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Self-consistent relativistic random-phase approximation
with vacuum polarization
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We present a theoretical formulation for the description of nuclear excitations within the framework of a
relativistic random-phase approximation whereby the vacuum polarization arising from nucleon-antinucleon
fields is duly accounted for. The vacuum contribution to the Lagrangian is explicitly described as extra new
terms of interacting mesons by means of the derivative expansion of the effective action. It is shown that the
self-consistent calculation yields zero eigenvalue for the spurious isoscalar-dipole state and also conserves the
vector-current density.
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Relativistic field theory based on quantum hadrodynamics
(QHD) [1] has been very successful in describing nuclear
properties not only for ground states but also for excited states.
Although the response of a system to an external field has
already been investigated in the 1980s by using the relativistic
random-phase approximation (RRPA), in the relativistic mean-
field (RMF) basis [2–8], self-consistent methods with a
nonlinear effective Lagrangian for a quantitative description
of excited states have been developed only during the past
few years [9–13]. However, in particular, it is important to
emphasize here that the negative-energy RMF states contribute
essentially to current conservation of RRPA eigenstates and the
decoupling of the spurious state. In our recent study, it has been
shown that the negative-energy RRPA eigenstates generated
from the RRPA equation with a fully consistent basis play
a significant role in gauge invariance of the electromagnetic
response [14].

The basis set used for the RRPA calculation is usually
obtained from the RMF theory wherein only positive-energy
nucleons are taken into account and the Dirac sea is al-
ways regarded as unoccupied (sometimes called the no-sea
approximation [2,8]). This approximation is very convenient
because we do not have to worry about a renormalization
procedure in the calculation of the basis set under the full
one-nucleon-loop contribution, which we refer to as the
relativistic Hartree approximation (RHA), nor in the RRPA
calculation in which the Feynman part is essentially divergent.
However, the RHA + RRPA calculations in finite nuclei have
been performed in Refs. [4–7] with the inclusion of vacuum
polarization by employing the local density approximation.
For all these RHA + RRPA calculations, this approximation
implies that the renomalization of the one-nucleon loop in
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the RHA calculation and that of the Feynman part in the
polarization function have been carried out for nuclear matter,
and the results thus obtained have been used in the case of finite
nuclei. However, because such a RRPA calculation violates
self-consistency for finite nuclei, the spurious isoscalar-dipole
strength associated with the uniform translation of the center-
of-mass does not get shifted all the way down to zero excitation
energy [6].

The main aim of this article is to demonstrate how such
a deficiency in the previous RHA + RRPA calculations is
removed by employing the derivative-expansion method to
estimate the vacuum contribution. We verify the consistency by
calculating explicitly the spurious state in the isoscalar-dipole
mode and the current conservation of transition densities.

In the following we work out the vacuum-polarization
effects using the Lagrangian density of the Walecka σ -ω
model, which is given by

LN = ψ̄N (iγµ∂µ − mN + gσσ − gωγ µωµ)ψN + 1
2 (∂µσ )2

− 1
2m2

σ σ 2 − U (σ ) − 1
4 (∂µων − ∂νωµ)2

+ 1
2m2

ωωµωµ − δL, (1)

where U (σ ) = 1
3!g2σ

3 + 1
4!g3σ

4 denotes the self-interaction
terms of scalar meson, and δL = − 1

4ζω(∂µων − ∂νωµ)2 +
1
2ζσ (∂µσ )2 + ∑4

i=1(αi/i!)σ i represents the counterterms to
regularize the nucleon self-energy. The renormalization pro-
cedure in a finite nuclear system requires considerable effort
even at the mean-field level [15,16]. The explicit calculation
of the vacuum polarization for a finite system has been
performed recently by Haga et al. [15], who found the density
variation to be substantial. The use of the effective action
developed in Ref. [17], however, provides a direct and simple
approach to estimate the vacuum corrections. It is interesting
to observe that the lowest order of derivative expansion for the
one-baryon-loop correction agrees with the rigorous results
[15]. In the derivative expansion, the contribution from the
Dirac sea to the Lagrangian density, which is expressed by
the trace and the logarithm of the inverse of the Dirac Green
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function, is expanded by derivatives of the meson fields as
expressed by∫

d4p

(2π )4
[Tr ln(γµpµ − mN + gσσ − gωγ µωµ)

− Tr ln(γµpµ − mN )] − δL

= −VF (σ )+1

2
Zσ

F (σ )(∂µσ )2+1

4
Zω

F (σ )(∂µων−∂νωµ)2+ · · · .
(2)

Each term of the right-hand side of Eq. (2) is finite, and
therefore we can treat them as ordinary potential terms. Here,
we need to use a standard renormalization technique to obtain
explicit forms of VF (σ ), Zσ

F (σ ), and Zω
F (σ ). The method of

calculating them has been discussed by many authors [18–20]
and it has also been verified that the expansion converges quite
rapidly within a mean-field approximation [15,16,21]. In the
present calculation, we employ only the first three terms on
the right-hand side of Eq. (2).

We proceed now to describe the calculational details of
the RRPA based on the leading-order terms of the derivative
expansion. In the σ -ω model, we know that the effective
Lagrangian density is given by

Lren
(1) = ψ̄+

N (iγµ∂µ − mN + gσσ − gωγ µωµ)ψ+
N + 1

2 (∂µσ )2

− 1
2m2

σ σ 2 − U (σ ) − 1
4 (∂µων − ∂νωµ)2 + 1

2m2
ω(ωµ)2

−VF (σ ) + 1
2Zσ

F (σ )(∂µσ )2 + 1
4Zω

F (σ )(∂µων − ∂νωµ)2,

(3)

where superscript + in the nucleon-field operators means that
only the positive-energy states are to be treated explicitly.
Then, in a stationary, spherical system, the ground-state
expectation values of the σ and ω0, which are written as φ

and V0, satisfy the following coupled equations:(
∂µ∂µ + m2

σ

)
φ = gσ 〈ψ̄+ψ+〉 − U ′(φ) − V ′

F (φ)

+ 1
2Zσ ′

F (φ)(∂µφ)2 − ∂µ

(
Zσ

F (φ)∂µφ
)

+ 1
4Zω

F
′(φ)(∂µV0)2, (4)(

∂µ∂µ + m2
ω

)
V0 = gω〈ψ̄+γ 0ψ+〉 + ∂µ

(
Zω

F (φ)∂µV0
)
, (5)

where the contributions of the negative-energy states to source
terms are contained in VF and ZF . The first step in calculating
the RRPA response is the computation of the RHA, which
involves just solving these equations together with the Dirac
equation under the potentials of φ and V0. The potentials
achieved in the mean-field calculation are then used to generate
the lowest order polarization function. Thus, we solve the
RRPA equation given by

�RPA(
a, 
b; p, q; E)

= �D(
a, 
b; p, q; E) +
∑
ij

∫
dk1dk2

×�D(
a, 
i ; p, k1; E)Dij (k1, k2; E)

×�RPA(
j , 
b; k2, q; E), (6)

where the summation is over the meson fields and 
’s are the
4 × 4 matrices that denote the vertex couplings. This RRPA

equation has the exact same form as that of the no-sea approx-
imation. However, it should be noted that there is an essential
difference with regard to the employed meson propagator, Dij ,
in which we must include the vacuum-polarization corrections
to perform the consistent calculation. The σ -ω coupling term
Zω

F (σ )(∂µων − ∂νωµ)2 in the present Lagrangian provides the
coupled equations between the σ -meson propagator and the
time component of the ω-meson propagator:(

Dσ Dσω

Dωσ Dω00

)
=

(
D0

σ 0

0 D0
ω00

)
+

(
D0

σ 0

0 D0
ω00

)

×
(

�̃σσ
F �̃σω

F

�̃ωσ
F �̃ωω

F

)(
Dσ Dσω

Dωσ Dω00

)
. (7)

The spatial component of the ω-meson propagator can be
evaluated independently. Here, the Fourier transforms of

�̃σσ
F (y, x) = δ(x − y)

[
U ′′(φ) + V ′′

F (φ) − 1
2Zσ ′′

F (φ)(∂µφ)2

− 1
2Zω′′

F (φ)(∂µV0)2 + [
∂µ∂µZσ

F (φ)
]]

+ (∂µ)
[
Zσ

F (φ)[∂µδ(x − y)]
]
, (8)

�̃σω
F (y, x) = ∂µ

[
Zω′

F (φ)(∂µV0)δ(x − y)
]
, (9)

�̃ωσ
F (y, x) = −Zω′

F (φ)(∂µV0)[∂µδ(x − y)], (10)

�̃ωω
F (y, x) = ∂µ

[
Zσ

F (φ)[∂µδ(x − y)]
]

(11)

and the effective meson propagators Dij as well as the
free meson propagators D0

ij are expressed as the matrices
of the momentum space. Details of the formulation on
the present technique along with the comparison between
the Feynman part in our calculation and that in the local-
density approximation will be elucidated in a forthcoming
publication.

The parameter set used in the present work is listed in
Table I and has been determined to reproduce the total binding
energies and charge radii of the spherical nuclei in the RHA
calculation. This parameter set is similar to that introduced in
Ref. [22], where the derivative expansion has been used. Small
difference between the two sets stems from the fact that in the
treatment of Ref. [22] the one-meson-loop corrections have
been considered.

In what follows we discuss the results of our RRPA
calculations. In Figs. 1(a) and 1(b) we display the distributions
for the Coulomb responses of isoscalar-dipole mode in
16O and 40Ca at the momentum transfers of q = 237 and
118 MeV, respectively, as a function of the excitation energy.
The most remarkable result of our RRPA calculations includ-
ing the vacuum polarization is that the spurious state, which
is the collective mode corresponding to the center-of-mass
motion, appears at zero excitation energy in both nuclei
(shown by the solid curves), as also obtained in conventional
RRPA calculation without vacuum polarization (shown by the

TABLE I. Parameter set used in the present work.

mσ (MeV) mω (MeV) gσ g2 (fm−1) g3 gω

RHA 458.0 814.0 7.10 24.09 −15.99 8.85
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FIG. 1. Distributions of isoscalar-dipole strength (a) 16O and in (b) 40Ca.

dashed curves) [2]. The spurious state is clearly separated
from the physical states, which are shown by using the small
imaginary part of energy η = 0.05 MeV. We emphasize that,
although earlier RRPA calculations with vacuum polarization
have never succeeded in decoupling the spurious state [6], we
are now able to achieve this by handling the Lagrangian (3)
correctly.

Another important aspect for the correctness of the RPA
calculations is to check whether transition charge density
〈I ′||Mλ(q)||I 〉 and current density 〈I ′||TλL(q)||I 〉, connecting
the ground state I and the excited states I ′ for different
multipolarity λ and L, satisfy the conservation law [2,8]. If
we assume that ωN denotes the excitation energy of nucleus,
the conservation relation is given by

ωN 〈I ′||Mλ(q)||I 〉 = − q

√
λ

2λ + 1
〈I ′||Tλλ−1(q)||I 〉

+ q

√
λ + 1

2λ + 1
〈I ′||Tλλ+1(q)||I 〉. (12)

Our results for the RRPA transition current are depicted in
Fig. 2; the contributions from the left-hand side (lhs) and right-
hand side (rhs) of Eq. (12) are shown separately by the dashed
and dash-dotted lines, respectively. Note that for the purpose of
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FIG. 2. RHA + RRPA results for the current conservation in
the transition densities for the lowest positive-energy (12.94 MeV)
isoscalar-dipole state in 16O. The �� depicted by the thick solid line
shows the extent of violation of current conservation. For details refer
to the text.

clarity the lhs of Eq. (12) has been plotted with a negative sign.
The difference of these two contributions (denoted by �� and
shown by the thick solid line in Fig. 2), represents violation of
current conservation. It is gratifying to see from Fig. 2 that the
RRPA transition current is sufficiently conserved.

In summary, we have studied the self-consistent
RHA + RRPA method including the vacuum-polarization con-
tribution given by the derivative-expansion method. We stress
here that the present method is able to treat the change of the
negative-energy states owing to the presence of particles in
the positive-energy states for the formation of the nucleus
and also able to treat consistently excited states using the
RRPA. In contrast to the previous RRPA calculations using
the local-density approximation, the self-consistency of the
model has been fulfilled so that we have obtained the desired
results for decoupling the spurious isoscalar-dipole state, and
for conserving the current density.

Also, it would be pertinent to take stock of the present
scenario. Indeed we now have a powerful method of describing
the ground state of nuclei in the relativistic mean-field
approximation with the inclusion of negative-energy states
that are influenced by the meson mean fields. Further, we also
now have a method of calculating the excited states in nuclei
whereby the excitation of nucleons from negative-energy states
to positive-energy states is duly included. This makes the
present treatment of excited states fully consistent with the de-
scription of the ground state. Numerically, however, the σ - and
ω-mean fields obtained in the present treatment are found
to be insufficient in strength, entailing a weaker spin-orbit
splitting [23] which is about half that obtained in the usual
RMF model [24]. There are several possibilities that can
provide the missing spin-orbit splitting. One interesting idea
is to explore the possibility of surface pion condensation
suggested recently [25]. One could also consider the tensor
coupling for the ω meson [26,27]. These extensions of the
model constitute an effective field theory including vacuum
polarization. Further calculations testing the RRPA with these
extended RHA models for a wide variety of observables in
nuclear excitations would be of immense interest.
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