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The most general spin structures of the spin-1/2 baryon and spinless meson production operator for both
photon and nucleon induced reactions are derived from the partial-wave expansions of these reaction amplitudes.
The present method provides the coefficients multiplying each spin operator in terms of the partial-wave matrix
elements. The result should be useful in studies of these reactions based on partial-wave analyses, especially,
when spin observables are considered.
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In the present work, we derive the most general spin
structure of the reaction amplitude for both positive and
negative parity spin-1/2 baryon production in nucleon-nucleon
(NN) collisions and also in photon induced processes on
nucleons. Knowing the spin structure of the transition operator
is of particular importance in analyses of spin observ-
ables. The method used here to extract the spin structure
is a generalization of the partial-wave expansion of the
NN amplitude following Ref. [1]. It is quite general and,
in principle can be applied to any reaction process in a
systematic way. Usually, the structure of a transition oper-
ator is derived based solely on symmetry principles. The
usefulness of the present method is that it also provides
explicit formulas for the coefficients multiplying each spin
structure in terms of the partial-wave matrix elements and this
should be particularly useful in model-independent analyses
based on the partial-wave expansion of the reaction amplitude.

As an example of application of the present method,
we investigate the possibility of determining the parity of
a narrow resonance in both photon and nucleon induced
reactions. The search for new resonances, especially the so-
called missing resonances and exotic resonances, is receiving
increased attention [2]. Apart from establishing their existence,
the determination of their basic properties are of extreme
importance. Among these properties, the parity is of particular
interest in connection with the substructure of these resonances
[3]. However, it is often the case that no theoretical predictions
can provide a conclusive result for the parity and other basic
properties. A recent example of this situation is provided by
the pentaquark �+. The existence of this exotic baryon and
the determination of its spin and parity quantum numbers have
been under an intensive investigation both experimentally and
theoretically over the past couple of years [4].1 It is, therefore,
very important to find a way of determining these properties
in a model independent way.

In the past few years a considerable amount of data for
meson production in NN collisions have been obtained (see
Ref. [6] for a review). In particular there are data, not only for

1The existence of the �+ is still controversial. While this resonance
has been seen in a number of experiments, it has not been observed in a
similar number of experiments, including a very recent experiment [5]
with much better statistics.

cross sections but, in the case of pion production in NN →
NNπ , a large set of spin observable data [7]. In addition,
the databases for the production of other mesons, such as
η and η′, are growing rapidly [6,8]. Also, reactions involving
the production of particles containing strange quarks such as
the NN → YNK reaction where Y stands for a hyperon, are
receiving increased attention [6,9]. With these (high-precision)
data becoming available, there is a demand for more thorough
and detailed theoretical analyses of these reactions. Therefore,
in the present work, we also derive the most general spin-
isospin structure of the NN → NB ′M transition operator,
where M stands for a spinless (scalar or pseudoscalar) meson
and, B ′, for a spin-1/2 baryon with positive-parity. The spin
structure of the NN → NNπ transition operator has been
derived in Ref. [10] and applied to neutral pion production.
Here, we also consider charged meson production.

The present paper is organized as follows. In Sec. I, the
general spin structure of the transition operator is derived
for the reaction γ + N → M + B, where B stands for a
spin-1/2 and either a positive or negative parity baryon. In
Sec. II the results derived in Sec. I are illustrated by applying
them to the near-threshold kinematic regime. Sections III
and IV are devoted to the derivation of the most general
spin structure of the reaction N + N → B ′ + B, where
B ′ stands for a spin-1/2 and positive-parity baryon, and
to its application near-threshold, respectively. The reaction
N + N → M + B ′ + N is considered in Secs. V and VI. A
summary is given in Sec. VII. Appendices A–D contain some
details of the derivation of the spin structure of the transition
operators.

I. THE REACTION γ + N → M + B

We start by making a partial-wave expansion of the
γ + N → M + B reaction amplitude. Here M stands for a
pseudoscalar meson and B, a spin-1/2 baryon. We, then, have

〈1

2
m′|M̂(�q, �k)|SMS〉 =

∑
iL−L′

(SMSLML|JMJ )

×(
1

2
m′L′ML′ |JMJ )MJS

L′L(q, k)

×YL′ML′ (q̂)Y ∗
LML

(k̂), (1)

0556-2813/2005/72(3)/034603(14)/$23.00 034603-1 ©2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.72.034603


K. NAKAYAMA AND W. G. LOVE PHYSICAL REVIEW C 72, 034603 (2005)

where S,L, J stand for the total spin, total orbital angular
momentum, and the total angular momentum, respectively, of
the initial γN state. MS,ML, and MJ denote the corresponding
projection quantum numbers. The primed quantities stand for
the corresponding quantum numbers of the final MB state.
The summation runs over all quantum numbers not specified
in the left-hand side (l.h.s.) of Eq. (1). �k and �q denote the
relative momenta of the two particles in the initial and final
states, respectively. The partial-wave expansion given above
is, of course, related to the more commonly used electric
and magnetic multipole expansion. For the present analysis,
however, it is convenient to use the above expansion.

Equation (1) can be inverted to solve for the partial-wave
matrix element MSJ

L′L(q, k). We have

MSJ
L′L(q, k) =

∑
iL

′−L(
1

2
m′L′ML′ |JMJ )(SMSL0|JMJ )

× 8π2

2J + 1

√
2L + 1

4π

∫ +1

−1
d( cos(θ ))Y ∗

L′ML′ (θ, 0)

×〈1

2
m′|M̂(�q, �k)|SMS〉, (2)

where, without loss of generality, �k is chosen along the z axis
and �q in the xz plane; cos(θ ) ≡ q̂ · k̂. The summation is over
all quantum numbers not specified in the l.h.s. of the equation.

The most general spin structure of the transition operator
can be extracted from Eq. (1) as

M̂(�q, �k) =
∑

SMSm′
|1

2
m′〉〈1

2
m′|M̂(�q, �k)|SMS〉〈SMS |. (3)

Inserting Eq. (1) into Eq. (3) and recoupling gives

M̂(�q, �k) =
∑

iL−L′
(−)−J− 1

2 [J ]2MJS
L′L(q, k)

∑
α

{
S L J

L′ 1
2 α

}

× [
BS ⊗ A 1

2

]α · [YL(k̂) ⊗ YL′(q̂)]α, (4)

where we have used the notations BSMS
≡ (−)S−MS 〈S − MS |,

A 1
2 m′ ≡ | 1

2m′〉, and [J ] ≡ √
2J + 1. The outer summation is

over the quantum numbers S,L,L′, and J. In the above
equation S is either 1/2 or 3/2 so that α takes the values 0,
1, and 2, and denotes the rank of the corresponding tensor. In
the above equation it should be understood that the matrix
elements of the meson creation and photon annihilation
operators have already been taken.

We now expand [BS ⊗ A 1
2
]α , for each tensor of rank α, in

terms of the complete set of available spin operators in the
problem, i.e., the photon polarization vector �ε and the Pauli
spin matrix �σ together with the identity matrix. The result is[

BS ⊗ A 1
2

]0 = 1√
6

�σ · �ε,

[
BS ⊗ A 1

2

]1 = −1 + √
2√

6

{
�ε+ i√

2

(
1 − √

2

1 + √
2

)
(�σ × �ε)

}
, (5)

[
BS ⊗ A 1

2

]2 = 1√
2

[�σ ⊗ �ε]2,

where the numerical factors are uniquely determined such that
the spin matrix elements of the right-hand side (r.h.s.) in the

above equations equal the corresponding matrix elements of
the l.h.s.

What we have done so far applies to either a negative or pos-
itive parity baryon B. Total parity conservation demands that
(−)L+L′ = +1 and (−)L+L′ = −1 in the case of a positive and
negative parity B, respectively. This leads to distinct spin struc-
tures of the transition operator for positive and negative parity
as we shall show below. Hereafter, the superscript ± on any
quantity stands for the positive (+) or negative (−) parity of B.

A. Positive parity case

For a positive parity baryon B, choosing the quantization
axis ẑ along k̂, the quantity [YL(k̂) ⊗ YL′(q̂)]α can be expressed
without loss of generality as

[YL(k̂) ⊗ YL′(q̂)]0 = (−)L
[L]

4π
PL(q̂ · k̂)δL,L′,

[YL(k̂) ⊗ YL′(q̂)]1 = i(−)L
[L]

4π

√
3

L(L + 1)
P 1

L(q̂ · k̂)δL,L′ n̂2,

(6)
[YL(k̂) ⊗ YL′(q̂)]2 = aL′L[q̂ ⊗ q̂]2 + bL′L[k̂ ⊗ k̂]2

+ cL′L[k̂ ⊗ q̂]2.

The structure in the above equation is dictated by total parity
conservation. PL(P 1

L) is the ordinary (associated) Legendre
function. n̂2 ≡ (k̂ × q̂)/|k̂ × q̂|. The coefficients aL′L, bL′L
and cL′L are derived explicitly in Appendix A.

Inserting Eqs. (5), (6) into Eq. (4) we have

M̂+(�q, �k) = F1 �σ · �ε + iF2�ε · n̂2 + F3(�σ × �ε) · n̂2

+F4[�σ ⊗ �ε]2 · [q̂ ⊗ q̂]2 + F5[�σ ⊗ �ε]2 · [k̂ ⊗ k̂]2

+F6[�σ ⊗ �ε]2 · [k̂ ⊗ q̂]2, (7)

where

F1 = 1

8π
√

3

∑
[J ]2M

J 1
2

LL (q, k)PL(k̂ · q̂),

F2 = − 1

4π

(
1 + √

2√
2

) ∑
(−)−J− 1

2 +L[J ]2 [L]√
L(L + 1)

×
{

S L J

L 1
2 1

}
MJS

LL(q, k)P 1
L(k̂ · q̂),

F3 = 1√
2

(√
2 − 1√
2 + 1

)
F2, (8)

F4 =
√

1

2

∑
iL−L′

(−)−J− 1
2 [J ]2

{
3
2 L J

L′ 1
2 2

}
M

J 3
2

L′L(q, k)aL′L,

F5 =
√

1

2

∑
iL−L′

(−)−J− 1
2 [J ]2

{
3
2 L J

L′ 1
2 2

}
M

J 3
2

L′L(q, k)bL′L,

F6 =
√

1

2

∑
iL−L′

(−)−J− 1
2 [J ]2

{
3
2 L J

L′ 1
2 2

}
M

J 3
2

L′L(q, k)cL′L.

The summations are over all quantum numbers appearing
explicitly in the r.h.s. of the equalities.

The above result is the most general form of the spin
structure of the transition operator consistent with symmetry
principles. The coefficients Fj are functions of the energy of
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the system and scattering angle θ of the meson M relative to
the photon direction. We note that the transition operator in
Eq. (7) has six independent spin operators and is valid for both
real and virtual photons. Using the identity

3[�σ ⊗ �ε]2 · [â ⊗ b̂]2 = 3
2 [�σ · â�ε · b̂ + �σ · b̂�ε · â] − (â · b̂)�σ · �ε,

(9)

where â and b̂ stand for arbitrary unit vectors, Eq. (7) can be
rewritten as

M̂+(�q, �k) = F1 �σ · �ε + iF2�ε · n̂2 + F3 �σ · k̂�ε · q̂ + F4 �σ · q̂�ε · q̂

+F5 �σ · k̂�ε · k̂ + F6 �σ · q̂�ε · k̂, (10)

where

F1 = F1 − 1

3
[F4 + F5 + (q̂ · k̂)F6], F2 = F2,

F3 = 1

|k̂ × q̂|F3 + 1

2
F6, F4 = F4, F5 = F5, (11)

F6 = − 1

|k̂ × q̂|F3 + 1

2
F6.

It should be noted that Eq. (10) is equivalent to that of
Ref. [11]. In fact, apart from an irrelevant overall factor of
i, the coefficients fj ≡ FV (±,0)

j , (j = 1, . . . , 6) in Ref. [11]
are related to those in Eq. (10) by

F1 = f1 − (q̂ · k̂)f2, F2 = |k̂ × q̂|f2, F3 = (f2 + f3),

F4 = f4, F5 = −f1 − (q̂ · k̂)f3 − k2

k0
f5, (12)

F6 = −(q̂ · k̂)f4 − k2

k0
f6.

In the case of a real photon (photoproduction amplitude),
the number of independent spin operators in Eq. (10) reduces
to four due to the transversality condition, i.e., the terms F5 and
F6 are absent. Equation (10) then becomes equivalent to that
of Ref. [12]. The coefficients fj , (j = 1, . . . , 4) in Ref. [12]
are related to the corresponding coefficients Fj in Eq. (10) as
given by Eq. (12) with k2 = �ε · k̂ = 0.

One difference between our work [Eq. (10)] and
Refs. [11,12] is that in the present work these coefficients are
related explicitly [Eq. (8)] to the partial-wave matrix elements
introduced in Eq. (1).

B. Negative parity case

For a negative parity baryon B, choosing the quantization
axis ẑ along k̂, [YL(k̂) ⊗ YL′(q̂)]α can be expressed as

[YL(k̂) ⊗ YL′(q̂)]0 = 0,

[YL(k̂) ⊗ YL′(q̂)]1 = [LL′]
4π

[√
2

L′(L′ + 1)
(L0L′1|11)

×P 1
L′ (k̂ · q̂)n̂1+ (L0L′0|10)PL′ (k̂ · q̂)k̂

]
,

[YL(k̂) ⊗ YL′(q̂)]2 = a′
L′L[k̂ ⊗ n̂2]2 + b′

L′L[q̂ ⊗ n̂2]2, (13)

where n̂1 ≡ [(k̂ × q̂) × k̂]/|k̂ × q̂|. The coefficients a′
L′L and

b′
L′L are calculated explicitly in Appendix A.

Inserting Eqs. (5), (13) into Eq. (4) we have

M̂−(�q, �k) = iG1�ε · n̂1+ G2 �σ · (�ε × n̂1) + G3 �σ · (�ε × k̂)

+G4[�σ ⊗ �ε]2 · [k̂ ⊗ n̂2]2 + G5[�σ ⊗ �ε]2 · [q̂ ⊗ n̂2]2

+ iG6�ε · k̂, (14)

where

G1 = 1

4π

(
1 + √

2√
3

) ∑
iL−L′+1(−)−J− 1

2 [J ]2 [LL′]√
L′(L′ + 1)

× (L0L′1|11)

{
S L J

L′ 1
2 1

}
MJS

L′L(q, k)P 1
L′ (k̂ · q̂),

G2 = 1√
2

(√
2 − 1√
2 + 1

)
G1,

G3 = 1√
2

(√
2 − 1√
2 + 1

)
G6, (15)

G4 =
√

1

2

∑
iL−L′

(−)−J− 1
2 [J ]2

{ 3
2 L J

L′ 1
2 2

}
M

J 3
2

L′L(q, k)a′
L′L

G5 =
√

1

2

∑
iL−L′

(−)−J− 1
2 [J ]2

{ 3
2 L J

L′ 1
2 2

}
M

J 3
2

L′L(q, k)b′
L′L

G6 = 1

4π

(
1 + √

2√
6

) ∑
iL−L′+1(−)−J− 1

2 [LL′][J ]2

× (L0L′0|10)

{
S L J

L′ 1
2 1

}
MJS

L′L(q, k)PL′ (k̂ · q̂).

The summations are over all quantum numbers appearing
explicitly in the r.h.s. of the equalities.

The above result is the most general form of the spin struc-
ture of the transition operator for a negative parity baryon B.
As in the positive parity case, we note that the amplitude in
Eq. (14) has six independent spin operators and is valid for
both real and virtual photons. Using Eq. (9), it can be rewritten
as

M̂−(�q, �k) = iG1�ε · q̂ + G2 �σ · (�ε × q̂) + G3 �σ · (�ε × k̂)

+G4[�σ · k̂�ε · n̂2 + �σ · n̂2�ε · k̂] + G5[�σ · q̂�ε · n̂2

+ �σ · n̂2�ε · q̂] + iG6�ε · k̂, (16)

where

G1 = 1

|k̂ × q̂|G1, G2 = 1

|k̂ × q̂|G2, G3 =G3 − (k̂ · q̂)G2,

(17)
G4 = 1

2G4, G5 = 1
2G5, G6 = G6 − (k̂ · q̂)G2.

Quite recently, Zhao and Al-Khalili [13] have also given the
spin structure of the photoproduction amplitude in connection
to the reaction γN → K̄�+ for the case of negative parity �+.
The structure given in Eq. (16) with �ε · k̂ = 0 is equivalent to
that of Eq. (18) in Ref. [13], except for the term �σ · n̂2�ε ·
q̂ which has not been included in Ref. [13] on the grounds
that it is a higher-order contribution. However, this term and
the �σ · q̂�ε · n̂2 term contribute with the same coefficient G5.
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We also note that the recent model-independent analysis of the
�+ photoproduction [14] has been based on the present results
and, in particular, on Eqs. (10), (16) with �ε · k̂ = 0.

II. APPLICATION: NEAR THRESHOLD AMPLITUDE IN
γ N → M B

As an application of the present results, we consider the
reaction γN → MB in the near-thresholds kinematics. The
complete transition amplitude is given by Eq. (10) for a
positive parity baryon B and by Eq. (16) for a negative baryon
B, respectively, with �ε · k̂ = 0. In the near-threshold energy
region, the final MB is mainly in relative S and P waves.
Then, considering only L′ = 0, 1, there are seven partial-wave
amplitudes. For positive parity B, they are

1S1 → S1,
3D1 → S1,

3,1P1 → P1,
(18)

3,1P3 → P3,
3F3 → P3,

where we have used the notation 2SL2J → L′
2J . For these am-

plitudes, the coefficients Fi, (i = 1, . . . , 4) in Eq. (10) exhibit
the following angular and energy (due to qL′

) dependences:

F1 = A0 +
( q




)
A1 cos(θ ), F2 =

( q




)
B1 sin(θ ),

(19)
F3 =

( q




)
C1, F4 = 0.

In the above equation, AL′, BL′ and CL′ denote the linear com-
binations of the partial-wave matrix elements MJS

L′L resulting
from Eqs. (8), (11) for those states specified in Eq. (18) having
orbital angular momentum L′. They are given explicitly in
Appendix B. Note that the factor (q/
)L

′
contained in MJS

L′L
due to the centrifugal barrier has been displayed explicitly
in the above equation. 
 is a typical scale of the problem
which may be taken to be the four-momentum transfer
at threshold, 
2 ∼ −t = [mB − m2

N/(mB + mM )]mM , where
mB,mM , and mN denote the masses of the baryon B, meson
M, and nucleon, respectively. Therefore, near threshold, higher
partial-wave contributions will be suppressed by the factor
(q/
)L

′
if heavy particles are produced in the final state.

Moreover, for short-range processes, the coefficients AL′ , BL′ ,
and CL′ are nearly constant independent of energy.

Analogously, for a negative parity baryon B, the possible
partial-wave amplitudes are

3,1P1 → S1,
1S1 → P1,

3D1 → P1,
(20)

3S3 → P3,
3,1D3 → P3.

With these amplitudes, the coefficients Gi in Eq. (16) exhibit
the following angular and energy (due to qL′

) dependences

G1 =
( q




)
A′

1, G2 = 1√
2

(√
2 − 1√
2 + 1

)
G1,

G3 = B ′
0 +

( q




)
B ′

1 cos(θ ), (21)

G4 =
( q




)
C ′

1 sin(θ ), G5 = 0.

In the above equation, A′
L′ , B

′
L′ , and C ′

L′ denote the linear com-
binations of the partial-wave matrix elements MJS

L′L resulting

from Eqs. (15), (17) for those states specified in Eq. (20)
having orbital angular momentum L′. They are given explicitly
in Appendix B. For a short-range process, A′

L′, B
′
L′ , and C ′

L′
are nearly constant independent of energy.

Following Ref. [14] we now introduce �ε⊥ ≡ ŷ and �ε‖ ≡ x̂

denoting the photon polarization perpendicular to and lying
in the reaction plane (xz plane), respectively. Recall that the
reaction plane is defined as the plane containing the vectors
�k (in the +z-direction) and �q and that �k × �q is along the
+y-direction, in which case, n̂1 = x̂ and n̂2 = ŷ. Then, from
Eqs. (10), (19)

M̂+⊥ =
[
A0 +

( q




)
A1 cos(θ )

]
σy + i

( q




)
B1 sin(θ ),

(22)
M̂+‖ =

[
A0 +

( q




)
A1 cos(θ )

]
σx +

( q




)
C1 sin(θ )σz.

Similarly, from Eqs. (16), (21)

M̂−⊥ =
[
B ′

0 +
( q




)
B̄ ′

1 cos(θ )
]
σx +

( q




)
C̄ ′

1 sin(θ )σz,

(23)
M̂−‖ = −

[
B ′

0 +
( q




)
B̄ ′

1 cos(θ )
]
σy + i

( q




)
A′

1 sin(θ ).

In the above equation, B̄ ′
1 ≡ B ′

1 + Ā′
1 and C̄ ′

1 ≡ C ′
1 − Ā′

1, with

Ā′
1 ≡ 1√

2
(
√

2−1√
2+1

)A′
1.

Following Ref. [14], any observable in the γN → MB

reaction can be readily calculated from Eqs. (22), (23) for
both positive and negative parity baryons B. It is then
straightforward to show that no observable in this reaction
is able to distinguish between positive and negative parity
B, unless one measures the polarization of B. In particular,
neither the energy dependence nor the angular distribution
exhibits features sufficiently distinct to determine the parity of
the baryon B unambiguously. As has been shown in Ref. [15] in
connection with NN → Y�+, the situation is quite different in
the NN → B ′B reaction. We shall discuss this latter reaction
in the following two sections.

III. THE REACTION N+N → B′+B

We now consider the process N + N → B ′ + B, where B ′
stands for a positive parity spin-1/2 baryon and B, either a
positive or negative parity spin-1/2 baryon. The partial-wave
expansion of the corresponding reaction amplitude is

〈S ′MS ′ |M̂( �p′, �p)|SMS〉 =
∑

iL−L′
(S ′MS ′L′ML′ |JMJ )

× (SMSLML|JMJ )MS ′SJ
L′L (p′, p)

×YL′ML′ (p̂
′)Y ∗

LML
(p̂), (24)

where S,L, J stand for the total spin, total orbital angular
momentum, and the total angular momentum, respectively, of
the initial NN state. MS,ML, and MJ denote the corresponding
projection quantum numbers. The primed quantities stand for
the corresponding quantum numbers of the final B ′B state.
The summation runs over all quantum numbers not specified
in the l.h.s. of Eq. (24). �p and �p′ denote the relative momenta
of the two particles in the initial and final states, respectively.
We note that, in Eq. (24), in addition to the restrictions on
the quantum numbers encoded in the geometrical factors, total
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parity conservation imposes that (−)L+L′ = +1 and (−)L+L′ =
−1 for positive and negative parity B, respectively.

Equation (24) can be inverted to solve for the partial-wave
matrix element MS ′SJ

L′L (p′, p). We have

MS ′SJ
L′L (p′, p) =

∑
iL

′−L(S ′MS ′L′ML′ |JMJ )

× (SMSL0|JMJ )
8π2

2J + 1

√
2L + 1

4π

×
∫ +1

−1
d(cos(θ ))Y ∗

L′ML′ (θ, 0)

×〈S ′MS ′ |M̂( �p′, �p)|SMS〉, (25)

where, without loss of generality, the z axis is chosen along �p
and �p′ in the xz plane; cos(θ ) = p̂′ · p̂. The summation is over
all quantum numbers not specified in the l.h.s. of the equation.

The most general spin structure of the transition operator
can be obtained from Eq. (24) as

M̂( �p′, �p) =
∑

S ′SMSMS′

|S ′MS ′ 〉〈S ′MS ′ |M̂( �p′, �p)|SMS〉〈SMS |.

(26)
Inserting Eq. (24) into Eq. (26) and recoupling gives

M̂( �p′, �p) =
∑

iL−L′
(−)J+S ′

[J ]2MS ′SJ
L′L (p′, p)

∑
α

{
S L J

L′ S ′ α

}

× [AS ′ ⊗ BS]α · [YL′(p̂′) ⊗ YL(p̂)]α, (27)

where we have used the notations BSMS
≡ (−)S−MS 〈S − MS |

and AS ′MS′ ≡ |S ′MS ′ 〉.
We now expand [AS ′ ⊗ BS]α , for each tensor of rank α, in

terms of the complete set of available spin operators in the
problem, i.e., the Pauli spin matrices �σ1 and �σ2, corresponding
to the interacting particles 1 and 2, together with the identity
matrix. Then, α takes the values 0, 1, and 2, and denotes the
rank of the corresponding (spin) tensor. There are six cases to
be considered:

S = S ′ = 0, α = 0 : [AS ′ ⊗ BS]0 = |00〉〈00| ≡ PS=0,

S = S ′ = 1, α = 0 : [AS ′ ⊗ BS]0 = 1√
3

∑
MS

|1MS〉〈1MS |

≡ 1√
3
PS=1,

S = S ′ = 1, α = 1 : [AS ′ ⊗ BS]1 = 1

2
√

2
(�σ1 + �σ2) , (28)

S = 0, S ′ = 1, α = 1 : [AS ′ ⊗ BS]1 = 1

2
(�σ1 − �σ2) PS=0,

S = 1, S ′ = 0, α = 1 : [AS ′ ⊗ BS]1 = −1

2
(�σ1 − �σ2) PS=1,

S = S ′ = 1, α = 2 : [AS ′ ⊗ BS]2 = 1√
2

[�σ1 ⊗ �σ2]2,

where PS stands for the spin projection operator onto the
(initial) spin singlet and triplet states as S = 0 and 1, respec-
tively. In terms of the Pauli spin matrices we have PS=0 = (1 −
�σ1 · �σ2)/4 and PS=1 = (3 + �σ1 · �σ2)/4. Also, (�σ1 − �σ2)PS/2 =
[(�σ1 − �σ2) + (−)Si(�σ1 × �σ2)]/4.

In the following we shall consider the case of a positive and
a negative parity baryon B separately.

A. Positive parity case

For a positive parity baryon B, the quantity [YL′(p̂′) ⊗
YL(p̂)]α in Eq. (27) can be read off from Eq. (6). Note that
[YL′(p̂′) ⊗ YL(p̂)]α = (−)α[YL(p̂) ⊗ YL′(p̂′)]α for the positive
parity case. Inserting this and Eq. (28) into Eq. (27), we have

M̂+( �p′, �p) = D1PS=0 + D2PS=1 + iD3(�σ1 + �σ2) · n̂2

+ iD4(�σ1 − �σ2) · n̂2PS=0 + iD5(�σ1 − �σ2) · n̂2PS=1

+D6[�σ1 ⊗ �σ2]2 · [p̂ ⊗ p̂]2 + D7[�σ1 ⊗ �σ2]2 · [p̂′ ⊗ p̂′]2

+D8[�σ1 ⊗ �σ2]2 · [p̂ ⊗ p̂′]2, (29)

where

D1 = 1

4π

∑
[L]2M00L

LL (p′, p)PL(p̂′ · p̂),

D2 = 1

4π

1

3

∑
[J ]2M11J

LL (p′, p)PL(p̂′ · p̂),

D3 = − 1

4π

1

8

∑
[J ]2

(
1+2−J (J +1)

L(L+1)

)
M11J

LL (p′, p)P 1
L(p̂′·p̂),

D4 = − 1

4π

1

2

∑ [L]2

√
L(L + 1)

M10L
LL (p′, p)P 1

L(p̂′ · p̂),

(30)

D5 = 1

4π

1

2

∑ [L]2

√
L(L + 1)

M01L
LL (p′, p)P 1

L(p̂′ · p̂),

D6 = 1

2

∑
iL−L′

(−)J+1[J ]2

{
1 L J

L′ 1 2

}
M11J

L′L (p′, p)aL′L,

D7 = 1

2

∑
iL−L′

(−)J+1[J ]2

{
1 L J

L′ 1 2

}
M11J

L′L (p′, p)bL′L,

D8 = 1

2

∑
iL−L′

(−)J+1[J ]2

{
1 L J

L′ 1 2

}
M11J

L′L (p′, p)cL′L.

The coefficients aL′L, bL′L, and cL′L are given by Eqs. (A4),
(A5) with the replacements k̂ → p̂ and q̂ → p̂′; these same
replacements are needed to calculate n̂2 in Eq. (29).

Equation (29) is the most general spin structure of the
transition operator for a positive parity baryon B, consistent
with symmetry principles. It contains eight independent spin
structures. The first two terms are the central spin singlet and
triplet interactions, respectively. The third term is the spin-orbit
interaction. The fourth and fifth terms describe the spin
singlet→triplet and triplet→singlet transitions, respectively.
The last three terms are the tensor interactions of rank 2. Apart
from the fourth and fifth terms, all the other terms conserve
the total spin in the transition.

It should be mentioned that in the case of identical particles,
i.e., NN → NN , the structure (�σ1 − �σ2) is not allowed in
the scattering amplitude, which reduces the total number of
independent spin structures in Eq. (29) to six [1]. Furthermore,
for elastic scattering, D6 = D7, as a consequence of time
reversal invariance [1].

For the purpose of calculating the observables directly from
the transition operator of Eq. (29), it is convenient to reexpress
it in the form

M̂+ =
9∑

λ=1

3∑
n,n′=0

Mλ
nn′σn(1)σn′ (2), (31)
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where σ0(i) ≡ 1, σ1(i) ≡ σx(i), etc., for ith nucleon. The
coefficients Mλ

nn′ are linear combinations of the coefficients
appearing in Eq. (30). Explicitly, we have

M1
nn′ = 1

4 [3D2 + D1] δn,0δn′,0,

M2
nn′ = i

[
D3 + 1

2 (D4 + D5)
]
n̂2n(1 − δn,0)δn′,0,

M3
nn′ = i

[
D3 − 1

2 (D4 + D5)
]
n̂2n′δn,0(1 − δn′,0),

M4
nn′ = 1

2 [D5 − D4] εnn′kn̂2k(1 − δn,0)(1 − δn′,0),

M5
nn′ = [

1
4 (D2−D1)− 1

3 (D6+D7+(p̂·p̂′)D8)
]
δn,n′ (1−δn,0),

(32)
M6

nn′ = D6p̂np̂n′ (1 − δn,0)(1 − δn′,0),

M7
nn′ = D7p̂

′
np̂

′
n′ (1 − δn,0)(1 − δn′,0),

M8
nn′ = 1

2D8p̂np̂
′
n′(1 − δn,0)(1 − δn′,0),

M9
nn′ = 1

2D8p̂
′
np̂n′(1 − δn,0)(1 − δn′,0),

where we have used the notation ân for the nth component of an
arbitrary unit vector â; εnn′k denotes the antisymmetric Levi-
Civita tensor and λ is an index for the type of term (operator)
being considered. In obtaining Eq. (32), we have made use of
the identity

3[�σ1 ⊗ �σ2]2 · [â ⊗ b̂]2

= 3
2 [�σ1 · â�σ2 · b̂ + �σ1 · b̂�σ2 · â] − (â · b̂)�σ1 · �σ2, (33)

where â and b̂ denote arbitrary unit vectors.
With the transition operator in the form of Eq. (31), it

is straightforward to calculate any observable of interest. Of
course, it can also be expressed in terms of the matrix elements
of total spin of Eq. (24); for convenience some observables are
given in Appendix D in both representations.

B. Negative parity case

For a negative parity baryon B, the quantity [YL′(p̂′) ⊗
YL(p̂)]α in Eq. (27) can be read off from Eq. (13). For this
case [YL′(p̂′) ⊗ YL(p̂)]α = (−)α+1[YL(p̂) ⊗ YL′(p̂′)]α . Insert-
ing this and Eq. (28) into Eq. (27), we have

M̂−( �p′, �p) = i(H1n̂1 + H2p̂) · (�σ1 + �σ2)

+ i(H3n̂1 + H4p̂) · (�σ1 − �σ2)PS=0

+ i(H5n̂1 + H6p̂) · (�σ1 − �σ2)PS=1

+H7[�σ1 ⊗ �σ2]2 · [p̂ ⊗ n̂2]2

+H8[�σ1 ⊗ �σ2]2 · [p̂′ ⊗ n̂2]2, (34)

where

H1 = 1

4π

1

2

∑
iL−L′+1(−)J [J ]2 [LL′]√

L′(L′ + 1)
(L0L′1|11)

×
{

1 L J
L′ 1 1

}
M11J

L′L (p′, p)P 1
L′ (p̂′ · p̂),

H2 = 1

4π

1

2
√

2

∑
iL−L′+1(−)J [LL′][J ]2(L0L′0|10)

×
{

1 L J
L′ 1 1

}
M11J

L′L (p′, p)PL′ (p̂′ · p̂),

H3 = 1

4π

1√
6

∑
iL−L′+1(−)L

′+1 [L′][L]2

√
L′(L′ + 1)

(L0L′1|11)

×M10L
L′L (p′, p)P 1

L′(p̂′ · p̂),

H4 = 1

4π

1

2
√

3

∑
iL−L′+1(−)L

′+1[L′][L]2(L0L′0|10)

×M10L
L′L (p′, p)PL′ (p̂′ · p̂),

H5 = 1

4π

1√
6

∑
iL−L′+1(−)L

[L][L′]2

√
L′(L′ + 1)

(L0L′1|11)

×M01L′
L′L (p′, p)P 1

L′ (p̂′ · p̂),

H6 = 1

4π

1

2
√

3

∑
iL−L′+1(−)L[L][L′]2(L0L′0|10)

×M01L′
L′L (p′, p)PL′ (p̂′ · p̂),

H7 = 1

2

∑
iL−L′

(−)J [J ]2

{
1 L J

L′ 1 2

}
M11J

L′L (p′, p)a′
L′L,

H8 = 1

2

∑
iL−L′

(−)J [J ]2

{
1 L J

L′ 1 2

}
M11J

L′L (p′, p)b′
L′L.

(35)

The coefficients a′
L′L and b′

L′L are given by Eqs. (A9),
(A10) with the replacements k̂ → p̂ and q̂ → p̂′. The same
replacements are also required to calculate n̂2.

Equation (34) is the most general spin structure of the
transition operator for a negative parity baryon B, consistent
with symmetry principles. It also contains eight independent
spin structures, but no central interaction is present in this case.

Analogous to the positive parity case, Eq. (34) can be
reexpressed in the form

M̂− =
10∑

λ=1

3∑
n,n′=0

Mλ
nn′σn(1)σn′(2), (36)

where the coefficients Mλ
nn′ are given by

M1
nn′ = i

[
H1 + 1

2 (H3 + H5)
]
n̂1n(1 − δn,0)δn′,0,

M2
nn′ = i

[
H2 + 1

2 (H4 + H6)
]
p̂n(1 − δn,0)δn′,0,

M3
nn′ = i

[
H1 − 1

2 (H3 + H5)
]
n̂1n′δn,0(1 − δn′,0),

M4
nn′ = i

[
H2 − 1

2 (H4 + H6)
]
p̂n′δn,0(1 − δn′,0),

M5
nn′ = i 1

2 [H3 − H5] εnn′kn̂1k(1 − δn,0)(1 − δn′,0),
(37)

M6
nn′ = i 1

2 [H4 − H6] εnn′kp̂k(1 − δn,0)(1 − δn′,0),

M7
nn′ = 1

2H7p̂nn̂2n′ (1 − δn,0)(1 − δn′,0),

M8
nn′ = 1

2H7p̂n′ n̂2n(1 − δn,0)(1 − δn′,0),

M9
nn′ = 1

2H8p̂
′
nn̂2n′ (1 − δn,0)(1 − δn′,0),

M10
nn′ = 1

2H8p̂
′
n′ n̂2n(1 − δn,0)(1 − δn′,0).

IV. APPLICATION: NEAR THRESHOLD AMPLITUDE
IN pp → B′ B

As an application of the results of the previous section, we
consider the reaction pp → B ′B in the near-threshold energy
region. We restrict to S and P waves in the final state, i.e., L′ =
0, 1. In contrast to the photoproduction reaction discussed in
Sec. II, here the Pauli principle restricts the initial pp state to
(−)S+L = +1.
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For a positive parity baryon B, we then have six partial-wave
states

1S0 → 1S0,
3P1 → 1P1,

(38)
3P0,1,2 → 3P0,1,2,

3F2 → 3P2.

Here we use the notation 2S+1LJ → 2S ′+1L′
J . Then, the

coefficients Di in Eq. (30) reduce to

D1 = A0
0, D2 =

(
p′




)
A1

1 cos(θ ),

D3 =
(

p′




)
B1

1 sin(θ ), D4 = 0,

(39)

D5 =
(

p′




)
C1

1 sin(θ ), D6 = 0,

D7 =
(

p′




)
D1

1 cos(θ ), D8 =
(

p′




)
E1

1 ,

where the quantities AS
L′ , B

S
L′ , etc. are given in Appendix C.

Here, again, the (p′/
)L
′

dependence of the partial-wave
matrix elements due to the centrifugal barrier is displayed
explicitly. As in the photoproduction reaction discussed in
Sec. II, the scale 
 may be taken to be the four-momentum
transfer at threshold, 
2 ∼ −t = mBmB ′ − m2

N , where mB

denotes the mass of the baryon B and mB ′ , the mass of the
positive parity baryon B ′.

For a negative parity baryon B, the possible partial-wave
transitions are

3P0 → 1S0,
3P1 → 3S1,

1S0 → 3P0,
1D2 → 3P2. (40)

With these partial-wave states, Eq. (35) reduces to

H1 = 0, H2 = A′11
0 , H3 =

(
p′




)
B ′10

1 sin(θ ),

H4 =
(
p′




)
C ′10

1 cos(θ ), H5 = 0, (41)

H6 = C ′01
0 , H7 = 0, H8 = 0,

where the quantities A′S ′S
L′ , B ′S ′S

L′ , etc. are given in Appendix C.
An interesting feature in Eq. (39) is that the amplitudes

with spin-triplet initial states depend linearly on (p′/
) (i.e.,
the final state is in a P wave) if the parity of the baryon B is
positive, whereas if the parity of B is negative [Eq. (41)], they
do not depend on (p′/
) (i.e., the final state is an S state).
This energy dependence is interchanged for amplitudes with
spin-singlet initial states. The feature just mentioned is a
direct consequence of the Pauli principle and total parity
conservation,

(−)S+L′+T = ∓1, (42)

where the (−) and (+) signs refer to the positive and negative
parity baryon B, respectively. T denotes the total isospin
(T = 1 for pp). In fact, as pointed out in Ref. [15], it follows
immediately from Eq. (42) that the energy dependence of a
partial-wave amplitude with spin-triplet initial state (S = 1) is
given by an odd power of (p′/
) if the parity of B is positive
since in this case the final state must be in an odd orbital
angular momentum L′, whereas it is given by an even power

of (p′/
) if the parity is negative since L′ is even in this case.
For completeness, we note that for the pn → B ′B reaction,
this energy dependence is interchanged [15].

With the coefficients Di and Hi given by Eqs. (39),
(41), it is straightforward to calculate any observable of interest
in the pp → B ′B reaction using Eqs. (31), (32), (36), (37)
and the method given in Appendix D. Alternatively, one can
calculate the observables using the matrix elements given by
Eq. (24), in terms of which, some of the observables are also
given in Appendix D. In particular, the cross section with
the spin-triplet initial state 3σ , as defined by Eq. (D10) in
Appendix D, can be expressed as(

p′




)−1
d(3σ+

 )

d�
= [

β0 + β1 cos2(θ )
] (

p′




)2

, (43)

for a positive parity baryon B and,(
p′




)−1
d(3σ−

 )

d�
= β ′

0, (44)

for a negative parity baryon B. Note that we have divided out
the cross section by a factor of (p′/
) due to the final state
phase space which introduces an extra p′ dependence into the
cross section. In the above equations

β0 ≡ 2
∣∣B1

1

∣∣2 + 1
2

(∣∣C1
1

∣∣2 + ∣∣E1
1

∣∣2) − ∣∣U 1
1

∣∣2
,

β1 ≡ −β0 + 3
4

∣∣A1
1

∣∣2 + 2
3

∣∣D1
1 + E1

1

∣∣2 − 2
∣∣W 1

1

∣∣2
, (45)

β ′
0 ≡ 2

∣∣A′11
0

∣∣2 + ∣∣C ′01
0

∣∣2
,

where U 1
1 and W 1

1 are defined in Appendix C.
Equations (43), (44) show that, apart from the p′ depen-

dence due to phase space, the spin-triplet cross section scales
quadratically in p′ (or equivalently, linearly in excess energy
Q since

√
Q ∝ p′), if the parity of B is positive, whereas it is

constant if the parity of B is negative. This is the principal result
of Ref. [15], where the reaction NN → Y�+ has been inves-
tigated. Furthermore, the spin-triplet cross section exhibits a
cos2(θ ) angular dependence in the case of a positive parity
B, whereas it is isotropic in the case of a negative parity B.
Therefore, an observation of a strong cos2(θ ) dependence in
the measured angular distribution near threshold would imply
a positive parity baryon B. An isotropic angular distribution,
on the other hand, would be inconclusive about the parity
of B.

The spin-triplet cross section can be related to the spin
correlation coefficients Aii as (see Appendix D)

d(3σ)

d�
= 1

4

dσ

d�
(2 + Axx + Ayy), (46)

with dσ/d� denoting the unpolarized cross section and, Aii ,
the spin correlation coefficient with the spin orientations
along the i-axis. Therefore, in general, 3σ can be extracted
experimentally by measuring the spin correlation coefficients
Axx and Ayy in conjunction with the unpolarized cross section.
Furthermore, it is immediate from Eq. (D7) that, at threshold,
as pointed out by Rekalo and Tomasi-Gustafsson in Ref. [16]
in connection to the reaction pp → +�+, Axx = Ayy = −1
for a positive parity baryon B while Axx = Ayy � 0 for a
negative parity B.
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V. THE REACTION N+N → M+B′+N

We now focus on the process N + N → M + B ′ + N ,
where M stands for a spinless (scalar or pseudoscalar) meson
and, B ′ for a spin-1/2 and positive-parity baryon. We start by
making a partial-wave expansion of the corresponding reaction
amplitude

〈S ′MS ′ |M̂(�q, �p′; �p)|SMS〉
=

∑
iL−L′−l(lmlJ

′MJ ′ |JMJ )(S ′MS ′L′ML′ |J ′MJ ′)

× (SMSLML|JMJ )MS ′J ′SJ
lL′L (q, p′; p)

×Ylml
(q̂)YL′ML′ (p̂

′)Y ∗
LML

(p̂), (47)

where S,L, J stand for the total spin, total orbital angular
momentum, and the total angular momentum, respectively, of
the initial NN state. MS,ML, and MJ denote the corresponding
projection quantum numbers. The primed quantities stand for
the corresponding quantum numbers of the final B ′N state.
l and ml denote the orbital angular momentum of the emitted
meson and its projection, respectively, relative to the center
of mass of the final two-baryon system. The summation runs
over all quantum numbers not specified in the l.h.s. of Eq. (47).
�p and �p′ denote the relative momenta of the two baryons in the
initial and final states, respectively. �q denotes the momentum
of the emitted meson with respect to the center of mass of
the two baryons in the final state. We note that, in Eq. (47),
apart from the restrictions on the quantum numbers encoded in
the geometrical factors, total parity conservation imposes that
(−)l+L+L′ = −1 in the case of pseudoscalar meson production
and (−)l+L+L′ = +1 in the case of scalar meson production.

Equation (47) can be inverted to solve for the partial-wave
matrix element MS ′J ′SJ

lL′L (q, p′; p). We have

MS ′J ′SJ
lL′L (q, p′; p) =

∑
iL

′+l−L(lmlJ
′MJ ′ |JMJ )

× (S ′MS ′L′ML′ |J ′MJ ′ )(SMSL0|JMJ )

× 8π2

2J + 1

√
2L + 1

4π

∫
d�p′Y ∗

L′ML′ (p̂
′)

×
∫ +1

−1
d( cos(θq))Y ∗

lml
(θq, 0)

×〈S ′MS ′ |M̂(�q, �p′; �p)|SMS〉, (48)

where, without loss of generality, the z axis is chosen along �p
and �q in the xz plane; cos(θq) = q̂ · p̂. The summation is over
all quantum numbers not specified in the l.h.s. of the equation.

The most general spin structure of the transition operator
can be extracted from Eq. (47) as

M̂(�q, �p′; �p) =
∑

S ′SMSMS′

|S ′MS ′〉〈S ′MS ′ |M̂(�q, �p′; �p)|SMS〉〈SMS |.

(49)

Inserting Eq. (47) into Eq. (49) and recoupling gives

M̂(�q, �p′; �p) =
∑

iL−L′−l(−)L−J+J ′+l+S ′+S[J ′][J ]2

×MS ′J ′SJ
lL′L (q, p′; p)

∑
αβ

{
L′ J ′ S ′
J β l

}{
S ′ β J

L S α

}

× [AS ′ ⊗ BS]α · [X(lL′)βL]α, (50)

where [X(lL′)βL]α is defined as

[X(lL′)βL]α ≡ [[Yl(q̂) ⊗ YL′(p̂′)]β ⊗ YL(p̂)]α, (51)

and contains all the information on the angular dependence of
the transition operator.

We now expand [AS ′ ⊗ BS]α , for each tensor rank α, in
terms of the complete set of available spin operators in the
problem. Since the meson M produced in the final state is a
spinless meson, the expansion of [AS ′ ⊗ BS]α is exactly the
same as that for the N + N → B ′ + B reaction discussed in
Sec. III and is given by Eq. (28).

Inserting Eq. (28) into Eq. (50) yields

M̂(�q, �p′; �p) = R0PS=0 + R1PS=1 + �R2 · (�σ1 + �σ2)

+ �R3 · (�σ1 − �σ2)PS=0 + �R4 · (�σ1 − �σ2)PS=1

+R2
5 · [�σ1 ⊗ �σ2]2. (52)

The above result is the most general spin structure of the
spinless meson production operator in NN collisions consistent
with symmetry principles. The first two terms are the central
spin singlet and triplet interactions, respectively. The third
term is a tensor of rank 1 and corresponds to the usual
spin-orbit interaction. The fourth and fifth terms are also
tensors of rank 1 but they describe the spin singlet→triplet
and triplet→singlet transitions, respectively. The last term
corresponds to the tensor interaction of rank 2. Apart from
the fourth and fifth terms, all the other terms conserve the total
spin in the transition. The coefficients multiplying the spin
operators in the above equation contain the dynamics of the
reaction process and are given by

R0 =
∑

iL−L′−l(−)L[L]M0L′0L
lL′L (q, p′; p)[X(lL′)LL]0,

R1 = 1

3

∑
iL−L′−l(−)J

′
[J ′][J ]2

{
L′ J ′ 1
J L l

}
×M1J ′1J

lL′L (q, p′; p)[X(lL′)LL]0,

�R2 = 1

2
√

2

∑
iL−L′−l(−)L−J+J ′+1[J ′][J ]2M1J ′1J

lL′L (q, p′; p)

×
∑

β

[β]

{
L′ J ′ 1
J β l

}{
1 β J

L 1 1

}
[X(lL′)βL]1,

�R3 = 1

2
√

3

∑
iL−L′−l(−)L+J ′

[L][J ′]M1J ′0L
lL′L (q, p′; p) (53)

×
∑

β

(−)β[β]

{
L′ J ′ 1
L β l

}
[X(lL′)βL]1,

�R4 = 1

2
√

3

∑
iL−L′−l(−)L

′−J+1[J ]M0L′1J
lL′L (q, p′; p)

× [X(lL′)JL]1,

R2
5 = 1

2

∑
iL−L′−l(−)L−J+J ′+1[J ′][J ]2M1J ′1J

lL′L (q, p′; p)

×
∑

β

[β]

{
L′ J ′ 1
J β l

}{
1 β J

L 1 2

}
[X(lL′)βL]2.

Note that the summations over the quantum numbers in the
above equation are restricted by total parity conservation and
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the Pauli principle:

(−)l+L+L′ = ±1,
(54)

(−)L+S+T = −1,

where the ± signs refer to scalar (+) and pseudoscalar (−)
mesons, respectively; T denotes the total isospin of the two
interacting nucleons in the initial state. If the baryon B in the
final state is a nucleon, the summations in Eq. (53) are further
restricted by the Pauli principle

(−)L
′+S ′+T ′ = −1, (55)

where T ′ denotes the total isospin of the two interacting
nucleons in the final state.

The quantity [X(lL′)βL]α in the above equation can be most
easily evaluated by choosing the z axis along the relative
momentum �p of the two nucleons in the initial state. We then
have

[X(lL′)βL]α
Mα

= [LL′]√
4π

(βMαL0|αMα)[Yl(q̂) ⊗ YL′(p̂′)]β

= [LL′]√
4π

(βMαL0|αMα)

×
∑

ml,ML′

(lmlL
′ML′ |βMα)Ylml

(q̂)YL′ML′ (p̂
′). (56)

The evaluation of [X(lL′)βL]α can be further simplified if we
choose the relative momentum �p′ of the two nucleons in the
final state in the xz-plane, in which case, YL′ML′ (p̂′) = (−)ML′
√

(L′ − ML′)!/(L′ + ML′)![(2L′ + 1)/4π ]1/2P
ML′
L′ (p̂′ · p̂).

What we have done so far is completely general and applies
to any spinless meson production in NN collisions. In the
following, we treat the production of neutral and charged
spinless mesons separately in the NN → MNN reaction.

A. Neutral meson production amplitude in
N + N → M + N + N

Since the only difference between the scalar and pseu-
doscalar meson production amplitude is that the sum l + L +
L′ be even (scalar meson) or odd (pseudoscalar meson) as
expressed in Eq. (54), we restrict the following considerations
to pseudoscalar meson production. The scalar meson produc-
tion amplitude is easily obtained from the pseudoscalar meson
production amplitude by changing the restriction on the orbital
angular momenta from (−)l+L+L′ = −1 to (−)l+L+L′ = +1.

In the case of neutral meson production, the available
isospin operators in the problem are the usual isospin operators
�τ1 and �τ2 together with the identity operator acting on
the nucleon sector. We need to construct a scalar from
these available operators. Since the total isospin of the two
interacting nucleons is conserved in the production of a
neutral meson, the isospin structure of the reaction amplitude
is most simply expressed in terms of the isospin projection
operator PT for the isosinglet and isotriplet transitions as
T = 0 and 1, respectively. Explicitly, PT =0 = (1 − �τ1 · �τ2)/4
and PT =1 = (3 + �τ1 · �τ2)/4.

We now note that, since the total isospin is conserved in the
neutral meson production process, total parity conservation

together with Pauli principle [Eqs. (54), (55)] demands
that (−) l+S+S ′ = −1 in the case of pseudoscalar meson
production. This implies that the coefficients �R3 and �R4 in
Eq. (53) involve the summation over even l only while all
other coefficients in Eq. (53) involve summation over odd l
only. In what follows we will use the superscript (e) or (o) in
the coefficients in Eq. (53) to indicate the restricted summation
to even or odd l, respectively.

With the above considerations, the (pseudoscalar) neutral
meson production operator for a transition with a given isospin
T is given by

M̂T (�q, �p′; �p) = {
R(o)

0 PS=0 + R(o)
1 PS=1 + �R(o)

2 · (�σ1 + �σ2)

+ �R(e)
3 · (�σ1 − �σ2)PS=0 + �R(e)

4 · (�σ1 − �σ2)

×PS=1 + R2(o)
5 · [�σ1 ⊗ �σ2]2

}
PT . (57)

The above result is the most general spin-isospin structure
of the neutral pseudoscalar meson production operator in NN
collisions consistent with symmetry principles.

In the total isospin basis, the pp and pn states are expressed
as

|pp〉 = |T = 1,MT = 1〉,
(58)

|pn〉 = 1√
2
[|T = 1,MT = 0〉 + |T = 0,MT = 0〉],

so that, for pp collisions, we have

M̂ppM (�q, �p′; �p) = M̂T =1(�q, �p′; �p), (59)

while for pn collisions,

M̂pnM (�q, �p′; �p) = 1

2

∑
T =0,1

M̂T (�q, �p′; �p). (60)

The transition operator for neutral scalar meson production
is also given by Eq. (57), except that the superscripts (e) and (o)
in the quantities appearing in Eq. (57) should be interchanged.

B. Charged meson production amplitude in
N + N → M + N + N

For charged meson production, the available nucleon
isospin operators are the same as those for neutral meson
production as discussed in the previous subsection. In addition,
there is the isospin creation operator π̂

†
m in the meson sector

[|1m >= π̂
†
m|0 >], where the subscript m stands for the charge

of the produced meson (m = +1, 0,−1). Again, we form all
possible scalars from these operators with π̂m appearing once
in each term. The isospin structure of the transition operator is
then of the form π̂ · Ô, where Ô stands for an isospin operator
of rank 1 in the two nucleon isospin sector. Three independent
structures are possible for Ô:

T = T ′ = 1 : Ô = (�τ1 + �τ2) ,

T = 0, T ′ = 1 : Ô = (�τ1 − �τ2) PT =0, (61)

T = 1, T ′ = 0 : Ô = (�τ1 − �τ2) PT =1.

In the isospin singlet→triplet and triplet→singlet tran-
sitions, total parity conservation and the Pauli principle
[Eqs. (54), (55)] demand that (−) l+S+S ′ = +1 in the case of

034603-9



K. NAKAYAMA AND W. G. LOVE PHYSICAL REVIEW C 72, 034603 (2005)

pseudoscalar meson production. This condition is just opposite
to that for either the isospin singlet-singlet or triplet-triplet
transitions as discussed in the previous subsection. Taking into
account this restriction together with Eq. (61), we have for a
given transition T → T ′

M̂T ′T (�q, �p′; �p) = {
R(o)

0 PS=0 + R(o)
1 PS=1 + �R(o)

2 · (�σ1 + �σ2)

+ �R(e)
3 · (�σ1 − �σ2)PS=0 + �R(e)

4 · (�σ1 − �σ2)

×PS=1 + R2(o)
5 · [�σ1 ⊗ �σ2]2

}
π̂ · (�τ1 + �τ2)

+ {
R(e)

0 PS=0 + R(e)
1 PS=1 + �R(e)

2 · (�σ1 + �σ2)

+ �R(o)
3 · (�σ1 − �σ2)PS=0 + �R(o)

4 · (�σ1 − �σ2)

×PS=1+R2(e)
5 ·[�σ1 ⊗ �σ2]2

}
π̂ ·(�τ1−�τ2)PT .

(62)

Note that the coefficients of the spin operators in the two-
nucleon isospin nonflip term have different restrictions on
the angular momentum of the emitted meson relative to the
corresponding coefficients in the two-nucleon isospin flip term.
The above result is the most general spin-isospin structure
of the charged pseudoscalar meson production operator in
NN collisions consistent with symmetry principles. The tran-
sition operator for a specific reaction can be trivially obtained
from Eq. (62) using Eq. (58).

The transition operator for charged scalar meson production
is also given by Eq. (62), except that the superscripts (e) and (o)
in the quantities appearing in Eq. (62) should be interchanged.

VI. NEAR-THRESHOLD pp → ppM REACTION

In any particle production reaction, the near-threshold
energy region is of particular interest due to the limited number
of relevant partial-wave amplitudes. In this section, as an
example, we consider the pp → ppM reaction near threshold,
where the produced pseudoscalar meson M is primarily in
an s-wave state. Then, considering only l = 0, the transition
operators of the previous sections take particularly simple
forms. Indeed, Eq. (59) becomes

M̂ppM (�q, �p′; �p) = �R(e)
3 · (�σ1−�σ2)PS=0+ �R(e)

4 · (�σ1−�σ2)PS=1,

(63)

where the isopin matrix element has been taken. From Eq. (53),
the coefficients �R(e)

3 and �R(e)
4 reduce to

�R(e)
3 = 1

2
√

3

∑
iL−L′

(−)L
′
[L]M1L0L

0L′L (q, p′; p)[X(0L′)L′L]1,

(64)
�R(e)

4 = − 1

2
√

3

∑
iL−L′

[L′]M0L′1L′
0L′L (q, p′; p)[X(0L′)L′L]1,

with

[X(0L′)L′L]1 = [LL′]

(4π )
3
2

[√
2

L′(L′ + 1)
(L′1L0|11)P 1

L′ (p̂ · p̂′)n̂1

+ (L′0L0|10)PL′ (p̂ · p̂′)p̂

]
. (65)

In the above equation, n̂1 ≡ [( �p × �p′) × �p]/| �p × �p′|.

Restricting the final two proton states to S and P waves,
Eq. (63) reduces further to

M̂ppM (�q, �p′; �p) = i{[β2p̂
′ − β3(p̂′ − 3p̂ · p̂′p̂)] · (�σ1 − �σ2)

×PS=0 − β1p̂ · (�σ1 − �σ2)PS=1}, (66)

where

β1 ≡ 1

2(4π )3/2
M1101

001 (q, p′; p),

β2 ≡ 1

2(4π )3/2
M0111

010 (q, p′; p), (67)

β3 ≡ 1

2(4π )3/2

√
5

2
M0111

012 (q, p′; p),

are proportional to the partial-wave matrix elements cor-
responding to 3P0 → 1S0s,

1S0 → 3P0s, and 1D2 → 3P2s tran-
sitions, respectively [17]. Equation (66) agrees with the
structure derived in Ref. [18] based directly on symmetry
considerations. We also note that the higher partial-wave
contributions in pp → ppη reported in Ref. [18] have been
calculated based on the present method.

The transition operator given by Eqs. (57), (59) can be
reexpressed in the form

M̂ppM =
6∑

λ=1

3∑
n,n′=0

Mλ
nn′σn(1)σn′ (2), (68)

where

M1
nn′ = 1

4

(
3R(o)

1 + R(o)
0

)
δn,0δn′,0,

M2
nn′ =

{
1

4

(
R(o)

1 − R(o)
0

) + R̃2(o)
a5

}
(1 − δn,0)δn,n′ ,

M3
nn′ =

[
�R(o)

2 + 1

2

( �R(e)
3 + �R(e)

4

)]
n

(1 − δn,0)δn′,0,

(69)

M4
nn′ =

[
�R(o)

2 − 1

2

( �R(e)
3 + �R(e)

4

)]
n′

(1 − δn′,0)δn,0,

M5
nn′ = i

1

2

∑
k

εnn′k
( �R(e)

3 − �R(e)
4

)
k
(1 − δn,0)(1 − δn′,0),

M6
nn′ = R̃2(o)

b5 (1 − δn,0)(1 − δn′,0),

with

R̃2(o)
a5 ≡

∑
m1m2m

(−)mR2(o)
5m (1m11m2|2 − m)

×
{

m1m2

2
(δn,1 − m1m2δn,2) + (1 − |m1|)

× (1 − |m2|)δn,3

}
,

(70)
R̃2(o)

b5 ≡
∑

m1m2m

(−)mR2(o)
5m (1m11m2|2 − m)

×
{
i
m1m2

2
(m2δn,1δn′,2 + m1δn,2δn′,1) − m1√

2
× (1 − |m2|)(δn,1 + im1δn,2)δn′,3

− m2√
2

(1 − |m1|)δn,3(δn′,1 + im2δn′,2)

}
.
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Any observable of interest can then be calculated either
from Eq. (68) or from Eq. (47) as given in Appendix D.

In near-threshold kinematics with only s-wave mesons, we
see from Eqs. (63), (69) that the nonvanishing coefficients
are M

λ=3,4,5
nn′ . If, in addition, the final two nucleon states are

restricted to S and P waves, we have

M3
nn′ = i

1

2

{
(β2 − β3)p̂′

n + [3β3(p̂ · p̂′) − β1]p̂n

}
× (1 − δn,0)δn′,0,

M4
nn′ = −i

1

2

{
(β2 − β3)p̂′

n′ + [3β3(p̂ · p̂′) − β1]p̂n′
}

(71)
× δn,0(1 − δn′,0),

M5
nn′ = −1

2

∑
k

εnn′k

{
(β2 − β3)p̂′

k + [3β3(p̂ · p̂′) + β1]p̂k

}
× (1 − δn,0)(1 − δn′,0),

where βi’s are defined in Eq. (67).
Inserting the above results into Eqs. (D2)–(D4) [or alterna-

tively using Eq. (47) and Eqs. (D5)–(D7)] yields

dσ

d�
= |β1|2 + |β2|2 + (3 cos2 θ + 1)|β3|2

+ 2(3 cos2 θ − 1)�[β2β
∗
3 ],

dσ

d�
Ai = 0,

(72)
dσ

d�
Axx = dσ

d�
Ayy

= |β1|2 − |β2|2 − (3 cos2 θ + 1)|β3|2
− 2(3 cos2 θ − 1)�[β2β

∗
3 ],

which are equivalent to the results derived directly from
Eq. (66) in Ref. [18]. From the above results, the final state
(NN) S-wave contribution can be isolated via the combination

1

2

dσ

d�
(1 + Axx) = d(3σ )

d�
= |β1|2, (73)

which is nothing other than a consequence of the Pauli
principle and parity conservation as discussed in Sec. IV.

VII. SUMMARY

Based on the partial-wave expansion of the reaction
amplitude, we have derived the most general spin structure of
the transition operator for the reactions γ + N → M + B and
N + N → B ′ + B. Also, we have derived the most general
spin structure of the spinless meson production operator for the
N + N → M + B ′ + N reaction. The present method used
to extract the spin structure of the transition operator is quite
general and, in principle, can be applied to any reaction process
in a systematic way. The advantage of this method is that it
relates the coefficients multiplying each spin operator directly
to the partial-wave matrix elements to any desired order of the
corresponding expansion.
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APPENDIX A

In this appendix we will determine the coefficients
aL′L, bL′L, and cL′L in Eq. (6) as well as a′

L′L and b′
L′L in

Eq. (13).
Taking the scalar product of the last equality in Eq. (6) with

[q̂ ⊗ q̂]2, [k̂ ⊗ k̂]2, and [k̂ ⊗ q̂]2, respectively, we have

3u = 2aL′L + (3 cos2 θ − 1)bL′L + 2 cos θcL′L,

3v = (3 cos2 θ − 1)aL′L + 2bL′L + 2 cos θcL′L, (A1)

3w = 2 cos θaL′L + 2 cos θbL′L + 1
2 (3 + cos2 θ )cL′L,

where cos θ ≡ k̂ · q̂ and

u ≡ [YL(k̂) ⊗ YL′(q̂)]2 · [q̂ ⊗ q̂]2,

v ≡ [YL(k̂) ⊗ YL′(q̂)]2 · [k̂ ⊗ k̂]2, (A2)

w ≡ [YL(k̂) ⊗ YL′(q̂)]2 · [k̂ ⊗ q̂]2.

In order to arrive at Eq. (A1), we have also made use of the
results

[q̂ ⊗ q̂]2 · [q̂ ⊗ q̂]2 = 2
3 ,

[k̂ ⊗ k̂]2 · [q̂ ⊗ q̂]2 = 1
3 (3 cos2 θ − 1),

(A3)
[k̂ ⊗ q̂]2 · [q̂ ⊗ q̂]2 = 2

3 cos θ,

[k̂ ⊗ q̂]2 · [k̂ ⊗ q̂]2 = 1
6 (3 + cos2 θ ).

Equation (A1) can be readily inverted to yield

aL′L = 1

sin4 θ
[2u + (1 + cos2 θ )v − 4 cos θw],

bL′L = 1

sin4 θ
[(1 + cos2 θ )u + 2v − 4 cos θw], (A4)

cL′L = 2

sin4 θ
[−2 cos θ (u + v) + (3 cos2 θ + 1)w].

Choosing the quantization axis ẑ along k̂, the quantities
u, v, and w defined in Eq. (A2) can be expressed without loss
of generality as

u = 1

4π

√
2

3
[LL′](L0L′0|20)PL(k̂ · q̂),

v = 1

4π

√
2

3
[LL′](L0L′0|20)PL′ (k̂ · q̂),

(A5)

w = [LL′]√
4π

∑
l

1

[l]
(L′010|l0)

∑
M,ml

(L0L′M|2M)

× (101M|2M)(L′M1M|lml)Ylml
(θ, 0).

Similarly to what has been done above, taking the scalar
product of the last equality in Eq. (13) with [k̂ ⊗ n̂2]2 and
[q̂ ⊗ n̂2]2, respectively, we have

2r = a′
L′L + cos θb′

L′L,
(A6)

2t = cos θa′
L′L + b′

L′L,
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where

r ≡ [YL(k̂) ⊗ YL′(q̂)]2 · [k̂ ⊗ n̂2]2,
(A7)

t ≡ [YL(k̂) ⊗ YL′(q̂)]2 · [q̂ ⊗ n̂2]2.

In order to arrive at Eq. (A6), we have also made use of the
results

[k̂ ⊗ n̂2]2 · [k̂ ⊗ n̂2]2 = 1
2 ,

(A8)
[k̂ ⊗ n̂2]2 · [q̂ ⊗ n̂2]2 = 1

2 cos θ.

Equation (A6) can be readily inverted to yield

a′
L′L = 2

sin2 θ
(r − t cos θ ) ,

(A9)

b′
L′L = 2

sin2 θ
(t − r cos θ ) .

Choosing the quantization axis ẑ along k̂, the quantities
r and t defined in Eq. (A7) can be expressed as

r = −i
1

4π

[LL′]√
L′(L′ + 1)

(L0L′1|21)P 1
L′ (k̂ · q̂),

(A10)

t = −i
[LL′]√

2π

∑
l

1

[l]
(L′010|l0)

∑
M,m′s

(−)M (L0L′M|2M)

× (L′M1m|lml)(1m11|2 − M)Ylml
(θ, 0).

APPENDIX B

In this appendix we will give the explicit expression for the
quantities AL′ , BL′ , and CL′ in Eq. (19) and A′

L′ , B
′
L′ , and C ′

L′
in Eq. (21).

Using Eqs. (8), (11) for those states specified in Eq. (18),
we find

A0 = 1

4π
√

3

[
M

1
2

1
2

00 −
√

2M
1
2

3
2

02

]
,

(
q




)
A1 = 1

4π

(√
2 − 1√

2

)√
2

3

[
M

1
2

1
2

11 − M
3
2

1
2

11 + 1

2
M

1
2

3
2

11

+
√

5

2
M

3
2

3
2

11

]
+ 1

4π

√
2

3

[
M

1
2

3
2

11 + M
3
2

3
2

11

]

− 1

4π

√
3

5
M

3
2

3
2

13 ,

(B1)(
q




)
B1 = 1

4π

(√
2 + 1√

2

)√
2

3

[
M

1
2

1
2

11 − M
3
2

1
2

11

+ 1

2
M

1
2

3
2

11 +
√

5

2
M

3
2

3
2

11

]
,

(
q




)
C1 = − 1

4π

√
3

8

[
M

1
2

3
2

11 +
√

2M
3
2

3
2

11 − 2
√

3M
3
2

3
2

13

]
.

Similarly, using Eqs. (15), (17) for those states specified in
Eq. (20), we find(

q




)
A′

1 = − 1

4π

(√
2 + 1√

2

)√
1

6

[
M

1
2

1
2

10 + 2M
1
2

3
2

12

− 4

√
2

3
M

3
2

3
2

10 −
√

2M
3
2

3
2

12 + 4

√
1

3
M

3
2

3
2

12

]
,

B ′
0 = 1

4π

(√
2 + 1√

2

)√
1

3

[
M

1
2

1
2

01 − M
1
2

3
2

01

]
,

(
q




)
B ′

1 = − 1

4π

(√
2 + 1√

2

)√
1

3

[
M

1
2

1
2

10 + M
1
2

3
2

12

+
√

2M
3
2

3
2

10 − 2M
3
2

1
2

12

]
,

(
q




)
C ′

1 = − 1

4π

√
3

8

[
M

1
2

3
2

12 +
√

1

2
M

3
2

3
2

12

]
.

(B2)

APPENDIX C

The quantities AS
L′, B

S
L′ , etc. in Eq. (39) are given by

A0
0 = 1

4π
M000

00 ,(
p′




)
A1

1 = 1

4π

1

3

[
M110

11 + 3M111
11 + 5M112

11

]
,(

p′




)
B1

1 = − 1

4π

1

4

[
M110

11 + 3

2
M111

11 − 5

2
M112

11

]
,

(C1)(
p′




)
C1

1 = 1

4π

3

2
√

2
M011

11 ,

(
p′




)
D1

1 = − 1

4π

√
3

2

5

2
M112

13 ,

(
p′




)
E1

1 = 1

4π

[√
3

2
M112

13 − 1

2
M110

11 + 3

4
M111

11 − 1

4
M112

11

]
.

For convenience we define(
p′




)
U 1

1 ≡
√

3

4π

[√
3

2

(
M112

11 − M111
11

) + M112
11

]
,

(C2)(
p′




)
W 1

1 ≡
√

3

4π

[√
3

2

(
M112

11 + M111
11

) + M112
11

]
.

Similarly, the quantities A′S ′S
L′ , B ′S ′S

L′ , etc. in Eq. (41) are given
by

A′11
0 = 1

4π

1

2

√
3

2
M111

01 ,

(
p′




)
B ′10

1 = 1

4π

1

2

[
M100

10 −
√

5

2
M102

12

]
,

(C3)(
p′




)
C ′10

1 = 1

4π

1

2

[
M100

10 +
√

10M102
12

]
,

C ′01
0 = 1

4π

1

2
M010

01 .

APPENDIX D

In order to calculate the observables directly from the
transition operators in Eqs. (29), (34), and (52), it is convenient
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to express them in the form

M̂ =
∑

λ

3∑
n,n′=0

Mλ
nn′σn(1)σn′(2), (D1)

where σ0(i) ≡ 1, σ1(i) ≡ σx(i), etc., for ith nucleon.
The unpolarized cross section is then given by

dσ

d�
≡ 1

4
Tr[M̂M̂†]

=
∑
λ,λ′

3∑
n,n′=0

Mλ
nn′

(
Mλ′

nn′
)∗

. (D2)

For the analyzing power we have

dσ

d�
Ai ≡ 1

4
Tr[M̂σi(1)M̂†]

(D3)

=
∑
λ,λ′

3∑
n′=0

{
2�[

Mλ
in′

(
Mλ′

0n′
)∗] + i

3∑
k,n=1

εkniM
λ
nn′

(
Mλ′

kn′
)∗
}

,

where εkni denotes the Levi-Civita antisymmetric tensor. We
note that, from parity conservation, Ax = Az = 0 for the two-
body reaction NN → B ′B; this result also holds for the three-
body reaction NN → MB ′N in the coplanar geometry.

The spin correlation coefficient Aij is given by

dσ

d�
Aij ≡ 1

4
Tr[M̂σi(1)σj (2)M̂†]

=
∑
λ,λ′

{
2�[

Mλ
00

(
Mλ′

ij

)∗ + Mλ
i0

(
Mλ′

0j

)∗]

+
3∑

k,n=1

2�[
Mλ

0k

(
Mλ′

in

)∗
εknj + Mλ

k0

(
Mλ′

nj

)∗
εkni

]

−
3∑

k,k′,n,n′=1

Mλ
kk′(Mλ′

nn′ )∗εnkiεn′k′j

}
. (D4)

Of course, any observable can also be expressed in terms
of the spin-matrix elements given by Eqs. (24), (47). We have,
e.g.,

dσ

d�
= 1

4

∑
S,S ′,MS,M ′

S

|〈S ′M ′
S |M̂|SMS〉|2, (D5)

dσ

d�
Ax =

√
2

4

∑
S,S ′,M ′

S

�[〈S ′M ′
S |M̂|S0〉〈S ′M ′

S |M̂|1 − 1〉∗

+ (−)1+S〈S ′M ′
S |M̂|11〉〈S ′M ′

S |M̂|S0〉∗],
(D6)

dσ

d�
Ay =

√
2

4

∑
S,S ′,M ′

S

�[〈S ′M ′
S |M̂|S0〉〈S ′M ′

S |M̂|1 − 1〉∗

+ (−)1+S〈S ′M ′
S |M̂|11〉〈S ′M ′

S |M̂|S0〉∗],

dσ

d�
Az = 1

4

∑
S ′,M ′

S

[|〈S ′M ′
S |M̂|11〉|2 − |〈S ′M ′

S |M̂|1 − 1〉|2],

dσ

d�
Axx = 1

4

∑
S,S ′,MS,M ′

S

(−)1+S−2MS 〈S ′M ′
S |M̂|SMS〉

× 〈S ′M ′
S |M̂|S − MS〉∗,

dσ

d�
Ayy = 1

4

∑
S,S ′,MS,M ′

S

(−)1+S−MS 〈S ′M ′
S |M̂|SMS〉 (D7)

×〈S ′M ′
S |M̂|S − MS〉∗,

dσ

d�
Azz = 1

4

∑
S,S ′,MS,M ′

S

(−)1+MS |〈S ′M ′
S |M̂|SMS〉|2.

As has been pointed out in Ref. [19], a given initial state spin
contribution to the cross section can be isolated by measuring
some spin observables. In particular, using the spin-projection
operator PS as given in Sec. III in terms of the Pauli spin
matrices, it is immediate that

d(1σ )

d�
≡ 1

4
Tr[(M̂PS=0)(M̂PS=0)†] = 1

4
Tr[M̂PS=0M̂

†]

= 1

4

dσ

d�
(1 − Axx − Ayy − Azz),

(D8)
d(3σ )

d�
≡ 1

4
Tr[(M̂PS=1)(M̂PS=1)†] = 1

4
Tr[M̂PS=1M̂

†]

= 1

4

dσ

d�
(3 + Axx + Ayy + Azz),

where 2S+1σ denotes the (initial state) spin-singlet or -triplet
cross section as S = 0 or 1, respectively.

Also, Eq. (D7) can be inverted to solve for the spin cross sec-
tions, d( 2S+1σMS

)/d(�) ≡ ∑
S ′,M ′

S
|〈S ′M ′

S |M̂|SMS〉|2/4. We
obtain [20]

d(1σ0)

d�
= 1

4

dσ

d�
(1 − Axx − Ayy − Azz),

d(3σ0)

d�
= 1

4

dσ

d�
(1 + Axx + Ayy − Azz), (D9)

d(3σ1)

d�
+ d(3σ−1)

d�
= 1

2

dσ

d�
(1 + Azz),

where we have made used of the relation σ =1σ0 + 3σ0 +
3σ1 + 3σ−1. Note that Eq. (D9) is consistent with Eq. (D8) as
1σ = 1σ0 and 3σ = 3σ0 + 3σ1 + 3σ−1.

From Eq. (D9), it is immediate that the spin-triplet cross
section defined as

d(3σ)

d�
≡ d(3σ0)

d�
+ 1

2

(
d(3σ1)

d�
+ d(3σ−1)

d�

)
(D10)

is given by Eq. (46). Note that d(3σ1)/d� = d(3σ−1)/d� for
NN → B ′B by symmetry. This holds also for NN → MB ′N
in the coplanar geometry or for the cross section integrated
over the emission angle of the one of the three particles in the
final state.
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