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Tests of the fission-evaporation competition in the deexcitation of heavy nuclei
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The Andrzej Sołtan Institute for Nuclear Studies, PL-05-400 Otwock-Świerk, Poland
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In order to verify methods of calculating the fission-evaporation competition in reactions used to synthesize
new super-heavy nuclei in “cold” (1n) and “hot” (3n, 4n) fusion reactions, we present an analysis of existing
experimental data on the evaporation-residue cross sections in two selected reactions, 208Pb(16O, xn) and
236U(12C, xn), for which complementary experimental information necessary to unambiguously calculate the
survival probabilities is available: precisely measured fusion excitation functions and saddle-point energies of the
fissioning nuclei, deduced from experiments. Standard statistical model calculations, with shell effects accounted
for by the Ignatyuk formula, were carried out assuming the ground state shell corrections of Möller et al., and
zero shell correction at the saddle configuration (resulting from the presented systematics). Good agreement of
the calculated evaporation-residue cross sections with experimental data for different xn reaction channels at low
excitation energies leaves no room for modifications of the conventional way of calculating the �n/�f ratio,
particularly for including into this ratio an additional preexponential factor (such as the Kramers fission hindrance
factor or an effective collective factor) significantly different from 1.
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I. INTRODUCTION

Calculation of the “survival probability,” Psurv, in deexci-
tation of heavy compound nuclei formed in nucleus-nucleus
fusion reactions is a basic component of theoretical models
aimed to predict the production cross sections of super-heavy
nuclei. Some selected papers representing different theoretical
approaches to this question are listed in Refs. [1–7]. There are
several unresolved questions in statistical-model calculations
which leave a large margin of uncertainty in estimates of
the survival probability. To reduce these uncertainties we
have analyzed experimental data on the evaporation-residue
cross sections in two selected reactions, 208Pb(16O, xn) [8] and
236U(12C, xn) [9], for which absolute values of the fusion cross
section have been measured in separate experiments [10,11],
and moreover, the saddle-point energies of the fissioning nuclei
are known from experimentally determined fission barriers
(see Ref. [12] and the compilation by Smirenkin [13], updated
in Ref. [14]). This unique set of experimental information
imposes sufficiently strong constraints to verify the way of
calculating the survival probabilities, particularly to answer
the question whether or not conventional expressions for
evaporation and fission widths indeed have to be modified
by rather arbitrary collective factors and/or the dissipative
Kramers factor—as suggested in some of the papers listed
in Refs. [1–6].

II. SURVIVAL PROBABILITY

The survival probability Psurv(Z,A,E, J ) is the probability
for the compound nucleus of atomic and mass numbers Z,
and A, the excitation energy E, and spin J to decay to the
ground state of a final residual nucleus via evaporation of

light particles and γ rays thus surviving fission. In practical
applications, when the cross section for production of a
selected evaporation-residue nucleus is measured, for example
in one of the (fusion, xn) reaction channels, the survival
probability refers to the formation of this particular final
nucleus (Z,A − xn) in its ground state.

A. One-neutron-out reaction

In the simplest case of one-neutron-out reaction, (fusion,
1n), the survival probability is given by

Psurv(1n) = �n

�tot
(1 − p′′), (1)

where �n is the partial width for neutron emission, and �tot is
the total decay width consisting of the partial width for fission
�f and the sum of all evaporation widths �i(evap), including
�n,

�tot = �f +
∑

�i(evap). (2)

The quantity p′′ denotes the probability that after the neutron
emission the decaying nucleus will undergo second-chance
fission or emit another light particle. Otherwise it will reach
the ground state (by emitting γ rays) with the probability
(1 − p′′). In Ref. [7] simple formulas for calculating Psurv(1n)
are given.

B. General case

At higher excitation energies, successive emission of more
particles is energetically possible. The competition between
different evaporation channels and fission has to be then
decided at every consecutive stage of the deexcitation cascade,
proportionally to the widths �f and �i(evap). The ultimate
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population of a given final evaporation-residue nucleus of the
mass and atomic numbers Af ,Zf , relative to the population
of all other evaporation and fission reaction channels, is the
survival probability for this selected reaction channel:

Psurv(A,Z ⇒ Af ,Zf ) = N (Af ,Zf )

N (fission) + ∑
j N (Aj,Zj )

, (3)

where N (Af ,Zf ) is the number of cascades leading to
formation of a selected nucleus Af ,Zf in its ground state,
while the number in the denominator of Eq. (3) is the total
number of deexcitation cascades which end by fission (at any
stage of the cascade) or by formation of any evaporation-
residue nucleus in the ground state.

Due to the complexity of multiparticle cascades, Monte
Carlo methods are especially suitable to evaluate the final
distribution of the evaporation-residue and fission events in
Eq. (3). In short, the following scheme of the Monte Carlo
calculations is used: At the beginning of each cascade, a value
of the angular momentum l is drawn out of the distribution
assumed to be proportional to 2l + 1. The information on the
angular momentum is kept throughout the deexcitation cascade
in order to calculate the rotational and thermal components
of the excitation energy at each stage of the cascade. A
given deexcitation cascade is generated by drawing first the
decay mode (i.e., the evaporation of a specific particle i or
fission—proportionally to the partial width �i/�tot), and then
by drawing a value of the kinetic energy of the selected
(evaporated) particle—assuming its kinetic energy spectrum
to be Maxwellian. Apart from neutrons, several other light
particles, ranging from protons to Li isotopes, are accounted
for as candidates for evaporation throughout the deexcitation
cascade. A reasonably accurate sharp cut-off approximation
describing the competition of γ decay with other decay modes
is applied in our calculations. Namely, the γ -decay width
is always neglected when evaporation of light particles or
above-the-barrier fission is possible energetically. Otherwise,
i.e., at sub-fission-barrier excitation energies, the γ decay
prevails over fission.

C. The particle emission width �i (evap)

The partial width �i for emission of a particle i from a
compound nucleus with the excitation energy E0 is given by
Weisskopf formula [15]

�i = gi mi σi

π2h̄2ρ0(E0)

∫ Emax
i

0
ρi

(
Emax

i − εi

)
εi dεi, (4)

where mi and gi are the mass and spin degeneracy of the
emitted particle, εi is its kinetic energy, σi is the cross section
for the formation of the decaying nucleus in the inverse
process, ρ0(E0) is the level density of the parent nucleus at
the excitation energy E0, and ρi(Emax

i − εi) the level density
of the daughter nucleus after emission of the particle i. The
energy Emax

i is the upper limit of the final-state excitation
energy after emission of the particle i.

To a good approximation only thermal excitation energies
U can be taken in the ratio of the level densities of the daughter
and parent nuclei, ρi and ρ0, respectively. In this approximation

the Fermi-gas-model expression, ρ = const · exp 2
√

aU , can
be used. Thus we obtain

�i = gi mi σi U
max
i

π2h̄2ai

exp
(

2
√

aiU
max
i − 2

√
a0U0

)
, (5)

where a0 is the level density parameter of the parent nucleus
at the thermal excitation energy corrected for its pairing
energy P0,

U0 = E0 − Erot
0 − P0, (6)

and ai is the level density parameter of the final nucleus (after
emission of the particle i) at the upper limit of the final-state
thermal excitation energy

Umax
i = E0 − Erot

i − Si − Bi − Pi, (7)

where Si is the separation energy of the emitted particle, Bi

is the asymptotic Coulomb interaction energy of this particle
with the daughter nucleus, and Pi is the pairing energy of the
final nucleus. The rotational energies of the nuclei before and
after emission of the particle i, Erot

0 and Erot
i , respectively, are

calculated assuming the rigid-body moments of inertia and
ground-state deformations as predicted in Ref. [21]. Pairing
energies are calculated using conventional parametrization:
P = 0 for odd-odd nuclei, P = 12 MeV/

√
A for odd-A nuclei,

and P = 24 MeV/
√

A for even-even nuclei.

D. The fission width � f

To describe the competition between the particle evapo-
ration and fission we need to evaluate also the fission width
�f for the parent nucleus at the excitation energy E0. The
fission width can be expressed in terms of the transition state
theory [16,17] as

�f = 1

2πρ0(E0)

∫ Emax
f

0
ρf

(
Emax

f − K
)
dK, (8)

where the level density of the fissioning nucleus at the saddle
configuration, ρf is integrated over the kinetic energy K in the
fission degree of freedom. Here Emax

f denotes the upper limit
of the excitation energy at the saddle.

Again, by taking only the thermal excitation energies in
the ratio of ρf and ρ0, and assuming the Fermi-gas-model
expression for the level density, we obtain

�f =
2
√

af Umax
f − 1

4π af

exp
(

2
√

af Umax
f − 2

√
a0U0

)
, (9)

where a0 and U0 mean the same as in Eq. (5), af is the
level density parameter of the fissioning nucleus at the saddle
configuration, and Umax

f denotes the upper limit of the thermal
excitation energy at the saddle:

Umax
f = E(saddle) − Erot(saddle) − P (saddle). (10)

Here E(saddle), Erot(saddle), and P (saddle) denote, respec-
tively, the total excitation energy, the rotational energy, and
the pairing energy—all taken at the saddle configuration. The
saddle-point pairing energy is assumed to be the same as
at equilibrium, P (saddle) = P0, and the rotational energy is
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calculated assuming the rigid-body moment of inertia for the
saddle-point shape.

E. Dependence of ai and a f on shell effects

Equations (5) and (9) are the basis for calculating the
survival probability. It is essential in these calculations to use
realistic values of the level density parameters ai and af for
evaporation and fission channels. In the present work we use
the well tested parametrization proposed by Reisdorf [18],
accounting for the volume, surface, and curvature dependence
of the single-particle level density at the Fermi surface,
combined with the Ignatyuk formula [19] for shell effects.
Thus the smooth, shell-independent level-density parameter is
given [18] by the following expression:

ã = 0.04543r3
0 A + 0.1355 r2

0 A2/3 BS + 0.1426 r0 A1/3 BK,

(11)

where BS and BK are the surface and curvature factors defined
in the droplet model [20], and r0 is the radius parameter found
to be r0 = 1.15 fm [18]. For spherical nuclei BS = BK = 1.
Values of BS and BK for deformed shapes (most important for
the saddle configuration in fission channel) have been tabulated
in Ref. [20].

As demonstrated by Ignatyuk [19], the level densities
determined experimentally can be well reproduced assuming
that the smooth value of the level density parameter ã,
Eq. (11), is modified due to shell effects according to the
formula

a = ã

[
1 + δshell

U
(1 − exp(−U/ED))

]
, (12)

where δshell is the shell correction energy, and ED is a parameter
determining the damping of shell effects with the increasing
excitation energy U. According to Ref. [18] ED = 18.5 MeV.
Values of the shell correction energies δshell, calculated with
the Strutinsky method for a wide range of nuclei, can be found
in Ref. [21].

Mughabghab and Dunford [22] proposed slightly modified
parametrization of ã, with the volume, surface and curvature
coefficients in Eq. (11) determined as free parameters. They
used also a modified expression for the damping of shell effects
in Eq. (12). This alternative way of calculating the level density
parameters gives results essentially very similar to those
resulting from the Reisdorf-Ignatyuk prescription of Eqs. (11)
and (12) because ratios of the level densities are not sensitive
to minor changes in parametrization of a. In our calculations
we consequently keep the Reisdorf parametrization, Eq. (11),
that contains only one empirically adjusted parameter r0.

It is clear that the Ignatyuk formula, Eq. (12), has to be
applied for calculating shell effects in both ai and af . While
shell corrections at the equilibrium configuration (determining
ai) are known and tabulated (see, e.g., Ref. [21]), shell
corrections at the saddle configuration, necessary to calculate
af , are not known so precisely. However, from analysis of
the fissionability data in the actinide region, Reisdorf [18]
concluded that the saddle-point shell corrections are small, of
the order of 0.5 MeV or even less. Similar conclusion was
reached by Myers and Świa̧tecki [23] from a comparison of

experimental fission barriers [13] with those predicted within
the macroscopic Thomas-Fermi model, modified only by the
ground-state shell correction (i.e., assuming the saddle-point
shell corrections equal to zero). In the Appendix we present
systematics of the saddle-point shell corrections deduced
from experimental fission barriers compiled in Refs. [13,14]
for a wide range of nuclei of 88 � Z � 100. It is seen
from our systematics that the saddle-point shell corrections,
δshell(saddle), indeed are close to zero. Therefore in the case
when no information on δshell(saddle) is available, one can
quite safely assume in Eq. (12) that δshell(saddle) = 0.

III. VERIFICATION OF THE MODEL WITH
EXPERIMENTAL DATA

To test the method of calculating the survival probability
in reactions leading to the synthesis of super-heavy nuclei we
selected a set of data for two lighter systems, 16O + 208Pb
and 12C + 236U, for which along with the evaporation-
residue (xn) cross sections, also fusion excitation functions
were measured in separate experiments [10,11]. Still more
importantly, experimental values of the saddle-point energy
(obtained from experimentally determined l = 0 fission barri-
ers [13,14]) in various isotopes of Th and Cf, produced during
deexcitation of the compound nucleus in these two reactions,
are known or can be quite precisely estimated. In addition, both
16O + 208Pb and 12C + 236U systems are asymmetric enough
to guarantee that the compound nucleus formation is not
affected by the dynamical fusion hindrance factor [7], known
to reduce fusion cross sections even by orders of magnitude
for heavier and more symmetric systems. Thus, the unique
set of experimental data available for the 16O + 208Pb and
12C + 236U systems imposes sufficiently strong constraints
to unambiguously verify the way of calculating the survival
probabilities.

The completeness of the 16O + 208Pb and 12C + 236U data
is of special importance in the situation when the standard way
of calculating Psurv with the conventional expressions given by
Eqs. (5) and (9) has been modified in some models [1–6] by
rather arbitrarily introduced preexponential collective factors
[24,25], and/or the Kramers factor (to replace the conventional
Bohr-Wheeler fission width with the Kramers formula [26]).

Another question to be verified is the validity of the
“symmetric formula” for �i/�f proposed by Swiatecki [27].
In this approach �i is evaluated the same way as �f , i.e.,
without singling out the two translational degrees of freedom
transverse to the direction of the emitted particle i. This also
leads to a preexponential factor in the branching ratio �i/�f ,
which is different from that resulting from conventional
Eqs. (5) and (9).

Various theoretical models [1–7] have been applied so far
to reproduce cross sections for the production of super-heavy
compound-residue nuclei. However the interplay of several
unknown factors such as experimentally unknown saddle-point
energies, unmeasured fusion- or capture cross sections, effects
of the dynamical fusion hindrance, shell effects, and finally
the collective and/or Kramers factors applied in some of
these models—make the problem too complex to unravel the
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FIG. 1. Evaporation residue cross sections for 2n, 3n, and 4n

reaction channels (full circles, open circles, and full squares,
respectively) in the 16O + 208Pb reaction, measured by Sagaidak
et al. [6,8], and fusion excitation function for this reaction measured
by Morton et al. [10]. Theoretical predictions based on standard
statistical model calculations, with shell effects taken as described in
the text, are shown by solid lines.

individual components. In the selected two “clean” cases of
the 16O + 208Pb and 12C + 236U systems we are going to
resolve the essential question whether the branching ratios
�i/�f are consistent with the conventional formulas (6) and
(9) or we really need to account for the mentioned above
effects influencing the preexponential factor in the �i/�f

ratios.

A. The 16O + 208Pb reaction

In Fig. 1 we present the available experimental information
on the 16O + 208Pb reaction combined with results of our
calculations. The fusion excitation function for this reaction
was measured very precisely by Morton et al. [10]. The
experimental data (small open circles in Fig. 1) are fitted
with the “diffused barrier formula,” Eq. (6) of Ref. [28],
that gives a reliable extrapolation at sub-barrier energies. The
evaporation residue cross sections for 2n, 3n, and 4n reaction
channels, reported in Ref. [8], are also shown in Fig. 1. Thin
solid lines represent the calculated cross sections for these
reaction channels obtained assuming the branching ratios in
the evaporation cascade as given by Eqs. (5) and (9).

Regarding precision of the theoretical predictions, it is
essential to know the saddle-point energies of the fissioning
nuclei very accurately. It is therefore a great advantage that

for Th isotopes produced during the deexcitation cascade
following the 16O + 208Pb reaction, the experimental fission
barriers [12] could be used for determination of the saddle-
point energies. The following values of the fission barrier: 6.8,
6.7, 6.7, 6.9, and 6.7 MeV have been adopted for 220−224Th
nuclei, respectively [14]. The unmeasured barrier for 224Th
was adopted on the basis of the systematics for adjacent
nuclei (see Table 2 of Ref. [14]). It should be pointed out
that the experimental fission barriers quoted in Refs. [13,14]
usually originate from analysis of the near-barrier dependence
of the first-chance fission probability in neutron or charged-
particle induced fission as well as in electromagnetic fission
[12]. At these low excitation energies the deduced fission
barriers are determined quite precisely, with an accuracy of
±0.2–0.3 MeV.

As seen from Fig. 1, the evaporation residue cross sections
calculated with the adopted experimental fission barriers agree
with the experimental data quite satisfactorily. It was checked
in our calculations that the uncertainty of the height of the
fission barrier ±0.2 MeV results in a change of the cross
section at the maximum of the excitation function for 2n and
3n channels by a factor of about 1.5 and 2.5, respectively.
This demonstrates how critical is the precise knowledge of
the saddle-point energy. The observed discrepancies between
calculated and experimental maximum values of the cross
section for 2n and 3n channels are of this order. There is
an indication of a larger discrepancy for the 4n channel at
the highest studied excitation energies. This effect will be
discussed in Sec. III B.

We emphasize again the role of shell corrections in
both, the compound residue nucleus after neutron emission
(determining �n), and in the saddle configuration (determining
�f ). Following arguments given in Sec. II E, in the analysis
of the 16O + 208Pb reaction we assumed the saddle-point
shell corrections in the fissioning 224−221Th nuclei to be zero,
δshell(saddle) = 0. The resulting dependence of the af /an ratio
on the excitation energy of a given decaying nucleus, calcu-
lated for the ground-state shell corrections δshell(g.s.) taken
from Ref. [21], is illustrated in Fig. 2. As it follows from
Eqs. (11) and (12), for typical values of BS and BK character-
izing the equilibrium and saddle configuration shapes and for
usually negative values of δshell(g.s.), the ratio af /an is always
larger than 1, with the tendency to increase with the decreasing
excitation energy. It is seen from Fig. 2 that for different Th
isotopes af exceeds an by about 10%.

It should be pointed out that attempts to fit data simultane-
ously for different xn channels in a strong competition with
the fission channel put severe constraints on a value of the
�n/�f ratio, particularly on the preexponential factor in that
ratio. To illustrate this point, we again show in Fig. 3 the data
on 2n, 3n, and 4n cross sections in the 16O + 208Pb reaction,
but now the data are compared to predictions based on the
“symmetric formula” for the �n/�f ratio, as proposed by
Swiatecki [27]. The symmetric formula has the same ex-
ponential term as that resulting from Eqs. (5) and (9), but
it gives a preexponential factor in �n/�f approximately

equal to
√

af Umax
n /anU

max
f , which is about 3–4 times smaller

than in the conventional formula (in the studied range
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FIG. 2. Energy dependence of the af /an ratio calculated using
Eqs. (11) and (12) for 224-221Th nuclei in the xn deexcitation cascade
following the 16O + 208Pb fusion reaction. The ground-state shell
corrections δshell(g.s.) were taken from Ref. [21], and the saddle shell
corrections δshell(saddle) were assumed to be zero, as follows from
systematics shown in Fig. 6.

of excitation energies around 25 MeV). Consequently, the
predicted cross sections are clearly too small, especially for
3n and 4n channels, for which the preexponential factor
acts multiplicatively 3 or 4 times, respectively. Taking into
account the fact that for the studied 16O + 208Pb reaction we
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FIG. 3. Same as Fig. 1, except statistical model calculations
performed assuming the “symmetric” formula for the �f /�n

ratio [27].

know the experimental values of the ground-state fission
barrier, the crucial ingredient in these calculations, and that we
can safely eliminate the dynamical hindrance effects as well as
the uncertainties in the fusion cross section, we infer that the
results presented in Figs. 1 and 3 unambiguously demonstrate
validity of the conventional formula for �n/�f [based on
Eqs. (5) and (9)], and rather exclude validity of the symmetric
formula of Ref. [27]. Moreover, these results exclude any other
modification of the conventional way of calculating compe-
tition between evaporation and fission channels that would
introduce into the conventional expression for �n/�f an
additional preexponential factor significantly different from 1.
However, as will be discussed in Sec. III B, at high excitation
energies, approximately at E∗ = 35 MeV or somewhat higher,
an indication for the onset of the fission hindrance effects is
observed.

B. The 12C + 236U reaction

The 12C + 236U reaction provides another almost complete
set of experimental information suitable to test the way of
calculating the survival probabilities. The measured fusion
cross sections [11] and evaporation residue cross sections for
3n, 4n, and 5n channels [9] in the 12C + 236U reaction are
shown in Fig. 4. The measured fusion cross sections cover
the essential range of near-barrier energies and therefore the
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FIG. 4. Evaporation residue cross sections for 3n, 4n, and 5n

reaction channels (full circles, open circles, and full squares,
respectively) in the 12C + 236U reaction, measured by Sikkeland
et al. [9], and the fusion excitation function for this reaction measured
by Murakami et al. [11]. Theoretical predictions based on standard
statistical model calculations, with shell effects taken as described in
the text, are shown by solid lines.
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extrapolation based on fitting the diffused-barrier formula
[7,28] is reliable. Moreover, the 12C + 236U system is
very asymmetric. Therefore the dynamical hindrance of the
fusion cross section can be safely disregarded. Unfortunately
the existing experimental information on fission barriers for
relevant Cf nuclei is limited only to isotopes of A � 250, but
reasonable estimates for lighter Cf isotopes can be done on
the basis of the systematics [13,14] for isobars of adjacent
lighter elements. The following values of the ground-state
fission barriers for a series of isotopes of Cf have been adopted:
6.3, 6.2, 6.1, 6.0, and 6.0 MeV for mass numbers 244–248,
respectively.

The predicted cross sections for 3n, 4n, and 5n channels in
the 12C + 236U reaction are shown in Fig. 4. Similarly as in
case of the 16O + 208Pb reaction, we assumed the saddle-point
shell corrections in successive nuclei formed in the xn chain
to be zero, δshell(saddle) = 0. The resulting dependence of the
af /an ratio on the excitation energy for these Cf isotopes (for
the ground-state shell corrections taken from Ref. [21]), is
shown in Fig. 5.

Due to larger negative values of the ground-state shell
corrections in Cf isotopes (see Fig. 6 in the Appendix), the
af /an ratios in case of Cf compound nuclei (in the 12C +
236U reaction) are larger than in case of Th compound nuclei
produced in the 16O + 208Pb reaction. It is clearly seen that
the af /an ratio increases at small excitation energies due to
the energy dependence of the shell effect for the equilibrium
shape [see Eq. (12)]. A very similar energy dependence of the
af /an ratio was found by Ohta [29] in his attempt to deduce the
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FIG. 5. Energy dependence of the af /an ratio calculated using
Eqs. (11) and (12) for 247-243Cf nuclei in the xn deexcitation cascade
following the 12C + 236U fusion reaction. The ground-state shell
corrections δshell(g.s.) were taken from Ref. [21], and the saddle shell
corrections δshell(saddle) were assumed to be zero, as follows from
systematics shown in Fig. 6.

af /an ratio from a fit to experimental data for No isotopes. Our
analysis demonstrates that both, an and af can be satisfactorily
predicted using Eqs. (11) and (12), provided the shell effects
are properly accounted for not only in the equilibrium, but
also in the saddle configuration. The absolute values of the
cross sections for 3n and 4n reactions are then correctly
reproduced.

However, a significant disagreement is observed at higher
excitation energies for the 5n reaction channel. (As is seen
from Fig. 4, the maximum of the calculated 5n excitation
function is lower by a factor of 10 and shifted towards
higher energies by about 5 MeV, as compared with data.) We
emphasize again the fact of very high sensitivity of the model
calculations to the assumed hight of the saddle point energy,
especially for multi-neutron emission channels. A typical error
of experimentally determined or interpolated/extrapolated
fission barriers of about 0.2–0.3 MeV cannot fully explain so
large discrepancy. (A 0.3 MeV error in the barrier height for
Cf isotopes results in a change of the cross section for the
5n channel by a factor of 6, but then the excitation functions for
4n and 3n channels, which are well reproduced, would also be
affected.) Therefore, we rather interpret the observed behavior
of the 5n excitation function as an effect of the fission hin-
drance reducing the fission width at higher excitation energies
due to the dissipative phenomena [26]. Our data suggest that
the fission hindrance acts only at high excitation energies,
above 45 MeV. Evidence that the fission hindrance effects
appear only at high excitation energies was reported also in
previous studies (see Ref. [30] and references therein). We
found in our calculations that the observed increase of the
maximum cross section for the 5n channel by a factor of
10 (relative to the standard Bohr-Wheeler predictions) may
be due to the Kramers factor of a value

√
1 + γ 2 − γ ≈ 0.1,

that is close to that expected for the mechanism of one-body
dissipation. (Here γ is the dimensionless friction coefficient,
having a value γ ≈ 5 for one-body dissipation.)

Summarizing the results for the 12C + 236U reaction,
we state that at low excitation energies corresponding to
3n and 4n channels, the conventional formula for calcu-
lating the evaporation-to-fission branching ratios based on
Eqs. (5) and (9), with shell effects accounted for in the
level densities, gives correct quantitative results. As shown
in the previous sub-section, similar conclusions have been
drawn also in case of the 16O + 208Pb reaction. Therefore our
analysis clearly demonstrates that to calculate the survival
probabilities in typical reactions used so far to produce
new super-heavy elements—cold fusion (1n) or hot fusion
reactions (3n and 4n)—the conventional method described
in Sec. II should be used. Our analysis leaves no room for
modifications of the branching ratios in form of an effective
collective factor different from the conventional dependence
of the level density parameter on deformation, Eq. (11),
and/or Kramers factor significantly different from 1. Only in
the range of very high excitation energies, exceeding some
40–45 MeV (which is irrelevant for experiments aimed to
produce super-heavy elements), an indication for the presence
of the fission hindrance with the strength corresponding
to a value of the Kramers factor of the order of 0.1 is
observed.
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IV. SUMMARY AND CONCLUSIONS

In a number of publications some contradictory theoretical
schemes of calculating the statistical decay of very heavy
compound nuclei leading to formation of super-heavy nuclei
were proposed, specifically regarding evaluation of shell
effects in the fission channel, inclusion of the dissipative fission
already at the lowest excitation energies, and an arbitrary
treatment of nuclear collective effects. In order to clarify this
situation and find the most reliable method of calculating the
survival probabilities, we selected a unique set of data on
two lighter but comprehensively studied systems: 16O + 208Pb
and 12C + 236U, for which along with the evaporation-residue
(xn) cross sections, also fusion excitation functions had been
measured in separate experiments. Besides, very importantly,
fission barriers in nuclei produced in these two reactions
(and thus their saddle-point energies) can be quite precisely
estimated from experiments. Additionally, for both these very
asymmetric systems one can safely assume that the compound
nucleus formation is not affected by the dynamical fusion
hindrance factor. Consequently, this unique set of experimental
information imposes sufficiently strong constraints to unam-
biguously verify basic assumptions underlying calculations of
the survival probabilities.

For both reactions, we have carried out standard statistical
model calculations using expressions for the survival proba-
bility described in detail in Sec. II. We paid special attention
to the question of shell effects which play essential role in
determining effective magnitudes of the an/af ratio through-
out the deexcitation cascade and thus strongly influence the

survival probability. By using a compilation of experimentally
determined heights of the fission barrier for nuclei in the range
88 < Z < 100, we estimated magnitudes of the shell effect in
the saddle configuration for all these nuclei, and found that the
shell correction at the fission barrier, δshell(saddle) is usually
close to zero, and thus it can be neglected in determination
of the level density parameter of the fissioning nucleus at the
saddle configuration—in agreement with earlier suggestions
formulated in Refs. [18,23]. Thus, by using the ground-
state shell corrections from Ref. [21] to calculate respective
values of ai in the evaporation channels, and by assuming
δshell(saddle) = 0 in calculating the level density parameter
af in the fission channel, one can unambiguously determine
the ai/af ratio at every stage of the deexcitation cascade (see
Figs. 2 and 5). The resulting absolute values of the evaporation
residue cross sections agree quite well with experimental data
in the range of low excitation energies, E∗ < 40 MeV, relevant
for synthesis of super-heavy nuclei. Simultaneous fit to the
data on different xn channels for very fissile nuclei leaves no
room for modifications of the conventional way of calculating
�n/�f , particularly for introducing into the ratio �n/�f an
additional preexponential factor significantly different from 1.
For example, our analysis rather excludes possibility of
replacing the standard expression for the �n/�f ratio based on
Eqs. (5) and (9) by the “symmetric” formula of Ref. [27]
(having approximately 3–4 times smaller preexponential fac-
tor). Similarly, our analysis leaves no room for the Kramers
factor (associated with the dissipative hindrance of fission)
or an effective collective factor significantly different from 1.

FIG. 6. Lower part: Ground state shell corrections δshell(g.s.) (taken from Ref. [21] for about 90 nuclei of Z in the range 88 � Z � 100,
for which heights of the fission barrier had been determined experimentally and compiled in Refs. [13,14]. Upper part: Saddle-point shell
corrections, δshell(saddle), deduced from experimental Bf values by using Eq. (A1).
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However at high excitation energies, above some 40–45 MeV,
an indication for the presence of the fission hindrance with the
strength corresponding to a value of the Kramers factor of the
order of 0.1 is observed.
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APPENDIX: SHELL CORRECTIONS AT
THE SADDLE CONFIGURATION

We attempt to estimate magnitudes of shell corrections at
the saddle configuration on the basis of experimental values of
the barrier height and theoretical shell corrections calculated
for the equilibrium shape. Since the height of the fission barrier
is the macroscopic value of the barrier, Bf (macro) modified by

shell corrections at the saddle configuration and in the ground
state, δshell(saddle) and δshell(g.s.), respectively:

Bf = Bf (macro) + δshell(saddle) − δshell(g.s.), (A1)

we can estimate unknown values of the shell correction at the
saddle, δshell(saddle), by using Eq. (A1), provided the height
of the fission barrier Bf is known from experiments.

Figure 6 shows the known [21] shell corrections for the
ground state δshell(g.s.), and the deduced values of the shell
correction at the saddle configuration, δshell(saddle), calculated
by applying Eq. (A1) for the entire set of nuclei, for which
experimental values of the fission barrier Bf have been
determined and compiled in Refs. [13,14]. To determine
the δshell(saddle) values, the macroscopic fission barriers
Bf (macro) were calculated with inclusion of finite-range
effects in the nuclear surface energy, as proposed by Sierk [31].
The ground-state shell corrections, δshell(g.s.), calculated with
the Strutinsky method, were taken from Ref. [21]. It is seen
from Fig. 6 that shell effects indeed practically vanish at the
saddle configuration.
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[21] P. Möller, J. R. Nix, W. D. Myers, and W. J. Świa̧tecki, At. Data
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