
PHYSICAL REVIEW C 72, 034003 (2005)

Is a physically observable tetraneutron resonance compatible with
realistic nuclear interactions?
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The possible existence of four-neutron resonances close to the physical energy region is explored. Faddeev-
Yakubovsky equations have been solved in configuration space using realistic nucleon-nucleon interaction models.
Complex scaling and analytical continuation in the coupling constant methods were used to follow the resonance
pole trajectories, which emerge out of artificially bound tetraneutron states. The final pole positions for four-
neutron states lie in the third energy quadrant with negative real energy parts and should thus not be physically
observable.
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I. INTRODUCTION

The existence of pure neutron systems could have far-
reaching implication in nuclear physics [1]. However, being
fed by a long series of controversial predictions and mea-
surements, the question of multineutron existence is far from
being cut-and-dried, both in theory as well as in experiment.
Recently, much attention has been paid to the possible
existence of bound tetraneutron (four-neutron system). This
interest has been triggered by the experimental observation of
a few events in the 14Be break-up reaction [2]. On the other
hand, such a prospect rises serious objections from the point of
view of nuclear interaction theory. It has been shown by several
groups [3–6] that realistic nuclear Hamiltonians exclude the
existence of bound 3n, 4n and even larger neutron clusters. In
fact, the most favorable mechanism to construct tetraneutron
would be by putting together two virtual (almost bound)
dineutron pairs. However, in order to force the binding of
virtual dineutrons, one has to have very strong neutron-neutron
attraction in P and/or higher partial waves, which is not
compatible with our present understanding of the nuclear
interaction.

Nevertheless the possible existence of resonant states in
pure neutron systems having observable effects in nuclear
reactions, could not be eliminated. Such a scenario is evoked
in a recent analysis of 8He(d, 6Li)4n reaction: some excess of
counts has been observed in the 4n energy spectrum slightly
above the threshold, which cannot be explained by phase
space analysis involving both four free neutrons and two
noncorrelated dineutron pairs in the final state [7]. Furthermore
the authors of Ref. [2], in their very recent study [8], agreed
that the previously observed signal could result from the
existence of near-threshold four-neutron resonance, without
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involving bound tetraneutron. The aim of this study is to clarify
whether or not the existence of resonant tetraneutrons can be
tolerated by modern nuclear interaction models and thus if
these experimental claims can be supported in a theoretical
ground. This work is a natural extension of our preceding
work [9], in which we have demonstrated that realistic nuclear
Hamiltonians exclude the existence of physically observable
three-neutron resonances.

No proper ab initio calculations of the resonant tetraneutron
with realistic nn forces are known to the authors. Some
conclusions were drawn in favor of its existence based on
calculations of a tetraneutron bound in an external well [3];
furthermore it was suggested that these resonances could have
rather large widths. The only rigorous study of tetraneutron
resonances was accomplished in Ref. [10] using the simplistic
MT I-III nn interaction, which contains only S waves. Un-
fortunately, no observable resonances have been found there
and only the existence of some broad subthreshold structures
(S-matrix poles with negative real energy parts) was pointed
out. The same authors remarked however that the positions
of these subthreshold states strongly depend on the details
of the nn interaction. Realistic nucleon-nucleon (NN) models
contain indeed interactions in higher partial waves and are
therefore better suited to accommodate tetraneutron and push
its resonant states out of the subthreshold region.

II. THEORETICAL BACKGROUND

Although many of the nuclear excited states are resonances,
they are seldom considered in theoretical nuclear structure
calculations due to the huge technical difficulties of describing
the continuum states in many-body systems. These states
are often treated as being bound, but such a procedure is
justified only for very narrow resonances and is not appropriate
in our case. Resonant tetraneutron, if existing at all, will
probably have a rather large width. The problem we are
dealing with represents therefore a double challenge: first it
is a four-particle problem and second, being a continuum
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FIG. 1. (Color online) Faddeev-Yakubovsky components K and
H. Asymptotically, as z → ∞, components K describe 3 + 1 particle
channels, whereas components H contain asymptotic states of 2 + 2
channels.

state, it has an exponentially diverging wave function. We
will present, in what follows, the equations allowing one to
solve the four-particle problem in a mathematically rigorous
way and will describe the methods allowing for the treatment
of resonant states.

In order to solve the four-body problem, we decompose
the wave function into a sum of 18 Faddeev-Yakubovsky
(FY) components, see Fig. 1, and rewrite the Schrödinger
equation as a set of coupled FY equations [11]. If all four
particles are identical, only two of the 18 FY components are
independent, which we denote by K and H. These components
are furthermore related by two integrodifferential equations:

(E − H0 − V ) K = V (P + + P −) [(1 + Q)K + H ] ,
(1)

(E − H0 − V ) H = V P̃ [(1 + Q)K + H ] ,

where P +, P −, P̃ , and Q are particle permutation operators:

P + = (P −)− = P23P12; Q = εP34;
(2)

P̃ = P13P24 = P24P13,

and ε is a Pauli factor related to the exchange of two identical
particles: ε = −1 in case of fermions. Using these notations,
the four-body wave function is given by

� = [1 + (1 + P + + P −)Q](1 + P + + P −)K

+ (1 + P + + P −)(1 + P̃ )H. (3)

Each FY component F = (K,H ) is considered as a
function of a proper Jacobi coordinate set (�x, �y, �z), defined,
respectively, by

�xK = �r2 − �r1, �xH = �r2 − �r1,

�yK =
√

4

3

(
�r3 − �r1 + �r2

2

)
, �yH = �r4 − �r3,

(4)

�zK =
√

3

2

(
�r4 − �r1 + �r2 + �r3

3

)
,

�zH =
√

2

( �r3 + �r4

2
− �r1 + �r2

2

)
.

The angular, spin, and isospin dependence of these compo-
nents is expanded using tripolar harmonics Yα(x̂, ŷ, ẑ), i.e.,

〈�x �y�z|F 〉 =
∑

α

Fα(x, y, z)

xyz
Yα(x̂, ŷ, ẑ). (5)

The quantities Fα(x, y, z) are called regularized FY ampli-
tudes, and the label α holds for the set of ten intermediate
quantum numbers describing a (Jπ, T = 2, Tz = 2) state.
When describing tetraneutron, the isospin dependence of the
FY amplitudes is trivial and can be omitted. The set of quantum
numbers α reduces to eight elements. We use the j − j scheme
for the intermediate coupling of FY amplitudes, defined as

K ≡
{[(

lx(s1s2)σx

)
jx

(lys3)jy

]
J3

(lzs4)jz

}
Jπ

, (6)

H ≡
{[(

lx(s1s2)σx

)
jx

(
ly(s3s4)σy

)
jy

]
jxy

lz

}
Jπ

, (7)

where si = 1/2 is the spin of the individual particle and Jπ the
total angular momentum of the four-particle system. Each of
the Nc = NK + NH amplitudes in the expansion (5) is further
conditioned by the antisymmetry properties (−)σx+lx+1 = ε for
K and (−)σx+lx+1 = (−)σy+ly+1 = ε for H. FY components K
and H are regular at the origin, and it can be shown that for
a bound state problem, they decrease exponentially outside
the interaction domain. In this case, one can impose these
functions to vanish on the borders of a compact box:

Fα(x = xmax, y = ymax, z = zmax) = 0. (8)

Equations (2)–(8) are sufficient to solve the bound state
problem.

Resonance wave functions are however divergent and
cannot be described by the boundary conditions (8). In
order to solve the resonance problem, we make use of two
different methods, successfully applied in Ref. [9] to treat the
three-neutron system. The implementation of these techniques
in the four-body FY equations is analogous to the three-body
case. Therefore we only briefly discuss them here and the
interested reader can refer to Ref. [9] for technical aspects.

The method of Analytical Continuation in the Coupling
Constant (ACCC), proposed by Kukulin et al. [12], is based
on the observation that a resonant state commonly arises from
a bound state one when the interaction between the particles
is made less attractive. The corresponding eigenenergy is
considered as an analytical function of a coupling constant λ,
which determines the strength of the attractive part of the
potential. Therefore, one can try to analytically continue the
energy of the bound state as a function of the strength λ to
the complex plane and obtain this way the width and the
position of the resonance. It can be shown moreover that close
to the threshold, where bound state turns into the resonance,
the momenta k = √

E − E0 is proportional to

k ∼ x ≡
{

λ − λ0√
λ − λ0

for virtual state
for resonant state, (9)

where λ0 is a critical value of the coupling constant and E0 =
E(λ0) is the threshold energy. If the multiparticle system does
not possess bound states in its subsystems, as is a case for
multineutron, then E0 = E(λ0) = 0.

It turns out that using an analytical continuation of k(x)
in terms of a simple polynomial, the expansion converges
very slowly and that the Padé expansion in terms of rational
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functions of order [N, M]

kn,m(x) = a1x + a2x
2 + . . . + aNxN

1 + b1x + b2x2 + . . . + bMxM
(10)

is more appropriate.
It is quite simple to put the ACCC method into practice.

One should artificially bind the tetraneutron by adding some
attractive interaction to the system’s Hamiltonian H = H0 +
λVatt. Then, the critical value of the coupling constant (λ0)
is determined and several eigenenergies E(λi) are calculated
for λi > λ0; these values are used to fix the Padé expansion
(10) coefficients. However, to make this extrapolation efficient,
one should provide rather accurate binding energies E(λi)
and an especially precise λ0 value as input. While only the
few lowest order terms in Padé expansion are enough to
determine the positions of narrow nearthreshold resonances,
the description of deep resonances requires several terms and
very accurate input of E(λi). The determination of high order
Padé expansion terms requires at least five digit accuracy in
the binding energies.

The other method we use, namely, complex scaling (CS)
[13], can be applied to calculate resonance positions directly.
This method makes use of the similarity transform

Ŝ = eiθr ∂
∂r , (11)

applied to the Hamiltonian of the system, i.e.,

(ŜĤ Ŝ−1)(Ŝ�res) = Eres(Ŝ�res). (12)

Such transformation does not affect the eigenvalue (Eres)
spectra. However, if the scaling angle is large enough—θ >
1
2 | arg Eres|—the modified resonance eigenfunctions (Ŝ�res)
become square integrable. Evidently, the CS method can
be applied to FY equation. By this transformation all the
radial variables r ≡ (x, y, z) in Eq. (2) are replaced by
reiθ ≡ (xeiθ , yeiθ , zeiθ ). The problem becomes analogous to
a bound state one with complex variable and transformed
FY amplitudes (ŜF ), which—unlike resonance eigenfunctions
�res or the non transformed FY amplitudes—are in the Hilbert
space.

CS transformation requires the analytical continuation of
the potential V (x) into the complex plane V (xeiθ ). This turns
out to be a weak point of this method when applied to
nuclear systems. As discussed in Ref. [9], nuclear potentials
have mischievous analytical properties: they become strongly
oscillating and even divergent already for relatively small
transformation angles θ > 30◦. This fact limits the applica-
bility of CS method to narrow resonances, with Im(−Eres) <

2Re(Eres) values.
The numerical solution of FY equations is performed by

expanding Fα(xyz) on a basis of three-dimensional piecewise
Hermite polynomials and projecting equation (1) with bound-
ary conditions (8) onto tripolar harmonics. In this way, the
integro-differential FY equations are converted into a linear
algebra problem:

AX = EresBX

with A and B being large square matrices, whereas Eres and
X are, respectively, the eigenvalue and the eigenvectors to be
determined. The reader interested in a detailed discussion on

the formalism and the numerical methods used should refer to
Ref. [6].

III. RESULTS AND DISCUSSION

The results presented below have been obtained by using the
charge-symmetry breaking Reid 93 potential to describe the nn
interaction. This choice is dictated by purely practical reasons:
as discussed in Refs. [9,14], the Reid 93 model has better
analytical properties to perform the complex scaling operation
(11) than its coordinate-space modern concurrents. We would
like to remark however that other realistic NN interaction—
namely AV14, AV18, and Nijm II—provide very similar
results for two- and three-neutron systems and exhibit also
a similar behavior for the—artificially bound—tetraneutron.
These facts let us believe that no qualitative changes in the
four-neutron resonance can emerge from the properties of a
particular model. All the calculations presented in what follows
use the value h̄2

mn
= 41.44 MeV·fm2 as an input for the neutron

mass.
In a way similar to the one used in the study of the

three-neutron system [9], we introduce an additional attractive
four-nucleon (4N) force to analyze the tetraneutron resonance
trajectories in a systematic way. We have chosen the form

V4n = −Wρe
− ρ

ρ0 , (13)

where W and ρ0 are, respectively, the strength and range param-
eters of the potential, and the hyperradius ρ =

√
x2 + y2 + z2

is an invariant quantity with respect to the permutation
operators (3). Such kind of force is easy to implement in
FY equations (2). In our previous work [9] devoted to the
three-neutron system, we used a 3n force having the standard
Yukawa form. However we have found the functional form (13)
more appropriate for studying artificially bound tetraneutron.
This form does not diverge as ρ → 0 and thus avoids a rapid
shrinking of the bound structures generated.

As has been already remarked in Refs. [3,5,6], an extremely
strong additional interaction is required to force tetraneutron
binding. As a consequence, the generated bound system is a
very compact object making its physical existence unlikely. On
the other hand, resonances are extended structures. In order to
ease the transition from bound to resonant tetraneutron, we
have fixed a rather large value for the range parameter ρ0 in
Eq. (13) and taken ρ0 = 2.5 fm, a value considerably larger
than the one we could expect for a realistic 4N interaction.

Our strategy in studying 4n resonances is to vary the
strength of the potential W and trace the resonance energy-
trajectory Eres(W ). The final resonance positions, which
correspond to realistic nuclear interaction, are eventually
reached at Eres(W = 0).

When applying ACCC method, the parameter λ given in
Eq. (9) is identified to the 4N force strength λ ≡ W . We
determine several auxiliary values of Ei(λi) in the bound
tetraneutron region λi > λ0. These values are later used as
an input to determine the Padé expansion coefficients (ai, bj )
of Eq. (10). Several calculations are performed in the low
energy region as well, in order to determine the critical value
W0 ≡ λ0 for which tetraneutron is bound with zero energy
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TABLE I. Critical strengths W0 (MeV fm−1) of the phenomenological force (13) required to bind four
neutrons in different states. The range parameter ρ0 of this force was fixed to 2.5 fm. W ′ are the strength values
at which tetraneutron becomes subthreshold, i.e., Re(Eres) = 0. In the last row of the table the positions of the
physical resonances (W = 0) are given.

J π 0− 1− 2− 0+ 1+ 2+

W0 38.70 38.67 38.68 22.90 22.92 40.38
W ′ 3.0 3.2 3.9 3.5 3.6 4.1
Eres(W = 0) −1.0 − 9.9i −1.1 − 9.8i −1.4 − 9.7i −1.1 − 6.3i −1.1 − 6.5i −1.4 − 10.9i

Eres(W0) = 0. Once the threshold value λ0 and the coefficients
(ai, bj ) of expansion (10) are known, we use this latter equation
to analytically continue the Eres(W ) curve in the resonance
region W < W0.

When applying the CS method, we perform a series of
direct resonance calculations for several decreasing values of
W < W0, until the calculations become unstable due both to
the large size of the resonance widths and to the necessity
of using ever increasing scaling parameter θ . This method
is used as well in the near threshold region—W <≈ W0 and
Im(−Eres)  Re(Eres)—where it is very helpful to improve
the accuracy of λ0 used in ACCC calculations.

In Table I, the critical strengths W0 required to bind the
tetraneutron in states with different Jπ quantum numbers are
summarized (second row). Even though we have taken a 4N
force with a rather long range, the critical strength values
W0 are still considerable. Another noticeable feature is that
these critical values are almost equal for all negative parity
tetraneutron states Jπ = 0−, 1−, and 2− we have considered.
The reason for such a degeneracy is that tetraneutron binding
energies were found to be insensitive to nn interaction in P and
higher partial waves. Actually, their values remain unchanged
up to three to four digits if these lnn � 1 interaction terms
are switched off. Tensor coupling is present only in lnn � 1
partial waves and has very small impact on these states. As
a consequence the total spin (S = 1) and angular momenta
(L = 1) are separately conserved.

A similar situation is observed for positive parity states
Jπ = 0+ and 1+, which are also almost degenerate. These
states are dominated by the FY amplitude of type K with
lx = ly = lz = 0 intermediate quantum numbers, i.e., they are
almost pure L = 0 states. On the other hand, they differ by
their total spin (S = 0 for Jπ = 0+ and S = 1 for Jπ = 1+).
Unlike expected, the Jπ = 0+ state has a structure dominated
by a “nn+n+n” type configuration and not by a “nn+nn” one,
i.e., containing only a single 1S0 dineutron pair and not two.
For Jπ = 2+,W0 is considerably larger. This state must have
a total spin S = 2 to be realized with L = 0, i.e., all neutron
spins pointing in the same direction and thus 1S0 dineutron
pairs—with antiparallel neutron spins—being absent. The
corresponding large W0 value can therefore be understood
as the price to pay for breaking the remaining dineutron pair.
Jπ = 0+ and 1+ states remain also unchanged if nn P-wave
interaction is switched off. A very strong enhancement of these
waves is required, as much as creating a dineutron resonance,
in order to see their effect in the binding energies. The only
state sensible to nn P waves is thus the Jπ = 2+.

In Figs. 2 and 3 are displayed the tetraneutron resonance
trajectories for the same negative and positive parity states
we have considered in Table I. In both figures, CS results
are indicated using empty symbols (square, circle, and
triangle) which correspond to different values of the 4NF
strength parameter W. ACCC trajectories for different states
are depicted by solid, dashed, and dotted lines. They have
overimposed star-like ×, ∗,+ symbols which correspond to
the same W values than those used in CS calculations. In
order to compare quantitatively the agreement between both
methods, the numerical values of some resonance positions are
also given in Table II. This agreement is rather good for narrow
resonances. For wider resonances, small discrepancies appear,
which are due to the drawbacks present in the CS method
described above. Sizable differences appear for resonances
with Re(Eres) < −Im(Eres), which is the limit of applicability
of CS transformation.

In this region, ACCC results are still rather well converged
(better than 5%) with respect to the Padé expansion. However,
this convergence is getting worse when going away further
and further from the bound state region. The accuracy of
Padé expansion is 20% near the subthreshold region, where
resonance trajectory moves into the third energy quadrant.
The accuracy of the physical resonance positions, when the
additional interaction is fully removed (W = 0), deteriorates
to 50%.

FIG. 2. (Color online) Negative parity tetraneutron resonance
trajectories parameterized by the strength W of the phenomenological
4NF. ACCC results are denoted by lines with overimposed ×, ∗, +
symbols. They correspond to W values separated by 4 MeV fm−1

steps, starting from 38 MeV fm−1 for J π = 0− and 2− states and from
36 MeV fm−1 for 1− CS results are represented by circles, squares,
and triangles.
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FIG. 3. (Color online) The same as in Fig. 2 for positive parity
states. W values are reduced from 20 MeV fm−1 with steps of
2 MeV fm−1 for J π = 0+, from 21 MeV fm−1 in steps of 2 MeV fm−1

for 1+ and from 38 MeV fm−1 in steps of 4 MeV fm−1 for 2+.

These limitations in ACCC accuracy are due to the
increasing size of the Padé expansion argument x = √

λ − λ0,
which implies to take into account higher order terms. The
precise determination of high order Padé coefficients fails due
to the severe accuracy criteria it imposes to the input. As an
example, we have illustrated in Fig. 4, the Padé expansion
convergence for Jπ = 0−. We can see that the shapes for
[N,M] = [3,3] and [4,4] order Padé expansion curves are
already very close to each other. However the separation
between the energies corresponding to the same W values still
exists and it increases when one departs from the bound state
region.

The uncertainty in determining the final resonance positions
is also manifested in Fig. 5. In this figure, we compare the reso-
nance trajectories for Jπ = 2− tetraneutron state obtained with
4NF of Eq. (13) having different values for the range param-
eter ρ0. In a Padé expansion not suffering from numerical
errors, the final position of all the trajectories should coincide.
However, as can be seen in this figure, the trajectory cor-
responding to ρ0 = 2.5 fm ended at Eres = −1.4–9.7i MeV,
while for ρ0 = 2 fm it ends at Eres = −2.5–12.5i MeV.

FIG. 4. (Color online) Convergence of ACCC method with re-
spect to the order [M,N ] of Padé expansion for J π = 0− tetraneutron
state. ACCC curves are followed by star-like points indicating the
resonance positions for W values decreasing from 38 MeV fm−1 by
steps of 4 MeV fm−1. CS results are presented by full circles and
correspond to W values from 38 to 18 MeV fm−1.

As has been discussed above, tetraneutron negative parity
states on one hand and Jπ = 0+ and 1+ ones on the other
hand, are almost degenerate in energy. This degeneracy is also
reflected in the corresponding resonance trajectories, which
superimpose close to the threshold. Notice however that the
small difference—not exceeding several keV—in the binding
energies, results into an increasing separation of these curves.
This demonstrates the necessity of providing very accurate
inputs in the Padé extrapolation and the difficulty in describing
broad resonances with the ACCC method.

Regardless the convergence problems mentioned above, our
results indicate that the final resonance positions will always
stay in the third energy quadrant for all tetraneutron states.
An accurate determination of the physical resonance position
is not possible with the methods used in the present work.
Nevertheless, in all calculations we have performed testing
different artificially binding mechanisms, the final resonance
positions were situated in the third energy quadrant (Re(E) < 0,
Im(E) < 0). Their approximate values obtained with the ACCC

TABLE II. Comparison of CS and ACCC method results. Resonance positions for tetraneutron states obtained by
adding phenomenological 4n force with strength W (in MeV fm−1) and range ρ0 = 2.5 fm are compared.

W CS ACCC

0− 1− 2− 0− 1− 2−

30.0 1.67 − 0.33i 1.68 − 0.33i 1.67 − 0.33i 1.70 − 0.36i 1.72 − 0.35i 1.72 − 0.34i
24.0 2.24 − 1.03i 2.24 − 1.02i 2.24 − 1.02i 2.30 − 1.05i 2.31 − 1.03i 2.30 − 1.00i
20.0 2.41 − 1.67i 2.41 − 1.67i 2.41 − 1.66i 2.42 − 1.75i 2.43 − 1.72i 2.41 − 1.67i

W CS ACCC

0+ 1+ 2+ 0+ 1+ 2+

34.0 1.37 − 0.12i 1.41 − 0.13i
26.0 2.39 − 0.92i 2.38 − 0.84i
18.0 0.84 − 0.22i 0.84 − 0.22i 2.60 − 2.46i 0.85 − 0.21i 0.84 − 0.22i 2.44 − 2.31i
15.0 1.11 − 0.56i 1.11 − 0.55i 1.12 − 0.54i 1.09 − 0.56i 2.22 − 3.12i
13.0 1.22 − 0.85i 1.21 − 0.86i 1.17 − 0.86i 1.14 − 0.89i 1.98 − 3.76i
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FIG. 5. (Color online) Comparison of resonance trajectories for
J π = 2− tetraneutron, two different curves correspond calculations
with 4NF Eq. (13) having length ρ0 = 2.5 (dashed curve) and 2 fm
(dotted curve). The points correspond resonance positions for W being
reduced from 36 in steps of 4 MeV fm−1 for ρ0 = 2.5 fm curve and
from 72 in steps of 8 MeV fm−1 for ρ0 = 2 fm curve.

method and 4NF of Eq. (13) are summarized in the last row
of Table I. The accuracy of these results is estimated to be of
50%.

In Table I we have also displayed the strengths W ′ of
the 4N force [Eq. (13)] at which the resonance trajectories
crosses the imaginary-energy axis, slipping from fourth into
third energy quadrant. One can argue that these values are
pretty small and that a small correction of nuclear interaction
(like the presence of attractive three-nucleon force) can push
tetraneutron states back to the fourth energy quadrant (with
positive real energy parts). On this point we would like to
mention that the smallness of W ′ is only apparent and entirely
due to the unrealistic long range character of the 4NF we
have chosen. W ′ value would increase drastically if the range
of the potential ρ0 is reduced to make 4NF more realistic.
This fact is demonstrated in Fig. 5, where W ′ value for
2− tetraneutron state increases from 3.9 to 10.8 MeV fm−1

when ρ0 is reduced from 2.5 to 2 fm. This result shows that
any realistic (ρ0 < 1.4 fm) multineutron force should be very
strong to keep a multineutron resonances in the fourth energy
quadrant.

The Jπ = 2+ tetraneutron state represents an interesting
case, since it shows the largest sensitivity to nn P-wave
interaction. Some 3N and 4N scattering observables, which
are difficult to be reproduced with the existing models, indicate
a strong nnP -wave contribution. It has been suggested that
these discrepancies in 3N and 4N scattering observables can
be significantly improved by modifying nn P waves within
20% [15–17]. We have explored such a possibility and traced
in Fig. 6 the tetraneutron resonance trajectory for the Reid
93 interaction with nn P waves enhanced by a factor γ =
1.2. By doing so a slightly weaker critical strength of
40.02 MeV fm−1 is required to bind tetraneutron, in com-
parison with 40.38 MeV fm−1 of the original Reid 93 force.
However, apart from a small shift in the Eres(W ) trajectory,
such a modification of nn P waves has not changed its
qualitative behavior, ending up very close to its original value,
always located in the third energy quadrant. These nn P waves

FIG. 6. (Color online) Sensibility of the 2+ tetraneutron reso-
nance trajectory with respect to nn P waves. Solid line correspond
to the Reid 93 nn interaction and dashed line was obtained with nn
P waves enhanced by a factor γ = 1.2.

should be much more strongly enhanced, as much as creating
dineutron resonances, to result in sizable effects in tetraneutron
resonance positions.

Finally, we would like to remark that even if there was a
resonance in the fourth energy quadrant having a small real
energy part and a large imaginary one, it would be difficult
to identify experimentally. Resonance should have a rather
small width � = −2Im(Eres) to produce a visible effect in
the experimental cross section with a centered E = Re(Eres)
Breit-Wigner shape. At most, such a broad resonance will
produce a weak enhancement in the cross section, which
would be hardly discernible from the background and not
centered around E = Re(Eres). This makes the perspective of
physically observable tetraneutron resonances very doubtful.
Their eventual existence would imply a too strong modification
in the present nuclear Hamiltonians.

Our results are in qualitative agreement with the findings
of Sofianos et al. [10], where authors were able to accurately
determine the tetraneutron resonance positions in the third
energy quadrant for positive parity states, although using
S-wave MT I-III potential. Due to the small influence of P
and higher nn partial waves on tetraneutron states, S-wave
models become very appropriate to study this system.

IV. CONCLUSION

Configuration space Faddeev-Yakubovsky equations have
been solved with the aim of determining the positions of the
four-neutron resonances in the complex energy plane.

A realistic Reid 93 nn interaction model has been used.
A systematic study of four-neutron resonances has been
accomplished by first adding to the nuclear Hamiltonian an
attractive four-neutron force to artificially bind tetraneutron.
The trajectory of the energy eigenvalue is then traced as a
function of the strength of the additional force until fully
removed.

Two methods, namely, the complex scaling and analytical
continuation in the coupling constant, were employed to follow
these trajectories.

034003-6



IS A PHYSICALLY OBSERVABLE TETRANEUTRON . . . PHYSICAL REVIEW C 72, 034003 (2005)

The low lying four-neutron resonance trajectories, cor-
responding to states with quantum numbers Jπ = 0±, 1±,

2±, were shown to settle in the third energy quadrant
(Re(E) < 0, Im(E) < 0) well before the additional 4n force is
completely removed. Furthermore, these resonances acquired
a rather large imaginary energies � = 2Im(−E) ≈ 15 MeV
and should hardly be experimentally observable. Tetraneutron
compound—bound or resonant—can be created only in a
strong external field and would disintegrate right after such
a field is removed.

Finally, we have demonstrated that the four-neutron physics
is entirely determined by nn S waves, namely 1S0 one, which
is controlled by the experimentally measurable nn-scattering
length. All realistic nuclear interaction models should thus

provide qualitatively identical results for tetraneutron reso-
nances. This fact is supported by similar studies in which
tetraneutron states were artificially bound by means of differ-
ent mechanism and with different NN models [6].
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