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Improving the Feshbach–Rubinow approximation
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The binding energy of three identical bosons is estimated by coupled differential equations that generalize
the Feshbach–Rubinow approximation. This method turns out to be rather efficient, especially in the limit of
vanishing binding.
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I. INTRODUCTION

There is no shortage of methods for solving the quantum-
mechanical three-body problem: hyperspherical expansion,
Faddeev equations, variational methods with a sophisticated
search for the free parameters, Monte Carlo algorithms, etc.
Each of them has merits and limitations. For instance, the
hyperspherical expansion is a systematic scan of the Hilbert
space and can come in several variants such as “potential
harmonics” or “adiabatic.” However, it involves a rather
delicate evaluation of the matrix elements of the potential
within the basis of harmonics.

In the 1950s, a cleaver approximation, hereafter referred
to as FR1, was proposed by Feshbach and Rubinow [1]. It
consists of seeking the bound-state wave function of three
identical bosons of mass m as

�(x,y,z) = u(r)

r5/2
, r = x + y + z

2
, (1)

where x = |r2 − r3|, y = |r3 − r1|, and z = |r1 − r2|measure
the distances between particles. The S-wave ground state, in-
deed, depends on three scalar, translation-invariant, variables,
which can be chosen as x,y, and z. The approximation consists
of restricting to a function of their sum. Using astutely the
stationary properties of the Schrödinger equation, Feshbach
and Rubinow derived the radial function obeyed by the radial
function u(r) and energy E,

−u′′(r) + 15

4r2
u(r) + 2mVe(r)u(r) = 14m

15
u(r)E, (2)

where the effective potential results from the projection of the
interaction V,

Ve(r) =
∫

V (x,y,z)dτ,

(3)∫
dτ = 8

r5

∫ r

0
y dy

∫ r

r−y

(2r − y − z)z dz.

This method has been applied to a variety of problems, in
particular in nuclear physics [2], and is still used occasionally.
However, in the case of baryon spectroscopy [3], the energy
provided by FR1 was found [4] not to be very accurate,
as compared, e.g., with the hyperspherical expansion in
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the approximation of a single partial wave, the so-called
hyperscalar approximation (HA).

The most convincing success of FR1 is perhaps in the
domain of loosely bound systems as encountered, for instance,
in studying Borromean binding [5]. The FR1 approximation
gives a good estimate of the coupling threshold1 g3 to be
compared with the coupling threshold g2 of two-body systems.

In Fig. 1, a comparison is made of the three-body
binding energy of the simple pairwise exponential potential
V (x,y,z) = g

∑
x v(x), with v(x) = − exp(−x), computed

from FR1 and HA, as a function of the coupling g. The
constituent mass is set to m = 1. The FR1 method is clearly
much better when the coupling threshold is approached, at
g ∼ 1.2.

The FR1 method was improved by Bhaduri et al. and Lie
et al. [2], and Rosenthal et al. [6] and in particular was adapted
to deal with nonidentical particles. In spite of its simplicity,
the Feshbach–Rubinow method was never extensively used
probably because, unlike the HA and other standard methods,
it was never presented as the starting point of a converging
expansion. In the next section I suggest a possible remedy
whereby the three-body wave function is written on a basis of
orthogonal polynomials Pi with weight functions un(r) that
generalize the single u(r) of FR1 and obey coupled equations.

The ground-state energy obtained from these coupled
equations is compared with the value given by standard
variational methods. For estimating the quality of the wave
function, the short-range correlation coefficient 〈δ(3)(r1 − r2)〉
is also calculated. This quantity enters a number of decay or
production rates and is notoriously hard to compute accurately.
Its estimate is sometimes made easier by use of identities
involving the derivative of the potential and centrifugal
terms [4]. We restrict ourselves in this paper to a direct reading
of the wave function at r1 = r2.

II. FORMALISM

The FR1 ansatz is generalized as FRn:

�(x,y,z) = u1(r)

r7/2
P1(x,y,z) + u2(r)

r9/2
P2(x,y,z) + · · · ,

(4)

1g � g3 ensures a three-body bound state in the potential∑
i<j v(|ri − rj |, where v is attractive or, at least contains attractive

parts.
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FIG. 1. Ratio of Feshbach–Rubinow to hyperscalar approx-
imations of the three-body energy in a pairwise potential
−g

∑
i<j exp(−rij ), as a function of the coupling g.

where Pn is a real and homogeneous polynomial of degree
n, which is symmetrical. The first one is simply P1 = r , and
a truncation there corresponds to the original FR1 method.
Among the polynomials of degree n = 1 in x,y, and z,
only P1 ∝ x + y + z, indeed, is symmetric. For n > 1, the
polynomials rn−1P1 . . . , rPn−1 are already included in the
first terms of expansion (4); hence only a few genuinely new
polynomials have to be introduced.2 It is convenient to arrange
Pn to be orthogonal. For n = 2, the new polynomial is

P2(x,y,z) =
√

3

79
[72r2 − 49(x2 + y2 + z2)], (5)

where the coefficient is chosen such that
∫

dτP 2
2 = r2

∫
dτP 2

1 .
If the expansion is truncated there, for testing purposes,

the following set of coupled equations can be derived by
straightforward calculus:

α11u
′′
1 +β11

r2
u1 + α12u

′′
2 + β12

r2
u2 + γ12

u′
2

r

+V11u1 + V12u2 = 7

15
εu1,

(6)

α22u
′′
2 +β22

r2
u2 + α21u

′′
1 + β21

r2
u1 + γ21

u′
1

r

+V21u1 + V22u2 = 7

15
εu2,

with ε = 2mE,α11 = −1, α12 = α21 = −2/(5
√

237), α22 =
−389/395, β11 = 15/4, β12 =−(93/10)

√
3/79, β21 = −95/

(2
√

237), γ11 = γ22 = 0, and γ12 = −γ21 = −98/(5
√

237).
The 2 × 2 effective potential Vij results from the projections

Vij = 2m

∫
dτ P̂iP̂jV (x,y,z), (7)

with P̂1 = 1 and P̂2 = P2(x,y,z)/r2.

2For three variables x, y, and z, the number p of symmetric
polynomials of degree n does not exceed n until n = 5, and (p − n)/n

remains small for n > 5.

The coupled equations can be solved by several methods,
for instance the discretization procedure described in [4].
In short, r ∈ [0,+∞[ is mapped onto x ∈ [0, 1[, and if
ui(r) = vi(x), each vi is expanded in Fourier series vi =∑

n Cn sin(nπx). The coefficients Cn are translated into the
values vi(xn) of the radial functions at equally spaced points
xn = n/(N + 1), where N is the number of points. System (6)
is reduced to a 2N × 2N matrix equation for the quantities
vi(xn), and its eigenvalues give a good approximation to the
energy levels of system (6).

The coefficient of short-range correlation,

δ = 〈�|δ(3)(x)|�〉/〈�|�〉, (8)

is given by

δ1 =
∫ +∞

0 u2r−3 dr

7π
∫ +∞

0 u2 dr
,

(9)

δ2 = 15
∫ +∞

0 r−3[u1 − 26u2
√

3/79]2 dr

7π
∫ +∞

0

[
u2

1 + u2
2

]
dr

,

for FR1 and FR2, respectively.

III. RESULTS

The method was first tested on the harmonic oscillator,
v(x) = x2, for which the exact solution is E = 6

√
3/2 


7.3485. FR1 gives E1 = (36/7)
√

15/7 
 7.5284, and FR2

leads to a remarkable improvement, with E2 = 7.3537. Mean-
while, the ratio of short-range correlation δ to the exact value
δex = (3/2)3/4π−3/2 evolves from δ1/δex = 1.57 for FR1 to
δ2/δex = 0.968, again a dramatic improvement.

The linear potential
∑

i<j rij /2 = r is diagonal in the basis
of polynomials Pi , but is not exactly solvable because the
kinetic energy is not diagonal. The results are E1 
 3.906
for FR1 and E2 
 3.8635 for FR2, to be compared with
EL=0 
 3.8647 and EL�4 
 3.8633 in the hyperspherical
expansion with one and two partial waves, respectively [4].
The correlation coefficient is estimated to be δ1 = 0.08488 for
FR1 and δ2 = 0.05592 for FR2. For comparison, δ 
 0.05689
is obtained from four coupled hyperspherical waves [4], and
δ 
 0.05702 from 176 correlated Gaussians, a method that is
presented shortly.

As for the short-range potentials, let us take again the
example of the exponential potential, v(x) = −g exp(−x),
already considered in the introduction. Figure 2 displays the
ratio of FR2 to FR1 ground-state energy as a function of the
coupling g: The improvement saturates at about 2% at large
coupling and becomes more interesting in the domain of very
weak binding.

In Fig. 3, my results are compared with those of one the
fashionable methods on the market. It consists of expanding
the wave function on the basis of correlated Gaussians,

�(x,y,z)=
∑

i

Ci{exp[−(aiv2+2biv . w+ciw2)/2] + · · ·},

(10)
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FIG. 2. Ratio of FR2 to FR1 approximations of the three-body
energy in a pairwise potential −g

∑
i<j exp(−rij ) as a function of the

coupling g.

written in terms of the Jacobi variables

v = r2 − r1, w = 2r3 − r1 − r2√
3

. (11)

The dots in Eq. (10) are meant for Gaussians deduced by
permutation of the particles. Suzuki and Varga [7] have pushed
the method of a stochastic search of the parameters to a high
degree of efficiency and have obtained very accurate estimates
of binding energies in a variety of domains. Here we use
the strategy of Hiyama et al. [8]: Gaussians with diagonal
quadratic forms, i.e., aiv2 + ciw2, are first introduced, and
if ai �= ci , they are supplemented by the terms deduced by
permutation, which includes an angular dependence through
v · w and carry the same weight factor Ci to ensure Bose
symmetry. The range parameters ai and ci are chosen to be
any member of a geometric series {a, ar, ar2, . . . , arN−1}.
This means that, however large the number of terms, only
two nonlinear parameters, a and r, are to be optimized. Note
that N = 2 range parameters correspond to N ′ = 8 Gaussians,
N = 3 to N ′ = 21, N = 4 to N ′ = 40, i.e., a fairly large
number of terms.

The plots in Fig. 3 indicate that the FR2 value is better than
this variational estimate with N = 2, especially at vanishing
binding, comparable with N = 3, and is defeated shortly by
N = 4. This means that FR2 is roughly equivalent to an
expansion involving 40 correlated Gaussians, at least for this
particular potential.

For further checking, a basis of correlated exponential
functions has also been used, namely,

ψ(x,y,z) =
∑

i

Ci[exp(−aix − biy − ciz) + · · ·], (12)

where the ellipses indicate terms deduced by circular per-
mutations of {ai, bi, ci}. Wave functions of this type have
been used in pioneering works on few-charge systems and in
recent high-precision calculations of atomic systems [9]. The
strategy of Ref. [8] can also be applied, to avoid numerical
instabilities in the minimization process, by restricting all
range parameters ai, bi, . . . , to belong to a single geometric
series. Note that, with suitable constraints on these range
parameters, this method can mimic the FR1 method (ai = bi =
ci ∀i) or its generalization [6] by Rosenthal and Haracz (RH),
({ai, bi, ci} ∝ {a1, b1, c1} ∀i > 1), r5/2u(r) being described as
a sum of exponentials. This provides a check of the numerical
solution of the radial FR1 equation or its RH analog.

In Ref. [6], indeed, Rosenthal and Haracz proposed replac-
ing the symmetric ansatz F (r) = u(r)/r5/2, 2r = x + y + z

of FR1 with

�(x,y,z) = F (η1x + η2y + η3z) + · · · , (13)

where the ellipses correspond to the permutation of x,y, and
z to restore the symmetry of the wave function. This method
results in an integrodifferential equation for F, whose solution
is further optimized when η2 and η3 are varied empirically
(a normalization η1 = 1/2 can be adopted).

In Table I, a comparison is made of the values obtained
for the ground-state energy and correlation coefficient in the
exponential potential at coupling g = 1.4 and of the critical
coupling g3 at which three-body binding occurs. FR1 and FR2

are compared with RH, as well as with the Gaussian expansion
GN with up to N different values of the range parameters, and
its analog EN with exponentials.

At least with this potential, and for this domain of coupling
close to the stability threshold, the generalization of the
Feshbach–Rubinow approximation with two coupled differen-
tial equations, FR2, appears to be more efficient than the single
integrodifferential equation RH. The ground-state energy,
short-range correlation, and coupling threshold approach the
exact value to about 1% accuracy for the simple exponential
potential.
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FIG. 3. Comparison of the energy in the exponential potential, as a function of the coupling g, for the FR2 approximation (solid line), and
the Gaussian expansion (dashed line) with N = 2 range parameters (left), N = 3 (centre) and N = 4 (right), corresponding to N ′ = 8, 20,

40 terms. For clarity, the energies are shown by their ratio to the FR1 approximation.
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TABLE I. Ground-state energy E3 and correlation coefficient δ for an exponential potential with coupling g = 1.4, and critical coupling
g3 for three-body binding, with FR1, FR2, and RH methods and variational calculations with correlated Gaussian (G) or exponential (E) basis
functions with a varying number of allowed range parameters.

G2 G4 G8 E2 E4 E5 FR1 RH FR2

−E3 0.03055 0.03575 0.03586 0.03466 0.03583 0.03586 0.03468 0.03475 0.03542
δ 0.00840 0.00972 0.01000 0.01251 0.01005 0.01002 0.01212 0.01224 0.01091
g3 1.2194 1.1613 1.1563 1.2158 1.1587 1.1560 1.1751 1.1649 1.1644

IV. OUTLOOK

In this paper, the Feshbach–Rubinow method is generalized
by the expansion of the ground-state wave function of three
identical bosons on orthogonal polynomials of the interparticle
distances. The coefficients of these polynomials are functions
of the sum of distances and obey coupled equations that can
be derived by calculus and solved numerically. The results
obtained with two equations provide a dramatic improvement
in the case of confining potentials, for which the single-
equation version of this method was known to be inaccurate.
For the short-range potentials, the results are also significantly
better and become really excellent in the limit of loose binding.

The method is compared with standard variational ex-
pansion schemes with correlated exponentials or Gaussians
that imply solving an eigenvalue equation whose result is
minimized by varying the range parameters. The generalized
Feshbach–Rubinow method requires solving coupled differen-
tial equations, similar to those of the hyperspherical expansion,
i.e., after suitable discretization, solving once an eigenvalue
equation of higher dimension.

Further investigations would be necessary to check the
convergence when the number of equations is increased,
and for excited states. It is rather straightforward to include
more components in expansion (4), write down and solve the
coupled equations that generalize system (6). The accuracy
of the method should also be probed for potentials with hard
core, which often occur in applications. The case of particles
with different masses or interaction properties also deserves
further work. The binding energy and wave function of the
positronium ion and other two-electron atoms, which were the
subject of interesting developments of the Feshbach–Rubinow
method, will be studied in a forthcoming paper within the
formalism of coupled equations.
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