/d�φ to be zero at
|�φ| = 1 after subtraction. Since there is no expansion in the
φ direction, we can take this subtraction scheme to imply that
all thermal partons that are enhanced stay inside the |�φ| < 1
region and that, for |�φ| > 1, there is no thermal-thermal
recombination that is not in the background. There may still

be an enhancement of the yield inside the |�φ| < 1 region that
plays a role similar to the pedestal in �η, but it cannot extend
beyond |�φ| = 1 by virtue of the subtraction scheme.

The foregoing description cannot be demonstrated by a
transport model, since we do not have a Monte Carlo code for
the evolution process. However, the physical content of our
discussion will be embodied in our quantitative formulation
that follows. The recombination model actually provides a
more transparent description of the hadronization process than
what a code without reliable equations can offer.

Let us first consider the particles that are associated with
a trigger. Since in Au + Au collisions the T S component is
dominant in the intermediate-pT region [9], which includes
the trigger window 4 < pT < 6 GeV/c, we select the (T S)13

term in Eq. (5) for our discussion, although both terms in
(T S + SS)13 are included in our calculation. Thus the parts
of F4 that contribute to the trigger and its associated particles
are

F tr+assoc
4 = (T S)13(T T + T S + SS)24. (22)

Among the three terms on the right side it is clear that
(T S + SS)24 are directly related to the jet and contribute
to the peak in the associated particle distribution (APD),
whereas (T T )24 does not involve the shower partons but can
nevertheless contribute to the APD outside the peak. It is
therefore our prime candidate for the pedestal. The absence
of an obvious pedestal in the APD in �φ is a consequence
of the background subtraction scheme in the analysis of the
experimental data, where the �φ distribution at |�φ| = 1 is
identified to be the background. In our description of the APD
the background corresponds to

F
bg
4 = (T S)13(T0T0)24, (23)

where T0(q) is the thermal parton distribution in the absence
of any hard partons, that is,

T0(q) = Cqe−q/T0 . (24)

The meaning of T0 has already been discussed in connection
with Eq. (21). We have tacitly assumed that the normalization
factor C is unchanged from that in Eq. (6). The experimental
subtraction scheme implies that at |�φ| = 1

(T S)13(T T )24 = (T S)13(T0T0)24. (25)

We now define the APD with background subtracted to be
generated by

F AP
4 = (T S)13(T T − T0T0 + T S + SS)24, (26)

in which (T T − T0T0)24 vanishes at |�φ| = 1, but need not
be zero at |�φ| < 1. Equation (26) is our basic input in the
calculation of the APD.

Let us now write our two-particle distribution in a form
suitable for application of the experimental cuts. In Eq. (20) we
have a differential distribution in dp1dη1dφ1dp2dηdφ, where
η1 and φ1 denote the variables of the trigger, and η and φ those
of the associated particle. With the definition

�η = η − η1, �φ = φ − φ1, (27)

we change the differentiated variables to dp1dp2dη1d�ηd�φ,
with φ1 being used as a free reference point in the assemblage
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of the �φ distribution; the trigger η1 is to be integrated over
the trigger window −0.7 < η1 < +0.7. We then have

N (1, 2) ≡ dNπ1π2

dp1dp2dη1d�ηd�φ

= 1

p1p2

∫ 
 4∏

j=1

dqj

qj


 F AP

4 (q1, q2, q3, q4)

×Rπ1 (q1, q3, p1)Rπ2 (q2, q4, p2). (28)

The experimental APD involves integrations over the trigger
window in η1 and p1 and the window of the associated particle
in p2. It is

dNAP

d�ηd�φ
=

∫ pb

pa
dp2

∫ 6
4 dp1

∫ 0.7
−0.7 dη1N (1, 2)∫ 6

4 dp1
∫ 0.7
−0.7 dη1N (1)

, (29)

where N (1) is the one-particle trigger distribution that receives
contribution from the (T S)13 component only, that is,

N (1) ≡ dN tr
π1

dp1dη1

= 1

p2
1

ξ
∑

i

∫
dk kfi(k)dq1

∑
j

T (p1 − q1, η1)Sj

i

(q1

k

)
.

(30)

The two-particle distribution N (1, 2) in Eq. (29) can be
divided into two explicit pieces. For the remainder of this
section we consider only the piece related to the pedestal:

N (1, 2)ped ≡ dN
ped
π1π2

dp1dp2dη1d�ηd�φ

= 1

(p1p2)2
ξ

∑
i

∫
dk kfi(k)dq1dq2

×
∑

j

T (p1 − q1, η1)Sj

i

(q1

k

)
[T (q2,�η)

× T (p2−q2,�η)H (�φ)−T0(q2)T0(p2−q2)] ,

(31)

where we have extracted the φ dependence of the associated
particle in the form of a factor H (�φ), which satisfies some
constraints to be specified in the following. It should be
noted that Eq. (31) is factorizable, since the two parts of
(T S)13(T T − T0T0)24 are independent of each other. The
(T S)13 part contributes to the trigger distribution given in
Eq. (30). It will be canceled in the ratio defined in Eq. (29).

By using Eq. (24), the integration of the last term in Eq. (31)
over q2 can readily be carried out, giving

1

p3
2

∫ p2

0
dq2T0(q2)T0(p2 − q2) = C2

6
exp(−p2/T0), (32)

which, upon further integration over the window (pa, pb) of
the associated particle, results in

∫ pb

pa

dp2p2
dNbg

p2dp2
= 1

6
(CT0)2h

(
pa

T0
,
pb

T0

)
, (33)

where

h(x, y) = (1 + x)e−x − (1 + y)e−y. (34)

A similar result follows for the T T term in Eq. (31).
Next, we consider the �η and �φ dependences of the

pedestal in Eq. (31). As we have discussed qualitatively in the
beginning of this section, the longitudinal expansion allows
the enhanced thermal partons to extend over a wide range
in η, but radial expansion does not increase the range in φ.
Putting these properties into quantitative terms, we give T (q2)
no essential dependence on �η in Eq. (31), but a Gaussian
dependence on �φ so that

H (�φ) = c exp
(−�φ2

/
2σ 2

φ

)
. (35)

The normalization c is to be determined by the condition
that when �φ is integrated over the experimental window
(−0.5,+0.5) we obtain∫ 0.5

−0.5
d�φH (�φ) = 1. (36)

In this way we can relate Eq. (31) to the pedestal observed
in the experiment without explicit factors dependent on the
experimental windows. The half-width σφ is adjusted so that
the quantity inside the square brackets in Eq. (31) vanishes
at |�φ| = 1, as required by the subtraction scheme, Eq. (25).
What we do here is to fix all the extra free parameters of the
problem by the experimental features of the data. Since our
aim is to reproduce the observed characteristics of the data,
which are presented with specific cuts, it is impossible to do so
without incorporating those cuts. However, it does not imply
that we are merely fitting the data with free parameters. We
shall perform several multidimensional integrals to obtain in
the next section the APD with the peak whose magnitude is a
prediction of our model calculation.

Upon integration of Eq. (29) over �φ in the acceptance
window, we get for the pedestal part

dNped

d�η
=

∫ 0,5

−0.5
d�φ

dNped

d�ηd�φ

= C2

6

[
T 2h

(pa

T
,
pb

T

)
− T 2

0 h

(
pa

T0
,
pb

T0

)]
, (37)

where we have made use of the factorizability of Eq. (31)
and the result of integration over p2 given in Eq. (33). This
is the constant pedestal in �η, which we relate to �T .
Using C = 23.2 (GeV/c)−1, T0 = 0.317 GeV/c from [9], pa =
2, pb = 4 GeV/c as in the experiment [3], and Eq. (21) for the
definition of �T , we fit the pedestal height of ∼0.05 [3] and
obtain

�T = 15 MeV. (38)

Thus the inverse slope of the enhanced thermal partons is
only 5% higher than that of the unenhanced partons, small
enough to have a negligible effect on the calculation of the
single-particle distribution using T0. However, the effect on
the associated particle distribution is evidently not negligible.
Although Eq. (38) is a fitted result, it should be emphasized
that it is in the specific model of parton recombination that the
pedestal phenomenon is interpreted as a consequence of the
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enhancement of the thermal energy of the soft partons resulting
from energy loss of the hard parton.

Equation (37) is the projection of dNAP/d�ηd�φ onto
�η. We now project it onto �φ by integrating it over �η from
−1 to +1 in accordance with the experimental cut [3] and
obtain from Eq. (31) for the pedestal part

dNped

d�φ
=

∫ 1

−1
d�η

dNped

d�ηd�φ

= C2

3

[
T 2h

(pa

T
,
pb

T

)
H (�φ) − T 2

0 h

(
pa

T0
,
pb

T0

)]
. (39)

This is not a flat pedestal as in the case of �η but is nevertheless
a remnant of the effect of enhanced thermal partons sitting
under a peak from the (T S + SS)24 part of F AP

4 that we have
not yet calculated. Although it is not visible as a plateau, its
origin is the same as that which gives rise to the pedestal in
�η. It is the background subtraction in �φ that forces Eq. (39)
to vanish at |�φ| = 1, which is achieved by our choice of σφ

in Eq. (35),

σφ = 1.2. (40)

With this choice of σφ , Eq. (39) is entirely specified numer-
ically. The �φ dependence of dNped/d�φ is a broad mount
between �φ = ±1, which we shall exhibit later together with
the complete dN/d�φ. This mount is the projection of a
ridge in the 3D display of the APD in (�η,�φ) onto the �φ

subspace.
This completes our discussion of the (T T − T0T0) contri-

bution to F AP
4 in Eq. (26) and then to Eqs. (28) and (29). We

now proceed to the last two terms of F AP
4 .

IV. PEAKS IN �η AND �φ

We now return to Eq. (26) and consider the (T S + SS)24

terms in F AP
4 that we have put aside. The T S component

has already been described in detail in Eq. (20). The SS
component is less important except in peripheral collisions.
It can be included by the replacement of the {Sj

i , S
j ′
i }T term

in Eq. (20) by a {Sj

i , S
j ′
i , S

j ′′
i } term with appropriate sym-

metrization. However, since the recombination of two shower
partons reproduces the fragmentation function in accordance
with

xDπ
i (x) =

∫
dx1

x1

dx2

x2

{
S

j

i (x1), Sj ′
i

(
x2

1−x1

)}
Rπ (x1, x2, x),

(41)

from which the SPDs are derived in the first place, we may
replace an SSR term by an xD term. For notational simplicity
we leave the (SS)24 terms out in the following description
but numerically include their recombination in the calculated
result.

Let us recall that starting from the general formula, Eq. (10),
we first focused on the variables in the plane containing �k and
the longitudinal direction ẑ and related the relevant angles to
pseudorapidities in Eq. (12). We then defined the angle ψ

between the shower parton �q2 and the hard parton �k to be as
given in Eq. (14). The angular dependence of the SPD is then

expressed by a Gaussian distribution G(ψ, x) in Eq. (17), put
in a factorized form in Eq. (16). We may identify G(ψ, x)
as the x-z projection of a general Gaussian distribution that
describes the dependence on the angle between �p1 and �p2

in 3D geometry. In the small-width approximation, it can be
shown that the corresponding projection onto the transverse
(x-y) plane gives a Gaussian form, G(�φ, x), for the �φ

dependence.
Returning to Eq. (20), which is written for the plane

containing �k and ẑ, we now write the double differential in
both �η and �φ, as for the pedestal term, but now for the
peak term arising from the (T S)13(T S)24 component:

dN
peak
π+π−

dp1dp2dη1d�ηd�φ

= 1

(p1p2)2
ξ

∑
i

∫
dk kfi(k)

∫
dq1

∫
dq2θ (k − q1 − q2)

×
∑
jj ′

T (p1−q1)

{
S

j

i

(q1

k

)
, S

j ′
i

(
q2

k−q1

)}
T (p2−q2)

× G
(
ψ,

q2

k

)∣∣∣
ψ=tan−1 g(η,η1)

bG
(
�φ,

q2

k

)
, (42)

where b is a numerical normalization factor such that when
Eq. (42) is integrated over �φ from −0.5 to +0.5 (the
experimental window for projection to the �η dependence)
one gets

b

∫ 0.5

−0.5
d�φG(�φ, x = 0) = 1 (43)

in the small-x approximation.
Identifying Eq. (42) as N (1, 2)peak, we can substitute it into

the numerator of Eq. (29) and obtain dNpeak/d�ηd�φ. There
is only one free parameters to adjust; it is σ0 in Eq. (17).
The projections of the double differential distribution to �η

and �φ separately can be compared with the data when the
pedestal component is added. That is,

dNAP

d�η
=

∫ 0,5

−0.5
d�φ

[
dNped

d�ηd�φ
+ dNpeak

d�ηd�φ

]
, (44)

dNAP

d�φ
=

∫ 1

−1
d�η

[
dNped

d�ηd�φ
+ dNpeak

d�ηd�φ

]
. (45)

The pedestal contributions to these integrals are given by
Eqs. (37) and (39), respectively. It should be noted that the
latter has a �φ dependence described by H (�φ), which is
a Gaussian with a half-width σφ given by Eq. (40). We shall
find in the following that the half-width of the peak term,
controlled by σ0, is much smaller than σφ , so the last terms in
Eqs. (44) and (45) dominate the peak structure of the APD. The
term dNped/d�ηd�φ gives rise to a ridge, whose projections
are the flat pedestal in dNAP/d�η, and a broad mount in
dNAP/d�φ.

After we put all the pieces together, using Eq. (29) as the
important link between our calculation and the measurable
quantities, the results from Eqs. (44) and (45) can be compared
to data with σ0 adjusted to fit the peak width. Figure 1 shows
the APD in �η. The solid line is the result of our calculation
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FIG. 1. (Color online) Associated particle distribution in �η for
2 < pT < 4 GeV/c with trigger particle in 4 < p

trig
T < 6 GeV/c. The

data from Ref. [3] are for all charged hadrons in the respective pT

ranges. The solid line is the result of our calculation of a π− associated
with a π+ trigger.

when we set

σ0 = 0.22. (46)

Evidently, it reproduces the data [3] satisfactorily, both in the
peak structure and the pedestal. It should be emphasized that,
although the width and the pedestal height are adjusted to
fit by our choice of σ0 and �T , the height of the peak is
a consequence of our very complicated calculation involving
multiple integrals over many terms based on the recombination
model. It is by no means trivial that the data can be fitted
so well. In fact, we have only calculated π+π− production,
whereas the data are for all charged particles. Thus the precise
values of the parameters are not as significant as the overall
situation where the pedestal and peak structure of the �η

distribution of the data can be reproduced by our description
of dihadron correlation.

Turning now to the APD in �φ, we have no free parameters
to adjust, since the double differentials in the square brackets
in Eqs. (44) and (45) are identical. Upon integration over
�η we obtain the solid line in Fig. 2, which compares well
with the data [3]. The dashed line indicates the pedestal
contribution from Eq. (39). It plays the role of the flat
pedestal in Fig. 1, but here it vanishes at |�φ| = 1 because
of the subtraction scheme. Since the peak structure in �φ

is much narrower than the broad mount of the pedestal
(because σ0 � σφ), we have applied the vanishing condition
at |�φ| = 1 only to the dNped/d�φ component, knowing that
the dNpeak/d�φ component is negligible at the wings of the
peak.

Figures 1 and 2 represent our main results on dihadron cor-
relation in central Au + Au collisions at

√
s = 200 GeV, when

the trigger particle is kept within the range 4 < ptrig < 6 GeV/c
and the associated particle in the range 2 < passoc < 4 GeV/c.
We can readily calculate the APD at higher momentum ranges,
but not at lower momenta, since our model is not reliable for
parton momentum less than 1 GeV/c. For that reason we do not
calculate the APD for 0.15 < passoc < 4 GeV/c, even though
data for that range are presented in [3].

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

∆φ

dN
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P
/d

∆φ

R M
TT−T

0
T

0

STAR

FIG. 2. (Color online) Same as in Fig. 1 except that the distribu-
tion is in �φ. The dashed line represents the pedestal effect in �φ

forced to vanish at |�φ| = 1 by the subtraction scheme discussed in
Sec. III.

V. CONCLUSION

To summarize, we have successfully reproduced the data
that show the existence of peaks in �η and �φ distributions;
the former sits above a flat pedestal, whereas the latter sits
above a broad mount. Some parameters are used to fit the
data, but the essence of our work is not data fitting. We have
demonstrated that the physics underlying the detail structure
of the jet characteristics observed in RHIC experiments can
be understood in the framework of parton recombination. Jets
produced in heavy-ion collisions create shower partons that
are in the environment of thermal partons, which can them-
selves be enhanced by the passage of hard partons through
the medium. That view is probably shared by all theoretical
approaches to the problem. The issue then is how those partons
hadronize. Different models treat the hadronization process
differently. Our approach emphasizes the recombination of the
thermal partons and the shower partons in the intermediate-pT

region. That is our way of accounting for the medium effects
on jets. So far we have not encountered any obstacle in
understanding the data in that way. Data fitting is only a con-
crete demonstration that the details of the jet structure can be
quantitatively reproduced in our treatment. The hadronization
formalism is thereby enriched by the determination of some
features in the model by phenomenology.

Our first discovery in this work is that the pedestal
in the �η distribution can be related to �T in the local
thermal distribution. The pedestal is a consequence of the
recombination of the thermal partons among themselves,
which are only indirectly affected by hard scattering through
the enhancement of T resulting from energy loss. Thus the
pedestal is not a part of the jet, but it cannot be present
without a jet. This chain of successive connections involving
energy loss, enhanced thermal partons, their hadronization
by recombination, and the elevated APD in �η is a very
convoluted process that is difficult to treat separately in their
components, but represents a very physically sensible process
that may be referred to as a “long-range” correlation.

Our second achievement in this work is the success in
describing the peak structures in both �η and �φ distributions
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in terms of one angular distribution of the shower partons in a
jet cone. The only primitive correlation in the problem is that
which exists among the shower partons in a jet. The properties
of that correlation in the momentum magnitudes of the shower
partons have already been described in [12]. Here we show how
the correlations manifest themselves in the angular variables
of the produced pions. To distinguish the nature of this type
of correlation from that responsible for the pedestal, one may
refer to it as a “short-range” correlation.

There is one caveat in our analysis that should be noted.
We have calculated only π+π− production, whereas the data
are on all charged hadrons. Thus numerically the parameters
determined here are not definitive. Since particle identification
is steadily being improved, the more appropriate opportunity
for detailed matching of theory and experiment is when
the data for the production of specific species become
available.

What we have done in this paper is influenced greatly by
our intention to understand the pedestal and peak structure
in the data of [3]. As a consequence, our analysis involves
many integrals that correspond to the experimental cuts in
the data. Having determined the origin of the pedestal and
peaks in the �η and �φ distributions, we are now equipped
to launch a study of the autocorrelation problem independent
of any triggers and related experimental cuts, on which more
and more data are becoming available.
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