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Two-photon exchange in elastic electron-nucleon scattering
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A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is
presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate
states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy
between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor
ratio, GE/GM . The two-photon exchange contribution to the longitudinal polarization transfer PL is small,
whereas the contribution to the transverse polarization transfer PT is enhanced at backward angles by several
percent, increasing with Q2. This gives rise to a small, <∼3% suppression of GE/GM obtained from the
polarization transfer ratio PT /PL at large Q2. We also compare the two-photon exchange effects with data
on the ratio of e+p to e−p cross sections, which is predicted to be enhanced at backward angles. Finally, we
evaluate the corrections to the form factors of the neutron and estimate the elastic intermediate state contribution
to the 3He form factors.
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I. INTRODUCTION

Electromagnetic form factors are fundamental observables
that characterize the composite nature of the nucleon. Several
decades of elastic form factor experiments with electron
beams, including recent high-precision measurements at
Jefferson Lab and elsewhere, have provided considerable
insight into the detailed structure of the nucleon.

In the standard one-photon exchange (Born) approxima-
tion, the electromagnetic current operator is parametrized in
terms of two form factors, usually taken to be the Dirac (F1)
and Pauli (F2) form factors,

�µ = F1(q2)γ µ + iσµνqν

2M
F2(q2), (1)

where q is the momentum transfer to the nucleon and M is
the nucleon mass. The resulting cross section depends on two
kinematic variables, conventionally taken to be Q2 ≡ −q2 (or
τ ≡ Q2/4M2) and either the scattering angle θ or the virtual
photon polarization ε = [1 + 2(1 + τ ) tan2 (θ/2)]−1. In terms
of the Sachs electric and magnetic form factors, defined as

GE(Q2) = F1(Q2) − τF2(Q2), (2)

GM (Q2) = F1(Q2) + F2(Q2), (3)

the reduced Born cross section can be written as follows:

σR = G2
M (Q2) + ε

τ
G2

E(Q2). (4)

The standard method that has been used to determine the
electric and magnetic form factors, particularly those of the
proton, has been the Rosenbluth, or longitudinal-transverse
(LT), separation method. Because the form factors in
Eq. (4) are functions of Q2 only, studying the cross section as a
function of the polarization ε at fixed Q2 allows one to extract
G2

M from the ε-intercept and the ratio R ≡ µGE/GM from
the slope in ε, where µ is the nucleon magnetic moment. The

results of the Rosenbluth measurements for the proton have
generally been consistent with R ≈ 1 for Q2 <∼ 6 GeV2 [1–3].
The “Super-Rosenbluth” experiment at Jefferson Lab [4], in
which smaller systematic errors were achieved by detecting
the recoiling proton rather than the electron, as in previous
measurements, is also consistent with the earlier LT results.

An alternative method of extracting the ratio R has been
used recently at Jefferson Lab [5], in which a polarized electron
beam scatters from an unpolarized target, with measurement
of the polarization of the recoiling proton. From the ratio of
the transverse to longitudinal recoil polarizations one finds

R = −µ
E1 + E3

2M
tan

θ

2

PT

PL

= −µ

√
τ (1 + ε)

2ε

PT

PL

, (5)

where E1 and E3 are the initial and final electron energies and
PT (PL) is the polarization of the recoil proton transverse
(longitudinal) to the proton momentum in the scattering
plane. The polarization transfer experiments yielded strikingly
different results compared with the LT separation, with R ≈
1 − 0.135(Q2/GeV2 − 0.24) over the same range in Q2 [2].
Recall that in perturbative quantum chromodynamics (QCD)
one expects F1 ∼ Q2F2 at large Q2 (or equivalently GE ∼
GM ) [6], so that these results imply a strong violation of scaling
behavior (see also Refs. [7,8]).

The question of which experiments are correct has been
debated over the past several years. Attempts to reconcile
the different measurements have been made by several
authors [9–12], who considered whether 2γ exchange effects,
which form part of the radiative corrections (RCs) and
which are treated in an approximate manner in the standard
RC calculations [13], could account for the observed discrep-
ancy. An explicit calculation [10] of the two-photon exchange
diagram, in which nucleon structure effects were for the
first time fully incorporated, indeed showed that around half
of the discrepancy could be removed just by the nucleon
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elastic intermediate states. A partonic level calculation [11,12]
subsequently showed that the deep inelastic region can also
contribute significantly to the box diagram.

In this article we further develop the methodology intro-
duced in Ref. [10] and apply it to systematically calculate the
2γ exchange effects in a number of electron-nucleon scattering
observables. We focus on the nucleon elastic intermediate
states; inelastic contributions are discussed elsewhere [14]. In
Sec. II we examine the effects of 2γ exchange on the ratio of
electric to magnetic form factors in unpolarized scattering. In
contrast to the earlier analysis [10], in which simple monopole
form factors were utilized at the internal γNN vertices, here
we parameterize the vertices by realistic form factors and study
the model dependence of effects on the ratio R because of the
choice of form factors. We also compare the results with data
on the ratio of e+p to e−p scattering cross sections, which is
directly sensitive to 2γ exchange effects.

In Sec. III we examine the effects of 2γ exchange
on the polarization transfer reaction, �ep → e �p, for both
longitudinally and transversely polarized recoil protons. We
also consider the case of proton polarization normal to the
reaction plane, which depends on the imaginary part of the box
diagram. Because this is absent in the Born approximation, the
normal polarization provides a clean signature of 2γ exchange
effects, even though it does not directly address the G

p

E/G
p

M

discrepancy. Following the discussion of the proton, in Sec. IV
we consider 2γ exchange corrections to the form factors of the
neutron, both for the LT separation and polarization transfer
techniques. Applying the same formalism to the case of the
3He nucleus, in Sec. V we compute the elastic contribution
from the box diagram to the ratio of charge to magnetic form
factors of 3He. In Sec. VI we summarize our findings, and
discuss future work.

II. TWO-PHOTON EXCHANGE IN UNPOLARIZED
SCATTERING

In this section we outline the formalism used to calculate
the 2γ exchange contribution to the unpolarized electron-
nucleon cross section and examine the effect on the G

p

E/G
p

M

ratio extracted using LT separation. Because there are in
general three form factors that are needed to describe elastic
eN scattering beyond 1γ exchange, we also evaluate the
2γ contributions to each of the form factors separately. In
the final part of this section, we examine the effect of the 2γ

correction on the ratio of e+p to e−p elastic cross sections,
which is directly sensitive to 2γ exchange effects.

A. Formalism

For the elastic scattering process we define the momenta
of the initial electron and nucleon as p1 and p2 and
of the final electron and nucleon as p3 and p4, respec-
tively, e(p1) + p(p2) → e(p3) + p(p4). The four-momentum
transferred from the electron to the nucleon is given by
q = p4 − p2 = p1 − p3 (with Q2 ≡ −q2 > 0), and the total
electron and proton invariant mass squared is given by
s = (p1 + p2)2 = (p3 + p4)2. In the Born approximation, the

amplitude can be written as

M0 = −i
e2

q2
ū(p3)γµu(p1) ū(p4)�µ(q)u(p2), (6)

where e is the electron charge, and �µ is given by Eq. (1).
In terms of the amplitude M0, the corresponding differential
Born cross section is given by

dσ0

d�
=

(
α

4Mq2

E3

E1

)2

|M0|2 = σMott
τ

ε(1 + τ )
σR, (7)

where σR is the reduced cross section given in Eq. (4), and
the Mott cross section for the scattering from a point particle
is

σMott = α2E3 cos2 θ
2

4E3
1 sin4 θ

2

, (8)

with E1 and E3 the initial and final electron energies and α =
e2/4π the electromagnetic fine structure constant. Including
radiative corrections to order α, the elastic scattering cross
section is modified as follows:

dσ0

d�
→ dσ

d�
(1 + δ), (9)

where δ includes one-loop virtual corrections (vacuum polar-
ization, electron and proton vertex, and two photon exchange
corrections), as well as inelastic bremsstrahlung for real photon
emission [13].

According to the LT separation technique, one extracts
the ratio R2 from the ε dependence of the cross section
at fixed Q2. Because of the factor ε/τ multiplying G2

E in
Eq. (4), the cross section becomes dominated by G2

M with
increasing Q2, whereas the relative contribution of the G2

E

term is suppressed. Hence understanding the ε dependence of
the radiative correction δ becomes increasingly important at
high Q2. As pointed out in Ref. [2], for example, a few-percent
change in the ε slope in dσ can lead to a sizable effect on R.
In contrast, as we discuss in Sec. III below, the polarization
transfer technique does not show the same sensitivity to the ε

dependence of δ.
If we denote the amplitude for the one-loop virtual

corrections by M1, then M1 can be written as the sum of
a “factorizable” term, proportional to the Born amplitude M0,
and a nonfactorizable part M1,

M1 = f (Q2, ε)M0 + M1. (10)

The ratio of the full cross section (to order α) to the Born can
therefore be written as

1 + δ = |M0 + M1|2
|M0|2

, (11)

with δ given by

δ = 2f (Q2, ε) + 2Re{M†
0M1}

|M0|2 . (12)

In practice the factorizable terms parametrized by f (Q2, ε),
which includes the electron vertex correction, vacuum polar-
ization, and the infrared (IR) divergent parts of the nucleon
vertex and two-photon exchange corrections, are found to
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be dominant. Furthermore, these terms are all essentially
independent of hadronic structure.

However, as explained in Ref. [10], the contributions to
the functions f (Q2, ε) from the electron vertex, vacuum
polarization, and proton vertex terms depend only on Q2 and
therefore have no relevance for the LT separation aside from an
overall normalization factor. Hence, of the factorizable terms,
only the IR divergent two-photon exchange contributes to the
ε dependence of the virtual photon corrections.

The terms that do depend on hadronic structure are
contained in M1 and arise from the finite nucleon vertex and
two-photon exchange corrections. For the case of the proton,
the hadronic vertex correction was analyzed by Maximon
and Tjon [15] and found to be <0.5% for Q2 < 6 GeV2.
Because of the proton vertex correction does not have a strong
ε dependence, it will not affect the LT analysis and can be
safely neglected.

For the inelastic bremsstrahlung cross section, the ampli-
tude for real photon emission can also be written in the form
of Eq. (10). In the soft photon approximation the amplitude
is completely factorizable. A significant ε dependence arises
because of the frame dependence of the angular distribution of
the emitted photon. These corrections, together with external
bremsstrahlung, contain the main ε dependence of the radiative
corrections and are usually accounted for in the experimental
analyses. They are generally well understood and in fact
enter differently depending on whether the electron or proton
are detected in the final state. Hence corrections beyond
the standard O(α) radiative corrections that can lead to
nonnegligible ε dependence are confined to the 2γ exchange
diagrams, illustrated in Fig. 1, and are denoted by M2γ , which
we focus on in the following. The 2γ exchange correction δ2γ

we calculate is then essentially as follows:

δ2γ → 2Re{M†
0M2γ }

|M0|2
. (13)

In principle the two-photon exchange amplitude M2γ

includes all possible hadronic intermediate states in Fig. 1.
Here we consider only the elastic contribution to the full
response function and assume that the proton propagates as
a Dirac particle (excited state contributions are considered
in Ref. [14]). We also assume that the structure of the
off-shell current operator is similar to that in Eq. (1) and use
phenomenological form factors at the γNN vertices. This is
of course the source of the model dependence in the problem.
Clearly this is circular, as the radiative corrections are also
used to determine the experimental form factors. However,
because δ is a ratio, the model dependence cancels somewhat,

3
p 

2
p  

4
p 

1
 p

 k  q−k

FIG. 1. Two-photon exchange box and crossed box diagrams for
elastic electron-proton scattering.

provided the same phenomenological form factors are used for
both M0 and M2γ in Eq. (13).

The total 2γ exchange amplitude, including the box and
crossed box diagrams in Fig. 1, has the form

M2γ = e4
∫

d4k

(2π )4

Nbox(k)

Dbox(k)
+ e4

∫
d4k

(2π )4

Nx−box(k)

Dx−box(k)
, (14)

where the numerators are the matrix elements

Nbox(k) = ū(p3)γµ(p/1 − k/ + m)γνu(p1)ū(p4)�µ(q − k)

× (p/2 + k/ + M)�ν(k)u(p2), (15)

Nx−box(k) = ū(p3)γν(p/3 + k/ + m)γµu(p1)ū(p4)�µ(q − k)

× (p/2 + k/ + M)�ν(k)u(p2), (16)

and the denominators are products of propagators

Dbox(k) = [k2 − λ2][(k − q)2 − λ2]

×[(p1 − k)2 − m2][(p2 + k)2 − M2], (17)

Dx−box(k) = Dbox(k)|p1−k→p3+k . (18)

An infinitesimal photon mass λ has been introduced in the
photon propagator to regulate the IR divergences. The IR
divergent part is of interest because it is the one usually
included in the standard RC analyses. The finite part, which is
typically neglected, has been included in Ref. [10] and found
to have significant ε dependence.

The IR divergent part of the amplitude M2γ can be
separated from the IR finite part by analyzing the structure
of the photon propagators in the integrand of Eq. (14). The
two poles, where the photons are soft, occur at k = 0 and at
k = q. The dominant (IR divergent) contribution to the integral
(14) comes from the poles, and one therefore typically makes
the following approximation:

M2γ

IR ≈ e4Nbox(0)
∫

d4k

(2π )4

1

Dbox(k)
+ e4Nx−box(0)

×
∫

d4k

(2π )4

1

Dx−box(k)
, (19)

with

Nbox(q) = Nbox(0) = 4ip1 · p2
q2M0

e2
, (20)

Nx−box(q) = Nx−box(0) = 4ip3 · p2
q2M0

e2
. (21)

In this case the IR divergent contribution is proportional to the
Born amplitude, and the corresponding correction to the Born
cross section is independent of hadronic structure.

The remaining integrals over propagators can be done
analytically. In the target rest frame the total IR divergent
two-photon exchange contribution to the cross section is found
to be

δIR = −2α

π
ln

(
E1

E3

)
ln

(
Q2

λ2

)
, (22)

a result given by Maximon and Tjon [15]. The logarithmic IR
singularity in λ is exactly canceled by a corresponding term
in the bremsstrahlung cross section involving the interference
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between real photon emission from the electron and from the
nucleon.

By contrast, in the standard treatment of Mo and Tsai
(MT) [13] a different approximation for the integrals over
propagators is introduced. Here, the IR divergent contribution
to the cross section is

δIR(MT) = −2
α

π
[K(p1, p2) − K(p3, p2)] , (23)

where K(pi, pj ) = pi · pj

∫ 1
0 dy ln (p2

y/λ
2)/p2

y and py =
piy + pj (1 − y). The logarithmic dependence on λ is the same
as Eq. (22), however.

As mentioned above, the full expression in Eq. (14) includes
both finite and IR divergent terms and form factors at the γNN

vertices. In Ref. [10] the proton form factors F1 and F2 were
expressed in terms of the Sachs electric and magnetic form
factors,

F1(Q2) = GE(Q2) + τGM (Q2)

1 + τ
, (24)

F2(Q2) = GM (Q2) − GE(Q2)

1 + τ
, (25)

with GE and GM both parametrized by a simple monopole
form, GE,M (Q2) ∼ 2/(2 + Q2), with the mass parameter
 related to the size of the proton. In the present analysis we
generalize this approach by using more realistic form factors
in the loop integration, consistent with the actual GE,M data.
The functions F1 and F2 are parametrized directly in terms of
sums of monopoles, of the form

F1,2(Q2) =
N∑

i=1

ni

di + Q2
, (26)

where ni and di are free parameters, and nN is deter-
mined from the normalization condition, nN = dN [F1,2(0) −∑N−1

i=1 ni/di]. The parameters ni and di for the F1 and F2

form factors of the proton and neutron are given in Table I.
The normalization conditions are F

p

1 (0) = 1 and F
p

2 (0) = κp

for the proton and Fn
1 (0) = 0 and Fn

2 (0) = κn for the neutron,
where κp = 1.793 and κn = −1.913 are the proton and neutron
anomalous magnetic moments, respectively.

In practice we use the parametrization from Ref. [16] and
fit the parametrized form factors as a sum of three monopoles,
except for Fn

2 , which is fitted with N = 2. As discussed in
the next section, the sensitivity of the results to the choice
of form factor is relatively mild. Of course, one should

TABLE I. Parameters for the proton and neutron form factor fits
in Eq. (26) used in this work, with ni and di in units of GeV2.

N F
p

1 F
p

2 F n
1 F n

2

3 3 3 2

n1 0.38676 1.01650 24.8109 5.37640
n2 0.53222 –19.0246 –99.8420
d1 3.29899 0.40886 1.98524 0.76533
d2 0.45614 2.94311 1.72105 0.59289
d3 3.32682 3.12550 1.64902 —

note that the data to which the form factors are fitted were
extracted under the assumption of 1γ exchange, so that in
principle one should iterate the data extraction and fitting
procedure for self-consistency. However, within the accuracy
of the data and of the 2γ calculation the effect of this will
be small.

To obtain the radiatively corrected cross section for unpo-
larized electron scattering the polarizations of the incoming
and outgoing electrons and nucleons in Eqs. (15) and (16)
need to be averaged and summed, respectively. The resulting
expression involves a product of traces in the Dirac spaces
of the electron and nucleon. The trace algebra is tedious but
straightforward. It was carried out using the algebraic program
FORM [17] and verified independently using the program
Tracer [18]. We also used two independent Mathematica
packages (FeynCalc [19] and FormCalc [20]) to carry out
the loop integrals. The packages gave distinct but equivalent
analytic expressions, which gave identical numerical results.
The loop integrals in Eq. (14) can be expressed in terms of
4-point Passarino-Veltman functions [21], which have been
calculated using Spence functions [22] as implemented by
Veltman [23]. In the actual calculations we have used the
FF program [24]. The results of the proton calculation are
presented in the following section.

B. 2γ corrections to proton form factors

In typical experimental analyses of electromagnetic form
factor data [1] radiative corrections are implemented using
the prescription of Ref. [13], including using Eq. (23) to
approximate the 2γ contribution. To investigate the effect of
our results on the data analyzed in this manner, we therefore
compare the ε dependence of the full calculation with that
of δIR(MT). To make the comparison meaningful, we will
consider the difference

� ≡ δfull − δIR(MT), (27)

in which the IR divergences cancel, and which is independent
of λ.

The results for the difference � between the full calculation
and the MT approximation are shown in Fig. 2 for several
values of Q2 from 1 to 6 GeV2. The additional corrections are
most significant at low ε and essentially vanish at large ε. At the
lower Q2 values � is approximately linear in ε, but significant
deviations from linearity are observed with increasing Q2,
especially at smaller ε.

In Fig. 3(a) we illustrate the model dependence of the results
by comparing the results in Fig. 2 at Q2 = 1 and 6 GeV2 with
those obtained using a dipole form for the F

p

1 and F
p

2 form
factors, with mass  = 0.84 GeV. At the lower, Q2 = 1 GeV2,
value the model dependence is very weak, with essentially no
change at all in the slope. For the larger value Q2 = 6 GeV2

the differences are slightly larger, but the general trend of
the correction remains unchanged. We can conclude therefore
that the model dependence of the calculation is quite modest.
Also displayed is the correction at Q2 = 12 GeV2, which
will be accessible in future experiments, showing significant
deviations from linearity over the entire ε range.
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-0.04
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0

ε

Q 1

∆ 
(ε

,  
   

)

6

2

2

4

3

FIG. 2. Difference between the full two-photon exchange correc-
tion to the elastic cross section [using the realistic form factors in
Eq. (26)] and the commonly used expression (23) from Ref. [13]
for Q2 = 1–6 GeV2. The numbers labeling the curves denote the
respective Q2 values in GeV2.

The results are also relatively insensitive to the high-Q2

behavior of the G
p

E/G
p

M ratio, as Fig. 3(b) illustrates. Here
the correction � is shown at Q2 = 6 GeV2 calculated using
various form factor inputs, from parametrizations obtained by
fitting only the LT-separated data [16,25], and those in which
G

p

E is constrained by the polarization transfer data [25,26].
(Note that the G

p

M form factor itself also differs by a few
percent between the various parametrizations.) The various
curves are almost indistinguishable, and the dependence on
the form factor inputs at lower Q2 is expected to be even
weaker than that in Fig. 3(b).

The effect of the 2γ corrections on the cross sections can
be seen in Fig. 4, where the reduced cross-section σR , scaled
by the square of the dipole form factor,

GD =
[

1 + Q2

(0.84 GeV)2

]−2

, (28)

is plotted as a function of ε for several fixed values of Q2.
In Fig. 4(a) the results are compared with the SLAC data
[27] at Q2 = 3.25, 4, 5 and 6 GeV2 and with data from the
“Super-Rosenbluth” experiment at JLab [4] in Fig. 4(b). In
both cases the Born level results (dotted curves), which are
obtained using the form factor parametrization of Ref. [26]
in which G

p

E is fitted to the polarization transfer data [5],
have slopes that are significantly shallower than the data. With
the inclusion of the 2γ contribution (solid curves), there is a
clear increase of the slope, with some nonlinearity evident at
small ε. The corrected results are clearly in better agreement
with the data although do not reproduce the entire correction
necessary to reconcile the Rosenbluth and polarization transfer
measurements.

To estimate the influence of these corrections on the electric
to magnetic proton form factor ratio, the simplest approach is
to examine how the ε slope changes with the inclusion of the
2γ exchange. Of course, such a simplified analysis can only
be approximate because the ε dependence is linear only over

0 0.2 0.4 0.6 0.8 1

-0.04

-0.02

0

0.02

ε

Q

Q  =2

6

21 GeV

∆ 
(ε

,  
   

)

(a) 12

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

ε

Q

= 6 GeV∆ 
(ε

,  
   

)2

2Q 2

(b)

FIG. 3. Model dependence of the difference between the full two-
photon exchange correction and the Mo and Tsai approximation:
(a) at Q2 = 1, 6, and 12 GeV2, using realistic (solid) [16] and dipole
(dashed) form factors; (b) at Q2 = 6 GeV2 using the form factor
parametrizations from Refs. [16] (solid), [26] (dashed), and [25] with
G

p

E constrained by the LT-separated (dot-dashed) and polarization
transfer (long-dashed) data.

limited regions of ε, with clear deviations from linearity at low
ε and high Q2. In the actual data analyses one should apply
the correction � directly to the data, as in Fig. 4. However, it
is still instructive to obtain an estimate of the effect on R by
taking the slope over several ranges of ε.

Following Ref. [10], this can be done by fitting the
correction (1 + �) to a linear function of ε, of the form a + bε,
for each value of Q2 at which the ratio R is measured. The
corrected reduced cross section in Eq. (4) then becomes

σR ≈ aG2
M (Q2)

[
1 + ε

µ2τ
(R2 [1 + εb/a] + µ2τb/a)

]
,

(29)

where

R2 = R̃2 − µ2τb/a

1 + ε̄b/a
(30)
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4

SLAC

(a)
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8.5
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ε

Rσ
/ G

2.64

D2

4.1

3.2

JLab

(b)

FIG. 4. (Color online) Reduced cross section σR (scaled by
the dipole form factor G2

D) versus ε for several values of Q2:
(a) SLAC data [27] at Q2 = 3.25 (open squares), 4 (filled circles),
5 (open circles), and 6 GeV2 (filled squares); (b) JLab data [4] at
Q2 = 2.64 (filled squares), 3.2 (open squares), and 4.1 GeV2 (filled
circles). The dotted curves are Born cross sections evaluated using
a form factor parametrization [26] with G

p

E fitted to the polarization
transfer data [5], whereas the solid curves include 2γ contributions.
The curves in the bottom panel have been shifted by (+1.0%, +2.1%,
+3.0%) for Q2 = (2.64, 3.2, 4.1) GeV2.

is the “true” form factor ratio, corrected for 2γ exchange
effects, and R̃ is the “effective” ratio, contaminated by 2γ

exchange. Note that in Eqs. (29) and (30) we have effectively
linearized the quadratic term in ε by taking the average value of
ε (i.e., ε̄) over the ε range being fitted. In contrast to Ref. [10],
where the approximation a ≈ 1 was made and the quadratic
term in ε neglected, the use of the full expression in Eq. (30)
leads to a small decrease in R compared with the approximate
form.

The shift in R is shown in Fig. 5, together with the
polarization transfer data. We consider two ranges for ε: a large
range ε = 0.2–0.9 and a more restricted range ε = 0.5–0.8.
The approximation of linear ε dependence of � should be
better for the latter, even though in practice experiments

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

M

Q2 2(GeV  )
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FIG. 5. (Color online) The ratio of proton form factors µpGE/

GM measured using LT separation (open diamonds) [2] and polariza-
tion transfer (PT) (open circles) [5]. The LT points corrected for 2γ

exchange are shown assuming a linear slope for ε = 0.2–0.9 (filled
squares) and ε = 0.5–0.8 (filled circles) (offset for clarity).

typically sample values of ε near its lower and upper bounds.
A proposed experiment at Jefferson Lab [28] aims to test the
linearity of the ε plot through a precision measurement of the
unpolarized elastic cross section.

The effect of the 2γ exchange terms on R is clearly
significant. As observed in Ref. [10], the 2γ corrections have
the proper sign and magnitude to resolve a large part of
the discrepancy between the two experimental techniques. In
particular, the earlier results [10] using simple monopole form
factors found a shift similar to that for the ε = 0.5–0.8 range
in Fig. 5, which resolves around 1/2 of the discrepancy. The
nonlinearity at small ε makes the effective slope somewhat
larger if the ε range is taken between 0.2 and 0.9. The
magnitude of the effect in this case is sufficient to bring the
LT and polarization transfer points almost to agreement, as
indicated in Fig. 5.

Although the 2γ corrections clearly play a vital role in
resolving most of the form factor discrepancy, it is instructive
to understand the origin of the effect on R with respect to
contributions to the individual G

p

E and G
p

M form factors. In
general the amplitude for elastic scattering of an electron from
a proton, beyond the Born approximation, can be described by
three (complex) form factors, F̃1, F̃2, and F̃3. The generalized
amplitude can be written as [9,11]

M = −i
e2

q2
ū(p3)γµu(p1) ū(p4)

×
(

F̃1γ
µ + F̃2

iσµνqν

2M
+ F̃3

γ · KP µ

M2

)
u(p2), (31)

where K = (p1 + p3)/2 and P = (p2 + p4)/2. The functions
F̃i (both real and imaginary parts) are in general functions of
Q2 and ε. In the 1γ exchange limit the F̃1,2 functions approach
the usual (real) Dirac and Pauli form factors, whereas the new
form factor F̃3 exists only at the 2γ level and beyond,

F̃1,2(Q2, ε) → F1,2(Q2), (32)

F̃3(Q2, ε) → 0. (33)
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Alternatively, the amplitude can be expressed in terms of
the generalized (complex) Sachs electric and magnetic form
factors, G̃E = GE + δGE and G̃M = GM + δGM , in which
case the reduced cross section, up to order α2 corrections, can
be written [11]

σ̃R = G2
M + ε

τ
G2

E + 2G2
MRe

{
δGM

GM

+ εY2γ

}
+ 2ε

τ
G2

ERe

{
δGE

GE

+ GM

GE

Y2γ

}
, (34)

where the form factor F̃3 has been expressed in terms of the
ratio:

Y2γ = ν̃
F̃3

GM

, (35)

with ν̃ ≡ K · P/M2 = √
τ (1 + τ )(1 + ε)/(1 − ε). We should

emphasize that the generalized form factors are not observ-
ables, and therefore have no intrinsic physical meaning. Thus
the magnitude and ε dependence of the generalized form
factors will depend on the choice of parametrization of the
generalized amplitude. For example, the axial parametrization
introduces an effective axial vector coupling beyond Born
level, and is written as [29]

M = −i
e2

q2

{
ū(p3)γµu(p1) ū(p4)

(
F ′

1γ
µ + F ′

2
iσµνqν

2M

)

× u(p2) + G′
Aū(p3)γµγ5u(p1)ū(p4)γ µγ5u(p2)

}
.

(36)

Following Ref. [12], one finds the following relationships:

F ′
1 = F̃1 + ν̃F̃3, (37)

F ′
2 = F̃2, (38)

G′
A = −τ F̃3. (39)

In Fig. 6 we show the contributions of 2γ exchange to the
(real parts of the) proton G̃E and G̃M form factors and the
ratio Y2γ evaluated at Q2 = 1, 3, and 6 GeV2. One observes
that the 2γ correction to G̃M is large, with a positive slope
in ε that increases with Q2. The correction to G̃E is similar
to that for G̃M at Q2 = 1 GeV2, but becomes shallower at
intermediate ε values for larger Q2. Both of these corrections
are significantly larger than the Y2γ correction, which is weakly
Q2 dependent and has a small negative slope in ε at larger Q2.
The contribution to Y2γ is found to be about 5 times smaller
than that extracted in phenomenological analyses [9] under the
assumption that the entire form factor discrepancy is because
of the new F̃3 contribution (see also Ref. [30]).

C. Comparison of e+ p to e− p cross sections

Direct experimental evidence for the contribution of 2γ

exchange can be obtained by comparing e+p and e−p cross
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FIG. 6. (Color online) Finite 2γ contributions (defined with
respect to the Mo-Tsai IR result [13]) to the real parts of the GM

(dashed), GE (dot-dashed), and Y2γ (solid) form factors of the proton
at Q2 = 1, 3, and 6 GeV2. Note the larger scale in the bottom figure.

sections through the ratio:

Re+e− ≡ dσ (e+)

dσ (e−)
≈

∣∣M(e+)
0

∣∣2 + 2Re
{
M(e+)†

0 M2γ (e+)
}∣∣M(e−)

0

∣∣2 + 2Re
{
M(e−)†

0 M2γ (e−)
} . (40)

Whereas the Born amplitude M0 changes sign under the
interchange e− ↔ e+, the 2γ exchange amplitude M2γ does
not. The interference of theM0 andM2γ amplitudes therefore
has the opposite sign for electron and positron scattering.
Because the finite part of the 2γ contribution is negative over
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FIG. 7. Ratio of elastic e+p to e−p cross sections. The data are
from SLAC [31,32], with Q2 ranging from 0.01 to 5 GeV2. The
results of the 2γ exchange calculations are shown by the curves for
Q2 = 1 (dotted), 3 (dashed), and 6 GeV2 (solid).

most of the range of ε, one would expect to see an enhancement
of the ratio of e+ to e− cross sections,

Re+e− ≈ 1 − 2�, (41)

where � is defined in Eq. (27).
Although the current data on elastic e−p and e+p scattering

are sparse, there are some experimental constraints from old
data taken at SLAC [31,32], Cornell [33], DESY [34], and
Orsay [35] (see also Ref. [36]). The data are predominantly
at low Q2 and at forward scattering angles, corresponding to
large ε (ε <∼ 0.7), where the 2γ exchange contribution is small
( <∼1%). Nevertheless, the overall trend in the data reveals a

small enhancement in Re+e−
at the lower ε values, as illustrated

in Fig. 7 (which shows a subset of the data, from the SLAC
experiments [31,32]).

The data in Fig. 7 are compared with our theoretical
results, calculated for several fixed values of Q2 (Q2 = 1,
3, and 6 GeV2). The results are in good agreement with the
data, although the errors on the data points are quite large.
Clearly better quality data at backward angles, where an
enhancement of up to ∼10% is predicted, would be needed
for a more definitive test of the 2γ exchange mechanism.
An experiment [37] using a beam of e+e− pairs produced
from a secondary photon beam at Jefferson Lab will make
simultaneous measurements of e−p and e+p elastic cross
sections up to Q2 ∼ 2 GeV2. A proposal to perform a precise
(∼1%) comparison of e−p and e+p scattering at Q2 =
1.6 GeV2 and ε ≈ 0.4 has also been made at the VEPP-3
storage ring [38].

III. POLARIZED ELECTRON-PROTON SCATTERING

The results of the 2γ exchange calculation in the previous
section give a clear indication of a sizable correction to the
LT-separated data at moderate and large Q2. The obvious
question that arises is whether, and to what extent, the 2γ

exchange affects the polarization transfer results, which show
the dramatic falloff of the G

p

E/G
p

M ratio at large Q2. In this
section we examine this problem in detail.

The polarization transfer experiment involves the scattering
of longitudinally polarized electrons from an unpolarized
proton target, with the detection of the polarization of the recoil
proton, �e + p → e + �p. (The analogous process whereby a
polarized electron scatters elastically from a polarized proton
leaving an unpolarized final state gives rise to essentially
the same information.) In the Born approximation the spin-
dependent amplitude is given by

M0(s1, s4) = −i
e2

q2
ū(p3)γµu(p1, s1)ū(p4, s4)�µ(q)u(p2),

(42)

where s1 = (s0
1 ; �s1) and s4 = (s0

4 ; �s4) are the spin four-vectors
of the initial electron and final proton, respectively, and
the spinor u(p1, s1) is defined such that u(p1, s1)ū(p1, s1) =
(p/1 + m)(1 + γ5s/1)/2 and similarly for ū(p4, s4). The spin
four-vector (for either the electron or recoil proton) can
be written in terms of the three-dimensional spin vector ζ

specifying the spin direction in the rest frame (see, e.g.,
Ref. [39]),

sµ =
( �ζ · �p

m
; �ζ + �p

�ζ · �p
m(m + E)

)
, (43)

where m and E are the mass and energy of the electron or
proton. Clearly in the limit �p → 0, the spin four-vector s →
(0; �ζ ). Because ζ is a unit vector, one has �ζ 2 = 1, and one can
verify from Eq. (43) that s2 = −1 and p · s = 0. If the incident
electron energy E1 is much larger than the electron mass m, the
electron spin four-vector can be related to the electron helicity
h = �ζ1 · �p1 by

s1 ≈ h
p1

m
. (44)

The coordinate axes are chosen so that the recoil proton
momentum �p4 defines the z axis, in which case for longitudi-
nally polarized protons one has �ζ = p̂4. In the 1γ exchange
approximation the elastic cross section for scattering a lon-
gitudinally polarized electron with a recoil proton polarized
longitudinally is then given by

dσ (L)

d�
= h σMott

E1 + E3

M

√
τ

1 + τ
tan2 θ

2
G2

M. (45)

For transverse recoil proton polarization we define the x axis
to be in the scattering plane, x̂ = ŷ × ẑ, where ŷ = p̂1 × p̂3

defines the direction perpendicular, or normal, to the scattering
plane. The elastic cross section for producing a transversely
polarized proton in the final state, with �ζ · �p4 = 0, is given
by

dσ (T )

d�
= h σMott2

√
τ

1 + τ
tan

θ

2
GEGM. (46)

Taking the ratio of the transverse to longitudinal proton cross
sections then gives the ratio of the electric to magnetic proton
form factors, as in Eq. (5). Note that in the 1γ exchange
approximation the normal polarization is identically zero.

The amplitude for the 2γ exchange diagrams in Fig. 1 with
the initial electron and final proton polarized can be written as
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follows:

M2γ (s1, s4) = e4
∫

d4k

(2π )4

Nbox(k, s1, s4)

Dbox(k)

+ e4
∫

d4k

(2π )4

Nx−box(k, s1, s4)

Dx−box(k)
, (47)

where the numerators are the matrix elements

Nbox(k, s1, s4) = ū(p3)γµ(p/1 − k/ + m)γνu(p1, s1)ū(p4, s4)

×�µ(q − k)(p/2 + k/ + M)�ν(k)u(p2),

(48)

Nx−box(k, s1, s4) = ū(p3)γν(p/3 + k/ + m)γµu(p1, s1)ū(p4, s4)

×�µ(q − k)(p/2 + k/ + M)�ν(k)u(p2),

(49)

and the denominators are given in Eqs. (17) and (18). The
traces in Eqs. (48) and (49) can be evaluated using the explicit
expression for the spin-vectors s1 and s4 in Eqs. (43) and (44).

In analogy with the unpolarized case [see Eq. (27)], the spin-
dependent corrections to the longitudinal (�L) and transverse
(�T ) cross sections are defined as the finite parts of the 2γ

contributions relative to the IR expression from Mo and Tsai
[13] in Eq. (23), which are independent of polarization,

�L,T = δfull
L,T − δIR. (50)

Experimentally, one does not usually measure the longitudinal
or transverse cross section per se, but rather the ratio of the
transverse or longitudinal cross section to the unpolarized cross
section, denoted PL or PT , respectively. Thus the 2γ exchange
correction to the polarization transfer ratio can be incorporated
as

P
1γ+2γ

L,T

P
1γ

L,T

= 1 + �L,T

1 + �
, (51)

where � is the correction to the unpolarized cross section
considered in the previous section.

The 2γ exchange contribution relative to the Born term is
shown in Fig. 8. The correction to the longitudinal polarization
transfer ratio PL is small overall. This is because the correction
�L to the longitudinal cross section is roughly the same as the
correction � to the unpolarized cross section. The corrections
� and �L must be exactly the same at θ = 180◦ (ε = 0), and
our numerical results bear this out. By contrast, the correction
to the transverse polarization transfer ratio PT is enhanced
at backward angles and grows with Q2. This is because
of a combined effect of �T becoming more positive with
increasing Q2 and � becoming more negative.

In the standard radiative corrections using the results of
Mo and Tsai [13], the corrections for transverse polarization
are the same as those for longitudinal polarization, so that
no additional corrections beyond hard bremsstrahlung need be
applied [39]. Because the polarization transfer experiments [5]
typically have ε ≈ 0.7–0.8, the shift in the polarization transfer
ratio in Eq. (5) due to 2γ exchange corrections is not expected
to be dramatic. If R is the corrected (“true”) electric to magnetic
form factor ratio, as in Eq. (29), then the measured polarization
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FIG. 8. Ratio of the finite part [with respect to the IR contribution
in Eq. (22)] of the Born+2γ correction relative to the Born term,
for (a) longitudinal and (b) transverse recoil proton polarization, at
Q2 = 1 (dotted), 3 (dashed), and 6 GeV2 (solid). Note the different
scales on the vertical axes.

transfer ratio is

R̃ = R

(
1 + �T

1 + �L

)
. (52)

Inverting Eq. (52), the shift in the ratio R is illustrated in
Fig. 9 by the solid circles (offset slightly for clarity). The
unshifted results are indicated by the open circles, and the LT
separated results are labeled by diamonds. The effect of the
2γ exchange on the form factor ratio is a very small, <∼3%
suppression of the ratio at the larger Q2 values, which is well
within the experimental uncertainties.

Note that the shift in R in Eq. (52) does not include
corrections from hard photon bremsstrahlung (which are part
of the standard radiative corrections). Because these would
make both the numerator and denominator in Eq. (52) even
larger, the correction shown in Fig. 9 would represent an upper
limit on the shift in R.

Finally, the 2γ exchange process can give rise to a nonzero
contribution to the elastic cross section for a recoil proton
polarized normal to the scattering plane. This contribution
is purely imaginary, and does not exist in the 1γ exchange
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FIG. 9. (Color online) Proton electric to magnetic form factor
ratio obtained from the polarization transfer measurements [5], with
(solid circles) and without (open circles) the 2γ exchange corrections.
The corrected values have been offset for clarity. The LT-separated
ratio (open diamonds) from Fig. 5 is shown for comparison.

approximation. It is illustrated in Fig. 10, where the ratio �N

of the 2γ exchange contribution relative to the unpolarized
Born contribution is shown as a function of ε for several values
of Q2. (For consistency in notation we denote this correction
�N rather than δN , even though there is no IR contribution to
the normal polarization.)

The normal polarization contribution is very small nu-
merically, �N <∼ 1%, and has a very weak ε dependence.
In contrast to �L and �T , the normal polarization ratio is
smallest at low ε, becoming larger with increasing ε. Although
not directly relevant to the elastic form factor extraction, the
observation of protons with normal polarization would provide
direct evidence of 2γ exchange in elastic scattering. Figure 11
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FIG. 10. Ratio of the 2γ contribution to the normal polarization,
to the unpolarized Born contribution, as a function of ε, for Q2 = 1
(dotted), 3 (dashed), and 6 GeV2 (solid).
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FIG. 11. Normal polarization asymmetry, expressed as a percent-
age, as a function of the center-of-mass scattering angle, �cm, for
Q2 = 1 (dotted), 3 (dashed), and 6 GeV2 (solid).

shows the normal polarization asymmetry Ay as a function of
the center-of-mass scattering angle, �cm, for several values of
Q2. The asymmetry is relatively small, of the order of 1% at
small �cm for Q2 ∼ 3 GeV2, but grows with Q2.

The imaginary part of the 2γ amplitude can also be accessed
by measuring the electron beam asymmetry for electrons
polarized normal to the scattering plane [40]. Knowledge of
the imaginary part of the 2γ exchange amplitude could be used
to constrain models of Compton scattering, although relating
this to the real part (as needed for form factor studies) would
require a dispersion relation analysis.

IV. ELECTRON-NEUTRON SCATTERING

In this section we examine the effect of the 2γ exchange
contribution on the form factors of the neutron. Because the
magnitude of the electric form factor of the neutron is relatively
small compared with that of the proton, and as we saw in
Sec. III the effects on the proton are significant at large Q2,
it is important to investigate the extent to which Gn

E may be
contaminated by 2γ exchange.

Using the same formalism as in Secs. II and III, the
calculated 2γ exchange correction for the neutron is shown
in Fig. 12 for Q2 = 1, 3, and 6 GeV2. Because there is
no IR divergent contribution to δ for the neutron, the total
2γ correction δfull is displayed in Fig. 12. In the numerical
calculation, the input neutron form factors from Ref. [16] are
parametrized using the pole fit in Eq. (26), with the parameters
given in Table I. For comparison, the correction at Q2 =
6 GeV2 is also computed using a 3-pole fit to the form
factor parametrization from Ref. [41]. The difference between
these is an indication of the model dependence of the
calculation.

The most notable difference with respect to the proton
results is the sign and slope of the 2γ exchange correction.
Namely, the magnitude of the correction δfull(ε,Q2) for the
neutron is ∼3 times smaller than for the proton. The reason for
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FIG. 12. (Color online) 2γ contribution to the unpolarized
electron-neutron elastic scattering cross section, at Q2 = 1 (dotted),
3 (dashed), and 6 GeV2 (solid and dot-dashed). The dot-dashed curve
corresponds to the form factor parametrization of Ref. [41], whereas
the others are from Ref. [16] (as fitted by the parameters in Table I).

the sign change is the negative anomalous magnetic moment
of the neutron. The ε dependence is approximately linear at
moderate and high ε, but at low ε there exists a clear deviation
from linearity, especially at large Q2.

Translating the ε dependence to the form factor ratio, the
resulting shift in µnG

n
E/Gn

M is shown in Fig. 13 at several
values of Q2, assuming a linear 2γ correction over two
different ε ranges (ε = 0.2 − 0.9 and ε = 0.5 − 0.8). The
baseline (uncorrected) data are from the global fit in Ref. [16].
The shift due to 2γ exchange is small at Q2 = 1 GeV2,
but increases significantly by Q2 = 6 GeV2, where it pro-
duces a 50–60% rise in the uncorrected ratio. These results
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FIG. 13. (Color online) Effect of 2γ exchange on the ratio of neu-
tron form factors µnG

n
E/Gn

M using LT separation. The uncorrected
points (open circles) are from the form factor parametrization in
Ref. [16], whereas the points corrected for 2γ exchange are obtained
from linear fits to δfull in Fig. 12 for ε = 0.2 − 0.9 (filled squares)
and ε = 0.5 − 0.8 (filled circles) (offset for clarity).
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FIG. 14. (Color online) Effect of 2γ exchange on the ratio of
neutron form factors µnG

n
E/Gn

M using polarization transfer. The
uncorrected points (open circles) are from the parametrization in
Ref. [16], and the points corrected for 2γ exchange correspond to
ε = 0.3 (filled squares) and ε = 0.8 (filled circles) (offset for clarity).

suggest that, as for the proton, the LT separation method is
subject to large corrections from 2γ exchange at large Q2.

Although the 2γ corrections to the form factor ratio from LT
separation are significant, particularly at large Q2, in practice
the neutron Gn

E form factor is commonly extracted using
the polarization transfer method. To compare the 2γ effects
on the ratio µnG

n
E/Gn

M extracted by polarization transfer, in
Fig. 14 we plot the same “data points” as in Fig. 13, shifted by
the δL,T corrections as in Eq. (52) at two values of ε (ε = 0.3
and 0.8). The shift is considerably smaller than that from
the LT method but nevertheless represents an approximately
4% (3%) suppression at ε = 0.3 (0.8) for Q2 = 3 GeV2 and
≈10% (5%) suppression for Q2 = 6 GeV2 for the same ε.
In the Jefferson Lab experiment [42] to measure Gn

E/Gn
M at

Q2 = 1.45 GeV2 the value of ε was around 0.9, at which the
2γ correction was ≈2.5%. In the recently approved extension
of this measurement to Q2 ≈ 4.3 GeV2 [43], the 2γ correction
for ε ≈ 0.82 is expected to be around 3%. Although small,
these corrections will be important to take into account to
achieve precision at the several-percent level. Furthermore, the
two-photon exchange effects may also need to be taken into
account when extracting the neutron magnetic form factor Gn

M

from cross-section data.

V. 3HE ELASTIC FORM FACTORS

In this section we extend our formalism to the case of elastic
scattering from 3He nuclei. Of course, the contribution of 3He
intermediate states in 2γ exchange is likely to constitute only a
part of the entire effect – contributions from breakup channels
may also be important. However, we can obtain an estimate on
the size of the effect on the 3He form factors, in comparison
with the effect on the nucleon form factor ratio.

The expressions used to evaluate the 2γ contributions are
similar to those for the nucleon, because 3He is a spin- 1

2
particle, although there are some important differences. For
instance, the charge is now Ze (where Z = 2 is the atomic
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FIG. 15. 2γ contribution to the unpolarized electron-3He elastic
scattering cross section, with the 3He elastic intermediate state, as a
function of ε, for Q2 = 0.05 (solid), 0.2 (dot-dashed), 0.5 (dashed),
and 1 GeV2 (dotted). A parametrization of the form factor from
Ref. [44] is used in all cases, except for the upper solid and dot-dashed
curves, for which a dipole shape with mass 3He = 0.37 GeV is
used.

number of 3He), the mass M3He is ≈3 times larger than
the nucleon mass, and the anomalous magnetic moment is
κ3He = −4.185. In addition, the internal γ 3He form factors are
somewhat softer than the corresponding nucleon form factor
(because the charge radius of the 3He nucleus is ≈1.88 fm) and
have zeros at Q2 ≈ 0.45 and 0.7 GeV2 for the charge (FC) and
magnetic (FM ) form factors, respectively [44]. (Analyzing the
ratio FC/FM is not meaningful therefore because of the zero
in FM .)

Using a three-monopole fit [45] to the 3He form factors
from Amroun et al. [44], the 2γ exchange correction � is
shown in Fig. 15 as a function of ε for several values of Q2.
As for the proton, � is negative at low Q2, and generally
increases in magnitude with increasing Q2. However, there
are several important differences between the 3He and proton
cases. First, the larger charge squared Z2 of the 3He nucleus
makes the effect larger (by a factor ∼4), whereas the larger
mass squared of the 3He nucleus suppresses the effect by a
factor ∼9. In addition, the form factor at low Q2 is much
softer than that of the nucleon. However, the main difference
stems from the presence of the zeros in the form factors at
Q2 ∼ 0.5 GeV2, which gives rise to the dramatic change of
sign in � at Q2 = 0.5 GeV2.

To estimate the model dependence of the results, we have
also calculated the correction � assuming a dipole shape with
a cutoff mass 3He = 0.37 GeV, fitted to the 3He radius, which
gives a reasonable approximation at low Q2 ( <∼0.05 GeV2).
The results with this form factor, indicated by the upper curves
for Q2 = 0.05 and 0.2 GeV2 in Fig. 15, are about a factor 2
smaller in magnitude than for the form factor from Ref. [44].
Using the value 3He = 0.34 GeV, which underestimates the
form factor at low Q2, but gives a better overall fit at higher
Q2 ( <∼0.1 GeV2), leads to similar results as those for 3He =
0.37 GeV. At larger Q2 the dipole shape is not a good
representation of the 3He form factor, and it is difficult to
estimate the model dependence of �. These results therefore

illustrate the potential relevance of two-photon exchange
effects for future 3He form-factor measurements, which will
extend the Q2 range to Q2 ≈ 4 GeV2 [46].

VI. CONCLUSION

We have presented a comprehensive analysis of the effects
of 2γ exchange in elastic electron-nucleon scattering, taking
particular account of the effects of nucleon structure. Our
main purpose has been to quantify the 2γ effect on the ratio
of electric to magnetic form factors of the proton, which
has generated controversy recently stemming from conflicting
results of measurements at large Q2.

Consistent with the earlier preliminary investigation [10],
we find that inclusion of 2γ exchange reduces the G

p

E/G
p

M

ratio extracted from LT-separated cross section data, and
resolves a significant amount of the discrepancy with the
polarization transfer results. At higher Q2 we find strong
deviations from linearity, especially at small ε, which can be
tested in future high-precision cross section measurements.
There is some residual model dependence in the calculation
of the 2γ amplitude arising from the choice of form factors
at the internal γ ∗NN vertices in the loop integration. This
dependence, although not overwhelming, will place limita-
tions on the reliability of the LT separation technique in
extracting high-Q2 form factors. However, the size of the 2γ

contributions to elastic scattering could be determined from
measurement of the ratio of e−p to e+p elastic cross sections,
which are uniquely sensitive to 2γ exchange effects.

We have also generalized our analysis to the case where
the initial electron and recoil proton are polarized, as in the
polarization transfer experiments. Although the 2γ corrections
can be as large as ∼4–5% at small ε for Q2 ∼ 6 GeV2,
because the polarization transfer measurements are performed
typically at large ε we find the impact on the extracted G

p

E/G
p

M

ratio to be quite small, amounting to <∼3% suppression at the
highest Q2 value. However, future measurements at higher
Q2 will go to lower ε values, so that the 2γ effects will need
to be taken into account to achieve precision at the several-
percent level, especially if the G

p

E/G
p

M ratio continues to fall
with Q2.

Extending the formalism to the case of the neutron, we have
calculated the 2γ exchange corrections to the neutron Gn

E/Gn
M

ratio. Although numerically smaller than for the proton, the
corrections are nonetheless important because the magnitude
of Gn

E itself is small compared with G
p

E . Furthermore,
because of the opposite sign of the neutron magnetic moment
relative to the proton, the 2γ corrections to the LT-separated
cross section give rise to a sizable enhancement of Gn

E/Gn
M

at large Q2. The analogous effects for the polarization
transfer ratio are small, however, giving rise to a few percent
suppression for Q2 <∼ 6 GeV2.

Finally, we have also obtained an estimate of the 2γ

exchange contribution to the elastic form factors of 3He
from elastic intermediate states. At low Q2 the two-photon
exchange correction is negative and generally increases in
magnitude with increasing Q2, as for the proton. However, the
presence of zeros in the 3He form factors at Q2 ∼ 0.5 GeV2
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gives rise to nonmonotonic behavior and reveals potentially
interesting two-photon exchange effects in future 3He form
factor measurements at larger Q2 [46].

Contributions from excited states, such as the � and heavier
baryons, may modify the quantitative analysis presented here.
Naively, one could expect their effect to be suppressed because
of the larger masses involved, at least for the real parts of the
form factors. An investigation of the inelastic excitation effects
is presented in Ref. [14].
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