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Nuclear medium modifications of hadrons from generalized parton distributions
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We study the structure of generalized parton distributions (GPDs) in spin 0 nuclei within a microscopic approach
for nuclear dynamics. GPDs can be used on one side as tools to unravel the deep inelastic transverse structure of
nuclei in terms of both transverse spatial and transverse momentum degrees of freedom. On the other, one can
obtain information on GPDs themselves by observing how they become modified in the nuclear environment. We
derive the structure of the nuclear deeply virtual Compton scattering tensor and generalized parton distributions
at leading order in Q in a field-theoretical framework. The nuclear generalized parton distributions are calculated
using a two-step process—the convolution approach—where the scattering process happens from a quark inside
a nucleon, itself inside a nucleus, disregarding final state interactions with both the nuclear and nucleon debris.
We point out that details of the nuclear long-range interactions, such as two-body currents, can be disregarded
compared to the deep inelastic induced modifications of the bound GPDs. We show how the pattern of nuclear
modifications predicted, and in particular the deviations of off-shell effects from the longitudinal convolution
provide clear signals to be sought in experimental measurements. Finally, we find interesting relationships by
studying Mellin moments in nuclei: in particular we predict the A dependence for the D term of GPDs within
a microscopic approach and the behavior with t of the total momentum carried by quarks in a nucleus. The
latter provides an important element for the evaluation of nuclear hadronization phenomena that are vital for
interpreting current and future data at RHIC, HERMES, and Jefferson Lab.
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I. INTRODUCTION

Generalized parton distributions (GPDs) have sensibly
transformed our views and approaches on probing hadronic
structure since they were first introduced [1–3]. They provide,
in fact, a framework to describe in a partonic language
the orbital angular momentum carried by the nucleon’s
constituents [2]. In addition, they give invaluable information
on the partonic distributions in the transverse direction with
respect to the large longitudinal momentum in the reaction [4].

Recent developments focused on the relationship among
GPDs, the impact parameter dependent parton distributions
(IPPDs), and transversity Refs. [4,5]. Several usually unac-
counted for spatial observables, including the transverse loca-
tion of partons carrying a longitudinal fraction of momentum
x, the interparton separation, and the radius of the proton, have
been expressed in terms of both IPPDs and GPDs. The intrinsic
transverse momentum distributions (or the unintegrated parton
distributions, UPDs), and their relation to the IPPDs, and
GPDs, as well as to the nucleon form factors (FFs), and to
the inclusive structure functions, can also be studied within
the same context [5–8]. A new perspective on GPDs as “tools”
to study transversity in hadronic systems has just now begun
to unravel [9].

The most straightforward method to access GPDs exper-
imentally is to use a class of exclusive ep hard-scattering
experiments that proceed through the exchange of a highly
virtual photon, the final state being the proton, or a proton
resonance, and a real photon, or a vector meson. Initial
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experimental results exist to date for deeply virtual compton
scattering (DVCS) off a proton target, a process that has also
become the prototype for describing different aspects of GPDs
(see, e.g., Ref. [10] for a review). Nevertheless, it is also clear
that by using only this procedure, the mapping of the GPDs
in a significant fraction of the phase space, and for a range of
values of the process’ scale might be quite lengthy.

GPDs were recently also measured through DVCS off
nuclear targets [11]. The study of nuclear targets is particularly
important as they provide a laboratory where additional
information can be obtained on these elusive observables.
Exploratory studies and estimates concentrating on the passage
of nucleons through the nuclear medium, possibly generating
color transparency, were performed in Refs. [6,12,13]. Another
equivalently interesting possibility is that by keeping track of
possible transverse deformations of nucleons in the nuclear
medium, one can test the behavior of the GPDs themselves. In
this article we present a first investigation of this idea using a
microscopic description of the nucleus.

The most clear-cut experimental evidence that nucleons
have a different deep inelastic structure inside the nuclear
medium than when isolated is represented by the EMC
effect [14]. The EMC effect is the observation of a different
behavior of the inclusive electron/muon nuclear cross section
per nucleon with respect to the free nucleon one (see Ref. [15]
for a review). These differences appear at intermediate values
of Bjorken x (xBj = Q2/2MNν,Q2 being the four-momentum
transfer, MN the nucleon mass, and ν the energy transfer),
namely 0.1 <∼ xBj <∼ 0.7, where they cannot be attributed either
to expected coherent effects such as nuclear shadowing (xBj �
0.1) or to Fermi motion (xBj → 1). Throughout the years since
the first discovery of the EMC effect an increasingly coherent
picture has emerged confirming that even in a deep inelastic
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FIG. 1. Amplitude for DVCS from a nuclear
target at leading order in Q2. (a) Coeherent pro-
cess, (b) incoherent process. For the incoherent
process the nucleon handbag diagram is also
assumed.

scattering (DIS) process characterized by a high locality of the
probe-target interaction region, nucleons cannot be treated as
free. Their interactions are instead important; they can bear as
important consequences as being responsible for modifications
of, for example, the chiral condensate, the color string tension,
or the confinement scale in cold nuclear matter [16],1 and,
therefore, play a key role in understanding the origin of
hadronic mass.

Despite a quite general consensus on this picture, the form
these interactions can take is still very model dependent,
ranging from new applications of effective theories [18,19]
to extensive studies of the impact of modifications of the
confinement scale or of the string tension for bound nucleons
([16] and references therein). The extension to finite temper-
ature measurements is possible but challenging; however, in
light of current and future relativistic heavy-ion collisions and
eA collisions it is important to better define the connection
with nuclear medium modifications that can be considered as
precursors to the finite T ones. The avenue that we espouse
in this article is in this spirit. In particular, we make use of
GPDs as a tool to access transverse coordinates and momenta
in the nucleus. Transverse degrees of freedom, in turn, play a
special role in quark reinteractions [20] and we expect them
to play a significant role in nuclear medium modifications
and in hadronization [16]. In our description of inclusive DIS
from a nucleus, reinteractions are parametrized as off-shell
effects. Kinematical off-shell effects in a nucleus derive from
the modification of the relation between the struck quark’s
transverse momentum, k⊥, and its virtuality, k2, produced by
the P 2 dependence of the bound nucleon’s structure function. It
is well known that the account of kinematical off-shell effects
alone is an oversimplified picture that produces a violation
of Adler’s sum rule Refs. [21,22] and that dynamical nucleon
off-shell effects should also be introduced. An important aspect
of the approach proposed here is that by restoring Adler’s sum
rule in a nucleus, it provides a description of the EMC effect
that, at variance with the naive (on-mass-shell) binding models,
can simultaneously and quantitatively reproduce both the xBj

and A dependences of the data.

1Interactions become more and more important at finite temperature
where nonperturbative properties of QCD (i.e., its vacuum) and
confinement are expected to be modified (see, e.g., Ref. [17]).

In Sec. II we define our general framework; in Sec. III we
calculate GPDs in nuclei with off-shell parametrizations. We
subsequently evaluate in Sec. IV the role off-shellness in the
second Mellin moments of the nuclear GPDs. Finally, in Sec. V
we give our conclusions and outlook on future developments.

II. GENERAL FRAMEWORK

In this section we present the formalism used to derive
GPDs in nuclei in terms of their constituents, the protons and
neutrons, including the effects of nucleon binding. Nuclear
GPDs were at first calculated for the deuteron [24]. In Ref. [25]
the general structure of the nuclear hadronic tensor within OPE
was carefully evaluated for spin 0, 1/2, and 1 nuclei; however,
a rather crude estimate of dynamical effects was given. The
latter were evaluated in Refs. [26,27] only in the low x region,
dominated by nuclear shadowing. Quantitative calculations
for the valence region were performed in Ref. [28] for 3He,
within the (longitudinal) convolution model (i.e., disregarding
off-shell effects) and transverse degrees of freedom.

The results we present here are also valid in the valence
region (x � 0.2). Our evaluation of nuclear effects is extended
to larger nuclei than the deuteron and 3He, namely to complex
nuclei such as 4He, 12C, and so on, that are close in atomic
number to Ne and Xe, used in HERMES experiments [11].
Furthermore, we include nucleon off-shell effects. These play
an essential role in the determination of nucleon deformations
in the nuclear medium.

We consider DVCS off nuclei at leading order in Q2

(twist-2). The diagrams in Fig. 1 represent the two pos-
sible mechanisms through which DVCS off nuclei occurs:
(a) coherent scattering, where the virtual photon with four-
momentum q scatters from a nuclear target producing a real
photon q ′, the final nucleus A recoiling as a whole; and
(b) incoherent scattering, where the final nucleus breaks up
into a nucleon and an A − 1 system, with final invariant
mass squared, M∗2

A ≈ M2
A+ “soft excitation terms.” A similar

treatment applies to the other hard exclusive reaction used as
a probe of GPDs in nuclei, namely hard meson production.
In what follows we calculate the “double layer” diagram
[Fig. 1(a)] because of its relation to the forward EMC effect.
Current experimental data [11] contain in principle both
contributions, a separation of the two being, however, feasible
in the near future. In the present article we are concerned
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with the coherent contribution only, because of its relation to
the (forward) EMC effect. A comparison of the contributions
of coherent and incoherent scattering will be carried out in
Ref. [29]. Other components in addition the nucleon (�’s,
6-quark bags, etc. . .) could in principle be similarly described
by the lower part of the diagram. In this article we take the point
of view that both the xBj and A dependences of the EMC effect
can be explained quantitatively within a “minimal” approach
involving only nucleons. The nucleon’s off-shellness, however,
has to be considered explicitly, as it plays the role of a
parametrization of soft interactions among nucleons (or quarks
and nucleons debris) during the scattering process.

We denote the nuclear, the active nucleon’s, and ac-
tive quark’s four-momenta, respectively, with PA, P , and k.
P ′

A = PA − �,P ′ = P − �, and k′ = k − � are the final
nuclear, nucleon’s, and quark’s momenta, respectively; q is
the virtual photon momentum and q ′ = q + � the outgoing
photon momentum; �2 ≡ t . Notice that � = k − k′ ≡ P −
P ′ ≡ PA − P ′

A, in the absence of final state interactions.
Two distinct formulations of GPDs are given in the

literature that differ in the “choice of the defining four-vector”
[30]. Because both formulations turn out to be useful in a
complementary way, in the following we list the kinematical
variables and definitions for both.

In set (1) the kinematical variables are defined with respect
to the average of the target’s incoming and outgoing momenta
following Ref. [2]. These are P A = (PA + P ′

A)/2 and P =
(P + P ′)/2 for the nucleus and for the off-shell (P 2 	= M2)
nucleon, respectively. One has the following:2

x = (k+ + k′+)/2(P
+
A/A) (1a)

y = P
+
/(P

+
A/A) (1b)

xN = x/y ≡ (k+ + k′+)/2P
+

(1c)

ξ = �+/2(P
+
A/A) (1d)

ξN = �+/2P
+ ≡ ξ/y. (1e)

The resulting distributions are real, and they are even functions
of the variables ξ, ξN .

If the variables are defined with respect to the incoming
nucleon momentum as in Ref. [3] one has:

X = k+/(P +
A /A) (2a)

Y = P +/(P +
A /A) (2b)

XN = X/Y ≡ k+/P + (2c)

ζ = �+/(P +
A /A) (2d)

ζN = �+/P + ≡ ζ/Y. (2e)

The structure functions defined in terms of these variables
are more straightforwardly connected with the DIS parton
distributions.

GPDs written in terms of the two sets of variables can
be translated into one another. The graph in Fig. 1, in fact,
simultaneously defines three configurations where (i) both k

2We use the notation: p± = 1√
2
(po ± p3), with (pk) = p+k− +

p−k+ − p⊥ · k⊥.

and k′ are quarks, (ii) both k and k′ are antiquarks, and (iii) k

is a quark (antiquark) and k′ is an antiquark (quark).
In the quark region, that is the main interest for this article

because it is where the EMC effect in DIS occurs, ξ < x < 1,

ζ < X < 1, and the following relations hold:

X = x + Aξ

1 + ξ
(3a)

Y = y + Aξ

1 + ξ
(3b)

XN = x + ξ

y + ξ
(3c)

ζ = 2ξ

1 + ξ/A
(3d)

ζN = 2ξN

1 + ξN

. (3e)

Similar relations can be derived in the antiquark sector (−1 <

x < −ξ and ζ < X < 1).3

A. Nucleon

We first summarize the main results in the free nucleon
case. The amplitude for DVCS is defined as follows:

T µν(P,�, q) = i

∫
d4yeiq.y〈P ′|T [Jµ(y)J ν(0)]|P 〉. (4)

Notice that we only assume, and do not write explicitly,
the dependence of the various terms on the virtual photon’s
momentum, q. The factorization theorem for hard-scattering
processes (Fig. 1) allows one to separate the hard part,
calculated using QCD Feynmann rules, from the soft hadronic
matrix element, M:4

T µν = −i

∫
d4k

(2π )4
Tr

[(
γ νi( 	k+ 	q)γ µ

(k + q)2 + iε

+ γ µi( 	k+ 	�− 	q)γ ν

(k + � − q)2 + iε

)
M(k, P,�)

]
. (5)

M(k, P,�) is an off-forward correlation function:

Mij (k, P,�) =
∫

d4yeik.y〈P ′|ψj (−y/2)ψi(y/2)|P 〉, (6)

with Dirac indices i, j written out explicitly. Notice that we
have written the argument of ψ choosing the “symmetrical”
formalism of Ref. [2]. By taking the Bjorken limit and by
projecting out the dominant contribution corresponding to
the transverse virtual photon polarization, one obtains the
following:

T µν =
(

−gµν + P̃ µP̃ ν

P̃ 2
− qµqν

Q2

)
FT , (7)

3The region −ξ < x < ξ requires a more detailed description and
it is beyond the scope of this article. See, however, Ref. [30] for the
nucleon case.

4We do not include for the time being either radiative corrections,
or O(1/Q2) terms.
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where P̃µ = P µ + (P · q/Q2)qµ. The off-forward structure
function can then be extracted from FT as follows:5

FT (P,�)

=
∫ 1

−1
dx

(
1

x − ξ/2 + iε
− 1

x + ξ/2 − iε

)
F (x, ξ, t), (8)

with the following:

F (x, ξ, t) = 1

2P
+

{
U (P ′, S ′)

[
γ +H (x, ξ, t)

+ iσ+µ�µ

2M
E(x, ξ, t)

]
U (P, S)

}
. (9)

Equation (9) defines the GPDs, H and E, for the unpolarized
scattering case [2]. H and E and the generalized distributions
Fζ (X, t) and Kζ (X, t), introduced similarly by Radyushkin
using double distributions (DD) in Ref. [3], describe the same
physics; however, the connection between the two different
sets of kinematical variables and physical regimes spanned
needs to be specified.

In this article, we adopt the convention first illustrated in
Ref. [30]; that is, we define Hq(q)(X, ζ, t) and Eq(q)(X, ζ, t)6

directly in terms of H and E, as from Eq. (9), but (i) changing
the kinematical variables to set Eq. (2), with A = 1 for the
free nucleon, and (ii) defining explicitly the contributions of
quarks and antiquarks. Because we are interested in the region
dominated by DGLAP evolution (and ξ > 0), we consider the
following mapping of both regions: ξ < x < 1 describing scat-
tering from a quark and −1 < x < −ξ describing scattering
from an antiquark onto ζ < X < 1:

(1 − ζ/2)Hq(X, ζ, t) = H (x, ξ, t) x > ξ, X > ζ (10a)

(1 − ζ/2)Hq(X, ζ, t) = −H (x, ξ, t) x < −ξ, X > ζ

(10b)

and

(1 − ζ/2)Eq(X, ζ, t) = E(x, ξ, t) x > ξ, X > ζ (11a)

(1 − ζ/2)Eq(X, ζ, t) = −E(x, ξ, t) x < −ξ, X > ζ,

(11b)

where the factor 1 − ζ/2 ≡ P
+
/P + is because of the differ-

ence in “reference momenta” (see Eqs. (1a)–(1e)). The new
definitions are best suited both for describing the convolution
with nuclear variables (see below), as well as for perturbative
evolution. Notice that for ξ, ζ = 0, for instance, one maps the
entire X ∈ [0, 1] domain onto the x ∈ [−1, 1] domain. As a
result, Hq(X, ζ, t) and Hq̄(X, ζ, t) can be expressed in terms of
the nonsinglet (NS) or valence (V) and singlet (S) contributions
as following:

HV =
∑

q=u,d

Hq(X, ζ, t) − Hq(X, ζ, t) (12a)

5Notice that we adopt the axial gauge, although results can be cast
in a form highlighting gauge invariance [2].

6For completeness, the correspondence with the notation in Ref. [30]
is Hq(q) ≡ Fq(q)(X, ζ, t) and Eq(q) ≡ Kq(q)(X, ζ, t).

HS =
∑

q=u,d,s,...

Hq(X, ζ, t) + Hq(X, ζ, t). (12b)

HV and HS become the usual valence and singlet quark
distributions in the forward limit.

The proton and neutron GPDs are obtained from Hq(q) as
follows:

Hp = 2
3Hu − 1

3Hd − 1
3Hs (13a)

Hn = − 1
3Hu + 2

3Hd − 1
3Hs. (13b)

Similar formulas hold for Eq(q). In what follows we assume
that isospin invariance holds in a nucleus as well.

In Sec. III we calculate GPDs using an effective theory
for the proton, with a quark and a diquark component, as the
lowest light-cone Fock state wave function.

B. Nucleus

We consider now the case in which the nucleon is bound in
a nucleus with mass number A and mass MA. The off-forward
nuclear amplitude can be calculated analogously to Eq. (5) by
convoluting the truncated off-forward nucleon amplitude, T N

µν ,
with the nuclear matrix element, MA(P,PA,�):

T A
µν(PA,�) =

∫
d4P

(2π )4
T N

µν(k, P,�)MA(P,PA,�), (14)

where

MA
ij (P,PA,�) =

∫
d4yeiP·y〈P ′

A|
A,j (−y/2)
A,i(y/2)|PA〉.
(15)

T N
µν(k, P,�) is the hadronic tensor for a bound nucleon (we

consider from now on the isoscalar combination, N = (p +
n)/2).

The structure function can be extracted from Eq. (14)
similarly to the procedure used to obtain Eq. (9) from
Eq. (5), leading to the following:

FA(X, ζ, t) =
∫

d4P

(2π )4
FN

OFF(XN,ζN,P 2, t)MA(P,PA,�),

(16)

where all kinematical variables have been defined in
Eqs. (1)–(3). Notice that the bound nucleon is off its mass shell,
namely P 2 ≡ P 2(X,P 2

T ) 	= M2, and consequently FN
OFF(XN,

ζN, P 2, t) 	= FN (XN, ζN, t). FN (XN, ζN, t) = (Fp + Fn)/2
is the nucleon, or isoscalar, combination of GPDs, obtained
using Eq. (13b).

The form of MA depends on the spin of the nucleus.
In the next section we evaluate Eq. (16) for a nucleus with
spin 0.

III. EVALUATION OF NUCLEAR GPDS

The evaluation of Eq. (16) requires a mechanism for
describing nucleon off-shellness. We adopt an effective theory
described in Fig. 2, where the coupling at the nucleon vertex
is g(k2)ψNψqφ,ψN,ψq , and φ being the wave functions of
the nucleon, P, the active quark, k, and the spectator diquark,
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FIG. 2. Off-forward nuclear double convolution diagram. The
nucleon is described by a quark-diquark model and the nucleus is
treated within the impulse approximation.

kX, respectively. Within this model, that can be considered
a realization of the lowest Fock component for the light cone
wave function, the active quark’s virtuality, k2

µ 	= m2
q , is related

to the intrinsic transverse momentum, and either variable can
be integrated over to obtain the forward parton distribution
(see, e.g., Ref. [32] and references therein). Similarly, one can
treat the “active nucleon” within a relativistic nuclear effective
theory (lower part of diagram in Fig. 2). Different versions of
the spectator model were used to calculate the (forward) EMC
effect Refs. [22,33,34].

The main conclusion from these articles was that nucleon
off-shell effects are essential for reproducing quantitatively
the effect although the dynamical source of off-shellness was

not transparent. In Fig. 3 we present a calculation of the ratio
RDIS

A = dσA/dσD obtained including off-shell effects.
To interpret the curves in the figure, a few comments are in

order:

(1) For consistency with the presentation of experimental
data, we show ratios of forward nuclear structure func-
tions (with A > 2), to the deuteron forward structure
function. The deuteron is in itself affected by an EMC
effect [34]. Ratios of A > 2 nuclei to a nucleon structure
function will in principle look different.

(2) The dashed curve is calculated according to the longitu-
dinal convolution (i.e., with no off-shell effect included).
The effect of binding is enhanced with respect to mean
field models [18] because of the account of short range
correlations among nuclei [35]. We note, however, that
despite the differences between the models in Refs. [18]
and [35], neither one is able to reproduce the effect for the
measured range of values of nuclei. In other words binding
cannot account for the A dependence of the effect.

(3) As already noted in Ref. [22,33], kinematical off-shell
effects, coming from the different relation between the
active quark’s virtuality and its transverse momentum in
a nucleus, by generating an extra A-dependent term, can
account for the discrepancies at large x. This is clearly
seen from Fig. 3.

(4) Dynamical off-shell effects, originating from intrinsic
modifications of the quark spectral function need to be
taken into account to guarantee the fulfillment of Adler’s
sum rule [23] in nuclei. Forward DIS, in addition to
allowing us to state that dynamical off-shell effects should
indeed be present, gives very little insight on the nature of
the effects. Our calculation presented in Fig. 3, includes
the effect of parton reinteractions, located mainly at low
x (x < 0.3) [36]. This seems to be a favored mechanism
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FIG. 3. (Color online) EMC effect in forward Compton scattering, with off-shell effects (full line), Eq. (29), and calculated with the
longitudinal convolution formula, Eq. (35). (Left panel) 4He; (right panel) 12C. Experimental data from Ref. [31].
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with respect to the nucleon deformation one, taken into
account in Ref. [22].

(5) Most crucially, nucleon binding alone does not provide the
correct A dependence of the EMC effect ratio because of
the saturation with in increasing A of both the kinetic and
separation energies of nucleons Refs. [18,37]. Off-shell
effects provide an extra degree of freedom that allows for
a quantitative description of the effect.

GPDs represent a theoretical tool that can be used for studies
of both parton reinteractions [38] and of nucleons spatial
dimensions [4–6].

It is therefore natural to extend our approach to the
off-forward case. We discuss the region ζ�X, which is most
relevant for the EMC effect, where both partons in Fig. 1 are
quarks (an extension to the region ζ > X, where GPDs behave
like meson distributions, will be considered in a forthcoming
article).

A. Nucleon

In the spectator model for the nucleon we assume that
the residual system or, formally, the intermediate state in
the nucleon correlation function is a diquark described by an
outgoing plane wave. In principle, a spectrum of intermediate
states with different masses, form factors, and spin/isospin
either 0 or 1 should be considered. In our calculations,
however, we use only a scalar component for the diquark,
with a mass spectrum dominated by a single mass value.
These assumptions affect on one side the flavor dependence
of our nucleon GPDs and, consequently, the predictivity for
isospin dependent quantities. On the other, because no ab initio
antiquarks and gluons are considered, which would require
a (model-dependent) continuum mass spectrum, they apply
specifically to the valence sector. Both assumptions can in
principle be lifted at a later stage [29]. However, for the present
goal of highlighting the different sources of nuclear effects in
GPDs, we favored a simpler model of nucleon structure, that is
relatively well tested, over increasing the number of parameters
of our study. The structure of the nucleon matrix element can
be read from the upper part of Fig. 2:

MN
ij = U (P ′, S)�(k′, P )

( 	k′ + m)

k′2 − m2

( 	k + m)

k2 − m2
�(k, P )U (P, S),

(17)

where � is the vertex connecting the quark, diquark, and
nucleon; U (P, S) is the nucleon spinor. The form of � depends
on the way the spin and isospin are carried through the vertex.
In analogy with the forward case [33], we define � so that:7

MN
ij = ρN (k2, k′2)

∑
s

ui(k, s)uj (k′, s)2πδ
(
k2
X − M2

X

)
, (18)

7Similar results were obtained in Ref. [32] by assuming � =
Î�(k2, P 2). The complete set of independent functions that appear
in principle using a covariant formalism for the off-shell tensor was
listed in Ref. [39].

with

ρN (k2, k′2) = N φ(k′2)

k′2 − m2

φ(k2)

k2 − m2
, (19)

N being a normalization constant. In Eq. (18) the active off-
shell parton is described by a spinor that obeys the Dirac
equation, with an off-shell mass, m∗ [m∗ = (m +

√
k2)/2]:

(m+ 	k)u(k, s) = 2m∗u(k, s). (20)

By inserting Eqs. (17) and (18) into Eqs. (5) and (9) one obtains
the following:√

1 − ζHN (X, ζ, t) − 1

4

ζ 2

√
1 − ζ

EN (X, ζ, t)

= 1

2P +

∫
d4k

(2π )4
Tr[γ +MN (k, P,�)]

= X

1 − X

√
X − ζ

X

∫
d2k⊥
(2π )3

ρN (k2, k′ 2). (21)

The square root factor in the equation takes into account the
normalization of the spinors from Eq. (20). In our derivation
we made use of Eqs. (10); all kinematical variables have been
defined according to Eqs. (2) with A = 1. More details are
given in the appendix.

The results obtained above correctly reproduce the parton
model in the forward limit where

U (P, S)�(k, P )
( 	k + m)

k′2 − m2

( 	k + m)

k2 − m2

×�(k, P )U (P, S) ≈ ρN (k2)( 	k + m), (22)

yielding for the (transverse) structure function as follows:

FN (xBj ) = 1

2P +

∫
d4k

(2π )4
ρN (k2) Tr[γ +( 	k + m)]

= xBj

1 − xBj

∫
d2k⊥
(2π )3

ρN (x, k2
⊥), (23)

with ρN (k2, k′2) → ρN (k2) for k = k′.

B. Nucleus

The nuclear part of the diagram in Fig. 2 is evaluated
similarly to the nucleon one. For a spin 0 nucleus we write
the matrix element, Eq. (14), as follows:

MA
ij = UA−1(P ′

A, S)�A

( 	P ′ + M)

P ′2 − M2

( 	P + M)

P 2 − M2

×�AUA−1(PA, S)2πδ
(
P 2

A−1 − M∗2
A−1

)
, (24)

where UA−1 describes the A − 1 system, �A is the nuclear
vertex function, and M∗

A−1 is the mass of the outgoing A − 1
nuclear system.

We now make the assumption that the spin structure at the
nuclear vertex is treated similarly to Eq. (18):

MA
ij = ρA(P 2, P ′2)

∑
S

Ui(P, S)Uj (P ′, S), (25)

with Ui(P, S) being the spinor for an off-shell nucleon with ef-
fective mass M∗ 	= M . ρA(P 2, P ′2) is the off-diagonal nucleon
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light cone momentum distribution. It can be approximated by
a nonrelativistic nuclear spectral function:

ρA(P 2, P ′2) ≈ SA(|P|, |P′|, E)

=
∑
f

�f (|P|)�∗
f (|P′|)δ[E − (

E
f

A−1 − EA

)]
,

(26)

where |P| and |P′| are the absolute values of the incoming
and outgoing nucleons three-momenta, respectively, E is the
nucleon separation energy, EA the binding energies of the
initial nucleus, A, and of the final nuclear system, A − 1.
�f is the (Fourier transformed) overlap integral between
the initial and final nuclear wave functions; the sum over f
is carried out over all the final configurations of the A − 1
system (see Ref. [35] and references therein for more details).
Equations (25) and (21), inserted in [Eq. (16)], yield the
following:

FA(X, ζ, t) =
∫

d2P⊥dY

2(2π )3

1

(A − Y )
AρA(P 2, P ′ 2)

×FN
OFF(XN, ζN, P 2, t), (27)

where A = (Y − ζ/2)[
√

Y (Y − ζ )] accounts for the spinors
normalization [Eq. (25)]. By replacing FN

OFF with the expres-
sion in Eq. (21), one finally obtains the following:

HA(X, ζ, t) =
∫

d2P⊥dY

2(2π )3

1

(A − Y )
ρA

× [P 2(Y, P 2
⊥), P ′ 2(Y, P 2

⊥, ζ, t)]A (28)

×
√

Y − ζ

Y

[
HN

OFF

(
X

Y
,

ζ

Y
, P 2, t

)
− 1

4

(ζ/Y )2

1 − ζ/Y

×EN
OFF

(
X

Y
,

ζ

Y
, P 2, t

)]
. (29)

The kinematical variables are from Eqs. (2); similarly to
the free nucleon case. Numerical results presented in the
following where obtained in the small ζ approximation, that
is, considering for the off-shell nucleon:√

1 − ζNHN
OFF(XN, ζN, P 2, t)

= XN

1 − XN

√
XN − ζN

XN

∫
d2k⊥
2π

ρ̃N [k2(P 2), k′2(P 2)], (30)

and disregarding the second term in Eq. (29). HN
OFF is modified

both kinematically and dynamically with respect to the
free nucleon one, HN [Eq. (21)]. Kinematical modifications
because of Fermi motion and nuclear binding produce an
extra shift in the X dependence with respect to the free
nucleon one, analogous to what found in forward DIS. HN

OFF
is, however, expected to be also structurally different from the
on-shell case because of nuclear medium-induced distortions
(schematically, ρ̃ 	= ρ). Off-shell modifications, differently
from Fermi motion and binding, affect the transverse variables.
It is therefore of the utmost importance to evaluate them
using GPDs, with a twofold goal in mind: First, because of
the interpretation of GPDs as Fourier transforms of impact
parameter dependent parton distribution functions (IPPDFs),

such studies will provide a handle to directly evaluate the
spatial modifications of the nucleon inside the nuclear medium
[29]. The other compelling reason to explore quantitatively
off-shell effects in this context is that they are essential
to interpret the experimental data on DIS from nuclei (see
Fig. 3).

Kinematical off-shell effects can be evaluated straightfor-
wardly as they result from a difference in the relationship
between the struck parton’s virtuality, k2

µ ≡ k2, and its intrinsic
transverse momentum, k⊥, in a free and in a bound nucleon,
respectively:

k2
N = M2(X) − k2

⊥
1 − X

(31a)

k2
A = M2

A(XN ) − a2
⊥

1 − XN

, (31b)

with

M2(X) = XM2 + X

1 − X
M2

X (32a)

M2
A(XN ) = XNP 2 − XN

1 − XN

M2
X (32b)

P 2 = Y

A

(
M2

A − M2
A−1 + P 2

⊥
1 − Y/A

− P 2
⊥

Y/A

)
, (32c)

where XN = X/Y,mqq is the diquark’s mass, and the intrinsic
transverse momentum in the nucleus is k⊥ − XNp⊥ ≡ a⊥.

In a nucleus one has therefore a shift in the longitudinal
variable, X → XN , a shift in the transverse variable, k⊥ →
k⊥ − XNp⊥, and a shift in the nucleon’s invariant mass
squared, M2 → P 2

µ. The shift in X is associated with the
X rescaling caused by binding. The shifts in the transverse
variables are because of off-shell effects. Even in the absence of
nucleon deformations (ρ̃ = ρ), these shifts modify the bound
GPD, HN

OFF in Eq. (29). It is important to notice that such
modification is based on the same physical mechanism as for
the bound forward structure functions. By changing variables
from k⊥ to k2

µ, and by writing explicitly ρ as in Eq. (19), one
can in fact write:

HN
OFF(XN, ζ, P 2, t) = XN

√
XN

ζ − XN

∫ 2π

0
dφ

∫ k2
A MAX(XN )

× dk2
A

2π

φ
(
k2
A

)
φ∗(k′2

A

)
k2
Ak′2

A

, (33)

HN (X, ζ, t) = X

√
X

ζ − X

∫ 2π

0
dφ

∫ k2
N MAX(X)

× dk2
N

2π

φ
(
k2
N

)
φ∗(k′2

N

)
k2
Nk′2

N

, (34)

The difference between HN
OFF and HN is in the upper

limit of integration for the equations above. The effect of
kinematical off-shellness can therefore be obtained as an
additional rescaling of the longitudinal variable, X, that turns
out to increase the effect of Fermi motion and binding.
Phrased otherwise, kinematical off-shell effects are an indirect
consequence of Fermi motion and binding that, although
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originating from modifications of transverse variables in a
nucleus, affect the dependence of the GPDs on the longitudinal
variable X.

The existence of kinematical off-shellness indirectly im-
plies that intrinsic deformations/parton reinteractions are
present. In other words, off-shell effects are an indirect
manifestation of the impact of interactions among particles
during the hard scattering process. A clear illustration of this
picture was given, for example, in Ref. [21], where it was
shown that in DIS from a nucleon kinematical off-shell effects
can generate FL; however, this can be evaluated consistently
with baryon number conservation (Adler’s sum rule [23]) only
by including ab initio interactions, in this case the higher twist
terms. In the nuclear case a full theory of parton reinteractions
is still lacking (see, however, many aspects treated, e.g., in
Ref. [38] and references therein), therefore in what follows we
introduce a phenomenological approach. We first calculate
exactly the kinematical off-shell effects. We then restore
the Adler sum rule by introducing interactions through a
modification of spectral function’s denominator, Eq. (19). A
more detailed discussion of this point is beyond the scope of
this article and will be given elsewhere [36].

If instead off-shell effects are disregarded, one recovers a
longitudinal “convolution formula:”

HA(X, ζ, t) =
∫ A

X

dY

√
Y − ζ

Y
fA(Y, ζ, t)HN (XN, ζ, t),

(35)

where for consistency with previous literature in forward
scattering [15], in Eq. (29) we switch integration variables
from P⊥ to |P | ≡ P as follows:

fA(Y, ζ, t) = 2πM

∫
Pmin(Y,E)∞

dPP�A(P )�∗
A(|P + �|).

(36)
Other kinematical variables that appear in the equation are as
follows:

|P + �| = (P 2 + ζ 2P 2
‖ + �2

⊥ + 2P‖ζ + 2P⊥ · �⊥)2 (37a)

P‖ ≈ (M − E) − MY (37b)

Pmin(Y,E) = |M(1 − Y ) − E|. (37c)

E = ∫
d3PdESA(P,E)E, is the average separation energy.

Its value, enhanced by nucleon short range correlations, was
shown to govern binding effects in the forward EMC effect
(see Ref. [15] and references therein). By performing the
integration over |P| ≡ P = (P 2

‖ + P 2
⊥)1/2, instead than over

the transverse momentum P⊥, one generates a Y-dependent
lower limit of integration, Pmin. The expression for P‖ was
obtained by energy-momentum conservation at the nuclear
vertex in Fig. 2, disregarding the recoil energy of the A − 1
nuclear system.

We conclude this subsection by noting that in the forward
limit, � → 0, Eqs. (29), (35) correctly reproduce the nuclear
formulas obtained (e.g., in Refs. [33,35]).

D=n+p

4He

X

H
A

(X
,t

)

10-4

10-3

10
-2

10
-1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 4. GPD in 4He, divided by the number of nucleons (full
lines), and in the nucleon (dashed lines), evaluated at two different
values of t, t = 0 and t = 0.1 GeV2, as respectively indicated by the
arrows in the figure.

C. Numerical results

We calculated HA in both the on-shell and off-shell cases
using the nuclear model from Ref. [35] and a parametrization
for HN at ζ = 0 from Ref. [6]. All results are presented for the
4He nucleus, although our formalism applies more generally
to complex nuclei with larger A.8

1. Off-forward EMC effect

In Fig. 4 we show the HN(A)(X, 0, t) plotted vs. X, for a
nucleus (4He) and for the proton, both normalized to 1, and
for t = 0 and t = 0.1 GeV2, respectively. Because 4He has a
much larger drop with t because of the nuclear form factor
behavior, we consider the following ratio:

RA(X, ζ = 0, t) = HA(X, t)/FA(t)

HN (X, t)/FN (t)
, (38)

where HN(A)(X, t) ≡ HN(A)(X, ζ = 0, t) and FN is the Dirac
form factor for a proton. RA becomes equal to the EMC ratio
in the forward limit t = 0. The following normalizations hold:∫

dX
HN(A)(X, t)

FN(A)(t)
= 1. (39)

By choosing the form for RA in Eq. (38), one eliminates
the, somewhat spurious, t dependence coming from the mere
comparison of form factors of nuclei with different A (see
Fig. 4). Nevertheless, RA includes contributions from both the
long range and short range nuclear structure. In Fig. 5 we show

8Calculations for other complex nuclei are available under request
at the e-mail addresses listed here.
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t=0.1 (OFF)
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FIG. 5. Off-forward EMC effect in 4He. The ratio RA represented
in the figure is defined in Eq. (38). Full line: including off-shell
effects. Dashed line: longitudinal convolution. The full line with
bullets includes off-shell effects, at t = 0.1 GeV2; the dashed line
with bullets was obtained with the longitudinal convolution at t =
0.1 GeV2. The lines without bullets correspond to t = 0.

RA as a function of X for different values of t (t = 0 GeV2 and
t = 0.5 GeV2), both including [Eq. (29)], and disregarding
[Eq. (35)] off-shell effects. Notice that the curves for t = 0
do not coincide exactly with the “EMC”-like ones in Fig. 3,
because they are divided by the proton, whereas Fig. 3 includes
nuclear effects in the deuteron target. The EMC effect is both
enhanced in magnitude, and shifted to lower values of X, at

t 	= 0. Furthermore the effects of dynamical off-shellness are
enhanced. As we explain also below, it should be clarified that
such an enhancement is not a direct consequence of having
probed through GPDs partonic and/or nucleonic transverse
degrees of freedom. In fact, because � and the targets intrinsic
transverse momenta are decoupled, the t dependence in
RA originates from the modification of the longitudinal
variable: X → X/〈Y (A, t)〉, the average value of Y being
calculated using Eq. (26).

In Fig. 6, we show the X behavior of RA for different
values of t, in separate panels: longitudinal convolution (left),
off-shell effects (right). The marked difference at x = 0.1 was
unexpected according to estimates based on the longitudinal
convolution [25]. The effect predicted in this article is quite
sizable and it should be measurable within the accuracy of data
currently been analyzed at HERMES.

2. t dependence and role of long-range nuclear interactions

To proceed further, one must devise a method to disentangle
the different contributions from both the short and long range
nuclear effects originating from the t dependent function
ρA in Eq. (29). A number of long range effects that are
well known since the early evaluations of nuclear form
factors, are also present in principle for the nuclear GPDs.
In a nutshell, one must include terms beyond the nuclear
impulse approximation—the so-called two-body and three-
body current contributions from the coupling of the virtual
photon with a mesonic component in the nucleus and with a
nucleon, respectively [25].

To what extent are these terms affecting the ratio RA? To
evaluate their separate contributions, we consider a Taylor
expansion of Eq. (38) around the value Y = 1 and P 2 = M2

t=0
t=0.1
t=0.2
t=0.5
t=0.8
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0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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FIG. 6. Comparison of off-forward EMC effect without [panel (a)], and with [panel (b)] off-shell effects. The ratio RA is given in
Eq. (38). Several values of t ranging from t = 0 to 0.8 GeV2 are considered, as labeled in the figure.
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FIG. 7. Comparison between long range nuclear contributions, and deep inelastic type contributions to the t dependence of the ratio RA,
Eq. (38). By performing an expansion in the parameter Y, Eq. (40), one can pinpoint the driving terms for such dependence. The figure illustrates
the first two terms of the expansion, from which the nuclear “form-factor-like” dependence is clearly shown not to affect the ratio.

as follows:

RA(X, t) ≈ 1 + 〈YA
1 (t)〉

FA,point(t)

[
1

HN (X)

∂HN (X, t)

∂X
X

]
+ 〈YA

2 (t)〉
FA,point(t)

[
X2

∂2HN (X,t)
∂X2 − 2X ∂HN (X,t)

∂X

2HN (X)

]
. . . ,

(40)

where, from Eqs. (35) and (47), FA(t) = FA,point(t)FN (t),
with

FA,point(t) =
∫ A

0
dYρA(Y, t) (41)

〈Y1(A, t)〉 =
∫ A

0
dYρA(Y, t)(1 − Y ) (42)

〈Y2(A, t)〉 =
∫ A

0
dYρA(Y, t)(1 − Y )2, (43)

where FA,point is the nuclear form factor, calculated by
assuming pointlike nucleon structure and Yi, i = 1, 2 are
proportional to higher nuclear moments. Equation (40) helps
us understand the behavior in X,A, and t of RA from the
observation that such ratio is determined by a combination
of the values of 〈YA

1(2)(t)〉 ≈ 〈Y1(2)(A, 0)〉 and the slope of
HN vs. X. This can be seen more intuitively by taking a cruder
approximation for the numerator of RA:

HA(X, t)

FA(t)
≈ 1

FN (t)
HN

(
X

〈Y norm(A, t)〉 , t
)

, (44)

where Y norm(A, t) is the t-dependent average nucleon momen-
tum in a nucleus, normalized to unity. The extent to which HA

on the l.h.s differs from the free nucleon case is governed by
the rescaling in X shown on the r.h.s.. This, in turn, depends

both on the size of the deviation from unity of the nucleon
momentum 〈Y norm〉 and on the steepness of the slope of
HN in X.

In the forward limit, Y1(A, t = 0) = EA/M −
(1/3)〈P 2〉A/M2 and Y2(A, t = 0) = (1/3)〈P 2〉A/M2 [35].
Notice that all the higher order terms in the series have a similar
structure, namely they are products of a 〈Yn(A, t)〉, n > 1
term, and a nth order derivative of HN divided by HN . The
terms 〈Y1(2)(A, t)〉/FA,point(t), [X∂HN (X, t)/∂X]/HN (X, t),
and [X2∂2HN (X, t)/∂2X2]/HN (X, t) are plotted in Fig. 7 vs.
t, from which we see that the t dependence coming from the
〈Y1(2)(A, t)〉 terms is relatively very small.

The t dependence of RA shown Figs. 5 and 6 can be
understood, therefore, within the nuclear impulse approxima-
tion. The mechanism that produces the modifications of the
bound nucleon GPD, and the predicted increase of the effect
at t 	= 0, is, similarly to the forward case, a reduction of the
quarks momentum inside the nuclear medium. Such reduction
as shown in more detail in Sec. IV, is enhanced at t 	= 0.
As a final remark, we have explained the off-forward EMC
effect using the longitudinal convolution approach while being
aware, however (see Fig. 3), that such an approach does neither
includes the correct physics, nor predicts the magnitude of the
effect. However, the convolution approach served us as a guide.
One can draw similar conclusions, in fact, by considering the
case P 2 	= M2, where one an extra term dependent on nucleon
off-shellness can be added to the expansion in Eq. (40). This
term has the same structure with respect to its t dependence
as the other terms in the “on-shell” series. In other words,
nucleon off-shellness further depletes the bound nucleon’s
momentum.

An important conclusion of our study is, therefore, that
details of the long range nuclear interactions seem to have
little influence on the bound nucleon GPDs.
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FIG. 8. t-dependence of the generalized EMC effect for different values of X: X = 0.1 (full), X = 0.3 (short dashes), X = 0.6 (dot-dashes).
(a) No off-shell effects; (b) with off-shell effects. Notice the striking difference between the off-shell and on-shell curves discussed in the text
at both low and large values of X.

3. t dependence as a constraint on GPD parametrizations

In Fig. 8 we show the t dependence of the ratio RA, for
both the on-shell (left panel) and off-shell (right panel) cases,
for three different values of X,X = 0.1, 0.3, and 0.6. One
can observe markedly different behaviors in the slopes in the
two panels. At X = 0.6 and t > 0.1 GeV2 one can observe a
decreasing slope both in the on-shell and off-shell cases. This
characteristic behavior provides a method to use nuclear effects
to distinguish between different parametrizations of GPDs.
Recently, a number of new models were proposed that improve
on factorized ansatze of the type H (X, ζ, t) = H (X, ζ )F (t),
used in many earlier theoretical evaluations. The models
obtained for ξ (ζ = 0) include parametrizations based on an
exponential falloff with t of the type Refs. [4,40,41]:

H (x, t) = f (x) exp[a(x)t]. (45)

By inspecting Eq. (38), one can conclude that

(1) No t dependence of RA should be observed in a factorized
model.

(2) The exponential models predict a linear dependence in t
originating from the X derivative of HN .

(3) Other models predict a t dependence that deviates from
the linear behavior. The comparison of exponential type
parametrizations and the quark-diquark model used in this
article is presented in Fig. 9.

IV. SUM RULES IN NUCLEI

Mellin moments of order n for the nucleon GPDs can be
defined, analogously to the forward case, by integrating over

x the matrix elements in Eqs. (9) and (16), multiplied by xn.9

Differenty from the forward case, the moments will depend on
the variables t and ξ , in addition to displaying the expected Q2

dependence. In other words, they can be written as t-dependent
form factors of the same matrix elements of twist two local

9We use the notation in Eq. (1) that is more appropriate for the
discussion of Mellin moments.

This paper
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FIG. 9. t-dependence of the generalized EMC effect for two
different types of parametrizations: The LC wave function one
presented in this paper (full curves), and the “exponential” type
adopted by several groups ([4,40,41] and references therein).
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operators that appear in the forward case, (t = 0). Special cases
are given by the following form factors (n = 0):∫ 1

−1
dxHq(x, ξ, t) = F

q

1 (t) (46)∫ 1

−1
dxEq(x, ξ, t) = F

q

2 (t), (47)

where q = u, d, s, . . . , and by the second moments (n = 1),
expressed through the symmetric energy-momentum tensor,
in terms of the form factors of the quarks momentum, M

q

2 (t),
and angular momentum, J q(t), respectively [2]:∫ 1

−1
dxxHq (x, ξ, t) = M

q

2 (t) + 4

5
d1(t)ξ 2 (48)∫ 1

−1
dxxEq (x, ξ, t) = [

2J q(t) − M
q

2 (t)
] − 4

5
d1(t)ξ 2, (49)

where M
q

2 (0) is the total momentum fraction carried by the
quarks, J q(0) is the total angular momentum and d1(t) is the
moment of the first Gegenbauer coefficient in the expansion of
the D-term (see Ref. [10] and references therein). Also, we do
not write explicitly the dependence on Q2, unless necessary.10

Similar expressions exist for the gluon components.
The sum rules in a nucleus can be constructed from

Eqs. (47) and (49) as follows:∫ A

−A

dxHA(x, ξ, t) = FA(t) (50)∫ A

−A

dxxHA(x, ξ, t) = MA
2 (t) + 4

5
dA

1 (t)ξ 2. (51)

In Ref. [42] the connection was shown between dA
1 (0) and

the components of the energy-momentum tensor describing
the shear forces in the hadronic system. We can evaluate the
Mellin moments in a nucleus according to the microscopic
approach described in the previous sections. By restricting
to the valence quarks contributions only (x, y > 0), and by
disregarding off-shell effects, one has the intuitive factorized
form:

MA
n (t) =

[∫ A

0
dyyn−1fA(y, t)

]{∫ 1

0
dxxn−2[xHN (x, ξ, t)]

}
,

(52)
where fA(y, ξ, t) ≈ fA(y, ξ = 0, t) ≡ fA(y, t) in a nucleus,
within a nonrelativistic description. For n = 1 and n = 2 one
has specifically:

FA(t) = FA,point(t)FN (t) (53)

MA
2 (ξ, t) = M

A,point
2 (t)MN

2 (t) + M
A,point
0 (t)

4

5
dN

1 (t)ξ 2, (54)

with M
A,point
n (t) = ∫

dyyn−1fA(y, t), the nuclear moment
obtained by considering pointlike nucleons. At ξ = 0 one has
the following:

MA
2 (t) = M

A,point
2 (t)MN

2 (t), (55)

10The original derivation of Eq. (49) was in fact what motivated the
introduction of GPDs in Refs. [2,3].

related to the average value of the longitudinal momentum
carried by the quarks in a nucleus:

〈x(t)〉A = MA
2 (t)

FA(t)
= M

A,point
2 (t)

FA,point(t)

MN
2 (t)

FN (t)
= 〈y(t)〉A〈x(t)〉N,

(56)
The D term in a nucleus reads as follows:

dA
1 (t) = M

A,point
0 (t)dN

1 (t). (57)

At t = 0 one has: dA
1 (0) ≈ 1/[1 − E/M + 2/3〈P 2〉/2M2]A

dN
1 (0). The microscopic calculation presented here predicts

therefore an A dependence of dA
1 (0) ∝ A, modulo a ∝ ln A en-

hancement from nuclear dynamics [i.e., from the A-dependent
term multiplying dN

1 (0)]. This is at variance with the estimate,
dA

1 (0) ∝ A7/3 obtained by calculating directly the nuclear
energy-momentum tensor in a liquid drop picture of the
nucleus [42]. Whether the two pictures can be reconciliated,
that is, addressing the question of whether the shear forces are
either under- or overestimated in either model, is an interesting
problem for future investigations.

Finally, we discuss how the moments of GPDs in nuclei
might provide new insight on the origin of nuclear medium
modifications of hadrons. Two distinct pictures based on
hadronic and partonic degrees of freedom respectively have
been put forth to explain the effect. On one side, the
convolution formalism discussed here makes use of “hadronic”
degrees of freedom, although the hadronic structure can be
modified because of off-shell effects. The nature of such
modifications resides in the parameters of nucleon dynam-
ics and interactions. On the other hand, other descriptions
(Ref. [16] and references therein) relate the modifications
of “partonic” parameters such as the string tension or the
confinement radius to density dependent effects in the nuclear
medium. The authors of Ref. [43] (CRR) in fact, even
formulated the hypothesis of a “duality” scenario between
the two pictures. A qualitatively different description that
would help disentangle the two, can be obtained from the
investigation of form factor (or spatial) type quantities such
as the ones described in Eqs. (47)–(57). The effect of partial
deconfinement predicts a similar formula for MA

2 (t,Q2), ξ =
0, calculated in the convolution formalism, namely:

M
A,CRR
2 (t,Q2) = [(

1 − dn=2
NS κA

)
FA,point(t)

]
MN

2 (t,Q2),

(58)

dn=2
NS being the anomalous dimensions for the nonsinglet (NS)

sector and κA being the parameter modifying the Q2 scale
dependence in Ref. [43]. In Fig. 10 we show the ratio of
MA

2 /FA over MN
2 /FN in several scenarios: the longitudinal

convolution formula where the ratio coincides with 〈y(t)〉A
from Eq. (56); the ratio calculated, including off-shell effects
[that break the factorization in Eq. (56)] and the prediction
from Eq. (58). The most important aspect of this graph
is that although “factorization-based” approaches, such as
the longitudinal convolution formalism and the CRR-model,
predict a t dependence of the ratio that is approximately flat,
off-shell effects have an impact on the t dependence and
are therefore indispensable for treating the transverse spatial
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FIG. 10. Ratio of n = 2 GPD moments of bound nucleons in
4He over the free nucleon ones as a function of t. Moments have
been normalized to the form factors (see text). The intercept at t = 0
represents the ratio of the momentum fraction taken by valence quarks
in a nucleus with respect to the free nucleon one.

dependence (or 3D imaging) in a nucleus, a subject to be
explored in future studies [29].

In addition to the results on the NS contribution, yet
another interesting possibility emerges from the nonforward
scattering extension of nuclear deep inelastic structure studies.
Predictions were given in Ref. [43] on the behavior of the
binding quanta appearing in the expression for the second
moment for the sea quarks. A relation was found between the
sea quarks, qs component of the “binding quanta,” B,M

qs/B

2 ,
and the gluon component of the nucleon M

G/N

2 :

M
qs/B

2 (Q2) ≈ − 3
16f M

G/N

2 (Q2), (59)

from which it was deduced that the binding quanta, identified
in Ref. [43] with nuclear pions, are gluonic in nature, or in
other words, they contain gluons that cannot be generated by
evolution. GPDs provide a new method to study the form factor
of such gluon dominated particles, that could be identified as
candidates for glueballs. One can in fact use the perturbative
QCD (PQCD) equations of Ref. [43] in conjunction with the
formalism described above to obtain the following:

M
qs/B

2 (t) = 1

M
B/A

2 (t)

[
M

qs/A

2 (t) − M
qs/N

2 (t)MN/A

2 (t)
]
. (60)

V. CONCLUSIONS

We conducted an exploratory study using, on one side,
GPDs as tools to unravel the deep inelastic transverse structure
of nuclei and, on the other, obtaining information on GPDs
themselves by observing how they become modified in
the nuclear environment. We used a microscopic approach
restricted mainly to the valence structure. We conclude the
following:

(1) Although GPDs probe transverse degrees of freedom in
a nucleus, through the variable t, modifications of the
transverse momentum dependence are described similarly
to the forward case, through the k⊥, and P⊥ variables.
These variables are, however, not Fourier conjugates to
�, thus rendering the description of off-shell effects more
subtle.

(2) The unraveled t dependence of nuclear modifications
originates from different mechanisms at the nuclear and
nucleon vertices, respectively. By taking nuclear ratios
of GPDs normalized to form factors, we demonstrated
that the details of the nuclear long-range interactions
(two-body currents, large distance behavior of nuclear
density, etc.) can be disregarded compared to the deep
inelastic induced modifications of the bound GPDs. This
result bears important consequences because it allows us,
on one side, to avoid the intricacies and details related to
the evaluation of nuclear form factors and, on the other, it
points at interesting physical phenomena determined by
the short range part of the nuclear interactions.

(3) The pattern of nuclear modifications predicted, and in
particular the deviations of off-shell effects from the
longitudinal convolution provide clear signals to be
sought in experimental measurements.

(4) Data on DVCS in nuclei will help one distinguish
among models for GPDs. Distinctive behaviors in, for
example, the t dependence emerge for the factorized, the
exponential based, and other LC-based models presented
here.

(5) Interesting relationships were found by studying Mellin
moments in nuclei. In particular, we predicted the A
dependence for the D term of GPDs within a microscopic
approach and the behavior with t of the total momentum
carried by quarks in a nucleus. By studying Mellin
moments we were able to make a connection with
widely used approaches that relate the modifications of
“partonic” parameters such as the string tension or the
confinement radius to density-dependent effects in the
nuclear medium [16,43]. We consider this an important
result of our article at the light of nuclear hadronization
studies that are vital for interpreting current and future
data at RHIC, HERMES, and Jefferson Lab (Ref. [16]
and references therein).

Many questions remain, some of which will be addressed in
a forthcoming article [29]. These will include a detailed study
of the impact parameter (b) dependence and predictions of
quantities measurable at currently available energies, namely
both beam and target asymmetries, including a quantitative
evaluation of the coherent vs. incoherent nuclear contributions.
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APPENDIX: OFF-FORWARD PROPAGATOR

We evaluate the trace in Eq. (18) that gives origin to the
square root factors in our model for nucleon GPDs, Eq. (21).

We start from defining the sum over the spins in Eq. (18) for
particles with different momenta, k ≡ (E; k) and k′ = k + �.
The spinors are defined as follows:

u(k, s) = N ( 	k + m)u(0, s), (A1)

with u1(0, s) = 1, ui(0, s) = 0, i = 2, 3, 4 [u2(0,−s) =
1, ui(0,−s) = 0, i = 1, 3, 4], and N−1 = (E + m)1/2. In the
forward case, therefore,∑

s

u(k, s)ū(k, s) = ( 	k + m). (A2)

In the off-forward case:∑
s

u(k, s)ū(k′, s) = NN ′ ∑
s

( 	k + m)u(0, s)ū(0, s)( 	k′ + m)

= NN ′( 	k + m)
(1 + γo)

2
( 	k′ + m). (A3)

The trace of this quantity is given by the following:

Tr

{∑
s

u(k, s)ū(k′, s)

}
= 2NN ′[(k.k′ + m2) + m(k0 + k′

0)].

(A4)

In light cone coordinates the above is expressed as follows:

Tr

{∑
s

u(k, s)ū(k′, s)

}
= 2√(

k++k−√
2

+ m
)(

k′++k′−√
2

+ m
)

×
{

(k+k′− + k−k′+ − k⊥k′
⊥ +m2)

+ m√
2

[(k+ + k−) + (k′+ + k′−)]

}
,

(A5)

thus, at leading order:

Tr

{∑
s

u(k, s)ū(k′, s)

}
= 2m

(k+ + k′+)√
k+k′+ = 2m

2X − ζ√
X(X − ζ )

(A6)
and the trace with γ + appearing in Eq. (21) is given by the
following:

1

2P + Tr

{
γ + ∑

s

u(k, s)ū(k′, s)

}
= 2

P +
√

k+k′+

= 2
√

X
√

X − ζ (A7)
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