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Matrix elements and few-body calculations within the unitary correlation operator method
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We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix
elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations
induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space
matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong
off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated
interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements
as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the
convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in
very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated
explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for
fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in
turn constrain the optimal correlator ranges.
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I. INTRODUCTION

One of the prime challenges in modern nuclear structure
theory is the description of properties of nuclei across
the whole nuclear chart based on realistic nucleon-nucleon
interactions. Several modern nucleon-nucleon interactions that
reproduce the experimental two-body data with high precision
are available, e.g., the Argonne V18 potential [1], the CD
Bonn potential [2], or the Nijmegen potentials [3]. The use of
these interactions for nuclear structure calculations in a strict
ab initio fashion is restricted to light isotopes, where Green’s
function Monte Carlo [4–6] or no-core shell-model calcula-
tions [7–9] are computationally feasible. These virtually exact
solutions of the nuclear many-body problem show that realistic
NN potentials supplemented by a phenomenological three-
nucleon force are able to reproduce experimental ground states
and excitation spectra of light nuclei. Furthermore, recent
developments in chiral perturbation theory provide schemes
to construct two- and three-nucleon forces systematically
[10,11].

A major obstacle for ab initio nuclear structure calculations
are the strong short-range correlations induced by realistic NN
interactions. There are two dominant components: (i) cor-
relations induced by the short-range repulsive core in the
central part of the potential and (ii) correlations generated
by the strong tensor interaction. It is well known that, in a
shell-model language, the description of these correlations
requires extremely large model spaces—the repulsive core and
the tensor interaction lead to sizable admixtures of high-lying
shells. Simple many-body spaces, which remain tractable for
large particle numbers, cannot describe these correlations. In
the extreme case (e.g., in a Hartree-Fock approach) the many-
body state is restricted to a single Slater determinant that is
not capable of representing these correlations by construction.

Therefore, the use of a bare realistic NN interaction in such a
framework has to fail.

There are several recent attempts to tackle this problem.
One is the so-called Vlowk approach [12,13], which employs
renormalization group techniques to reduce the bare realistic
potential to a low-momentum interaction. Effectively, the
high-momentum contributions, which are responsible for the
admixture of high-lying states, are integrated out leaving an
effective low-momentum interaction suitable for small model
spaces.

Another approach is the unitary correlation operator method
(UCOM) [14–16]. Here the short-range central and tensor
correlations are explicitly described by a state and basis-
independent unitary transformation. Applying the unitary op-
erator of the transformation to uncorrelated many-body states
(e.g., the Slater determinant of a Hartree-Fock scheme) leads
to a new correlated state that has the dominant short-range
correlations built in. Alternatively, the correlation operator
can be applied to the Hamiltonian, leading to a phase-shift
equivalent correlated interaction VUCOM that is well suited for
small low-momentum model spaces. Hence it can be used as
a universal input for a variety of many-body methods. The
operator form of this correlated interaction resulting for the
Argonne V18 (AV18) potential has been used successfully to
perform nuclear structure calculations in the framework of
fermionic molecular dynamics [16–18].

In this article we apply the unitary correlation operator
method to derive correlated two-body matrix elements. They
serve as convenient and universal input for a variety of
many-body techniques, ranging from Hartree-Fock to shell
model. Following a summary of the formalism of the unitary
correlation operator method in Sec. II, we derive explicit
expressions for correlated matrix elements in Sec. III. Optimal
correlation functions for the AV18 potential are constructed in
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Sec. IV and the properties of the correlated momentum-space
matrix elements are discussed in Sec. V. Finally, in Sec. VI,
we present results of no-core shell-model calculations using
correlated oscillator matrix elements, which highlight the
effect of the unitary transformation and the properties of the
correlated interaction.

II. THE UNITARY CORRELATION OPERATOR METHOD

A. Unitary correlation operator

The concept of the unitary correlation operator method
[14–16] can be summarized as follows: The dominant short-
range central and tensor correlations are imprinted into a
simple many-body state |�〉 through a state-independent
unitary transformation as follows:

|�̃〉 = C |�〉. (1)

The unitary correlation operator C describing this transfor-
mation is given in an explicit operator form, independent of
the particular representation or model space. The correlated
many-body state explicitly contains the important short-range
correlations generated by the interaction. Even if we start with
a simple Slater determinant as an uncorrelated state |�〉 then
the correlated state |�̃〉 cannot be represented by a single or a
superposition of few Slater determinants anymore.

When calculating expectation values or matrix elements of
some operator A using correlated states

〈�̃|A|�̃ ′〉 = 〈�|C†AC|� ′〉 = 〈�|Ã|� ′〉, (2)

we can define a correlated operator through the similarity
transformation

Ã = C−1AC = C†AC. (3)

Because of the unitarity of C the notions of correlated states
and correlated operators are equivalent and we may choose the
form that is technically more advantageous.

In the case of the nuclear many-body problem, the unitary
correlation operator C has to account for short-range central
and tensor correlations as outlined in Sec. I. It is convenient to
disentangle these different types of correlations and define the
correlation operator as a product of two unitary operators,

C = C�Cr, (4)

where C� describes short-range tensor correlations and Cr

central correlations. Each of these unitary operators is written
as an exponential of a Hermitian two-body generator as
follows:

C� = exp


−i

∑
i<j

g�,ij


 , Cr = exp


−i

∑
i<j

gr,ij


 . (5)

The construction of the generators gr and g�, which encode
the relevant physics of short-range interaction-induced corre-
lations, is crucial.

We start with the generator gr associated with the short-
range central correlations induced by the repulsive core in the
central part of the NN interaction. At small relative distances,
the two-body density is strongly suppressed as a result of the
repulsive core. Pictorially, the core keeps the nucleons apart

from each other so that they reside at larger distances outside
the short-range repulsion [14,16]. These correlations can be
imprinted into a uncorrelated many-body state by a unitary
distance-dependent shift along the relative coordinate for each
particle pair. Such radial shifts are generated by the projection
of the relative momentum q = 1

2 [p1 − p2] onto the distance
vector r = x1 − x2 of two particles:

qr = 1

2

[
r
r

· q + q · r
r

]
. (6)

The distance-dependence of the shift—large shifts at small
distances within the core, and small or no shifts outside the
core—is described by a function sST (r) for each spin-isospin
channel. Their shape depends on the potential under consider-
ation and contains all information on the short-range central
correlations. The determination of the sST (r) is discussed in
detail in Sec. IV. The full generator for the central correlations
reads

gr =
∑
S,T

1

2
[sST (r)qr + qrsST (r)]�ST , (7)

where �ST is the projection operator onto two-body spin S
and isospin T.

The correlations induced by the tensor part of the interaction
are of a more complicated nature. They entangle the spins of
the two nucleons with the direction of their relative distance
vector r. Depending on the orientations of the spins, the
nucleons are shifted perpendicular to the relative distance
vector [15,16]. Such shifts are generated by the residue of
the relative momentum operator after subtracting the radial
component

q� = q − r
r
qr = 1

2r2
(L × r − r × L). (8)

This “orbital momentum,” embedded into a tensor operator
that encodes the complicated entanglement between spatial
and spin degrees of freedom, enters into the generator of the
tensor correlations

g� =
∑
T

ϑT (r) s12(r, q�) �1T (9)

using the following general definition

s12(a, b) = 3
2 [(σ 1 · a)(σ 2 · b) + (σ 1 · b)(σ 2 · a)]

− 1
2 (σ 1 ·σ 2)(a · b + b · a). (10)

Note, the tensor operator s12(r, q�) entering into the generator
g� has the same structure as the standard tensor operator
s12 = s12( r

r
, r

r
) appearing in the bare potential except for

the replacement of one of the relative coordinate vectors
by the orbital momentum. Similar to the central correlators
the functions ϑT (r) describe the distance dependence of this
angular shift for isospin T = 0 and T = 1. Both, sST (r)
and ϑT (r) have to be in accord with the potential under
consideration.

The crucial difference between the unitary correlation
operator method and other schemes using similarity trans-
formations to construct an effective interaction, such as the
Lee-Suzuki transformation [19] or the unitary model operator
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approach [20], is that our unitary correlation operator is given
in an explicit operator form. This enables us to evaluate
correlated wave functions or correlated operators analytically
as will be shown in the following.

B. Correlated wave functions

We consider the effect of the correlation operators on the
component of a two-nucleon state that describes the relative
motion. The center-of-mass part is not affected by the unitary
correlators because they depend only on relative positions
and momenta. For the uncorrelated relative wave func-
tion we assume LS-coupled angular momentum eigenstates
|φ(LS)JM T MT 〉. For the sake of simplicity, the projection
quantum numbers M and MT are omitted in the following.

The central correlator cr = exp(−igr ) affects only the
radial part of the state and leaves the angular momentum and
spin components unchanged.1 In coordinate representation it
resembles a norm-conserving coordinate transformation [14]

〈r|cr |φ〉 = R−(r)

r

√
R′−(r) 〈R−(r)|φ〉

(11)

〈r|c†r |φ〉 = R+(r)

r

√
R′+(r) 〈R+(r)|φ〉,

where R+(r) and R−(r) are mutually inverse, R±[R∓(r)] = r .
These correlation functions are related to the function s(r) in
the generator [Eq. (7)] through the integral equation∫ R±(r)

r

dξ

s(ξ )
= ±1. (12)

To a certain approximation the following intuitive relation
holds: R±(r) ≈ r ± s(r). For the sake of brevity we omit the
spin and isospin indices of the correlation functions here and
in the following.

The action of the tensor correlator c� on LS-coupled two-
body states can be evaluated directly [15]. The matrix elements
of the tensor operator s12(r, q�) for those states have only
off-diagonal contributions

〈φ(J ± 1, 1)JT |s12(r, q�)|φ(J ∓ 1, 1)JT 〉
= ± 3i

√
J (J + 1). (13)

Within a subspace of fixed J one can easily obtain the matrix
exponential and thus the matrix elements of the full tensor
correlator c�. On this basis we can construct explicit relations
for the tensor correlated two-body states.

States with L = J are invariant under transformation with
the tensor correlation operator

c�|φ(JS)JT 〉 = |φ(JS)JT 〉. (14)

Only states with L = J ± 1 are susceptible to tensor correla-
tions and transform like

c�|φ(J ± 1, 1)JT 〉 = cos θJ (r)|φ(J ± 1, 1)JT 〉
∓ sin θJ (r)|φ(J ∓ 1, 1)JT 〉 (15)

1Small (capital) letters are used for correlation operators in two-
body (A-body) space.
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FIG. 1. (Color online) Application of the central and tensor
correlators to a deuteron-like two-body wave function. Panels (a), (c),
and (e) depict the uncorrelated, the central correlated, and the fully
correlated radial wave functions, respectively. The panels (b) and (d)
show the corresponding central and tensor correlation functions (see
text).

with r being the radial distance operator and

θJ (r) = 3
√

J (J + 1) ϑ(r). (16)

The tensor correlator admixes a state with 	L = ±2 and
changes the radial wave function of both components depend-
ing on the tensor correlation function ϑ(r).

To illustrate the impact of the central and tensor correlation
operators on a two-body state, we consider the example of
the deuteron. Assume an uncorrelated state |φ0(LS)JT 〉 =
|φ0(01)10〉 that is a pure S-wave state with the spin-isospin
quantum numbers of the deuteron. The radial wave function
〈r|φ0〉 shall not contain short-range correlations induced by
the repulsive core. Figure 1(a) shows the uncorrelated L = 0
radial wave function. Applying the central correlator cr with
the correlation function R+(r) depicted in panel (b) leads to a
wave function that has the short-range central correlations (i.e.
the hole at small interparticle distances) built in as depicted
in Fig. 1(c). Subsequent application of the tensor correlator
c� with the correlation function ϑ(r) depicted in panel (d)
generates the fully correlated wave function shown in Fig. 1(e).
As a result of the tensor correlations, the wave function
acquires a D-wave admixture whose radial structure depends
crucially on the tensor correlation function. To represent the
long-range D-wave admixture, which is characteristic for
the realistic deuteron wave function, a long-ranged tensor
correlator is required as indicated by the dashed curve in
panels (d) and (e). In the following sections we argue that
only the short-range and state-independent correlations should
be described by the correlation operator. The solid curves in
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panels (d) and (e) correspond to an optimal short-range tensor
correlator as constructed later (see Sec. IV, optimal correlator
for Iϑ = 0.09 fm3).

C. Correlated operators and cluster expansion

The explicit formulation of correlated wave functions for
the many-body problem becomes technically increasingly
complicated and the equivalent notion of correlated operators
proves more convenient.

The similarity transformation [Eq. (3)] of an arbitrary oper-
ator A leads to a correlated operator that contains irreducible
contributions to all particle numbers. We can formulate a
cluster expansion of the correlated operator,

Ã = C†AC = Ã[1] + Ã[2] + Ã[3] + · · · , (17)

where Ã[n] denotes the irreducible n-body part [14]. When
starting with a k-body operator, all irreducible contributions
Ã[n] with n < k vanish. Hence, the unitary transformation of a
two-body operator—the NN interaction, for example—yields
a correlated operator containing a two-body contribution, a
three-body term, and so on.

The significance of the higher order terms depends on
the range of the central and tensor correlations [14–16]. If
the range of the correlation functions is small compared to the
mean interparticle distance, then three-body and higher order
terms of the cluster expansion are negligible. Discarding these
higher order contributions leads to the following two-body
approximation:

ÃC2 = Ã[1] + Ã[2]. (18)

In principle, the higher order contributions to the cluster
expansion can be evaluated systematically [21]. However, for
many-body calculations the inclusion of those terms is an
extreme challenge.

Therefore, we restrict ourselves to the two-body approx-
imation and choose the correlation functions such that its
applicability is ensured. As discussed in detail in Sec. VI we
can use exact solutions of the many-body problem, e.g., in
the no-core shell model framework, to estimate the size of the
omitted higher order contributions.

D. Correlated Hamiltonian—central correlations

In two-body approximation the unitary transformation of
any relevant operator with the central correlation operator can
be evaluated analytically. As a comprehensive example we
consider a Hamiltonian consisting of kinetic energy and a
realistic NN interaction. For convenience we assume a generic
operator form of the interaction

v =
∑

p

1

2
[vp(r)Op + Opvp(r)] (19)

with

Op =
{

1, (σ1 ·σ2), q2
r , q2

r (σ1 ·σ2), L2, L2(σ1 ·σ2),

(L · S), s12

(r
r
,

r
r

)
, s12(L, L)

}
⊗ {1, (τ1 ·τ2)}. (20)

To accommodate momentum-dependent terms, as they appear,
e.g., in the Nijmegen [3] or Bonn A/B potentials [22], we
have chosen an explicitly symmetrized form. Notice that
any quadratic momentum dependence can be expressed by
the q2

r and L2 terms contained in Eq. (19). For simplicity,
charge-dependent terms are not explicitly discussed here.
Nevertheless, they are included in Sec. VI.

For the formulation of the correlated Hamiltonian in a two-
body approximation, it is sufficient to consider the Hamiltonian
for a two-nucleon system,

h = T + v = tcm + tr + t� + v, (21)

where we have decomposed the kinetic energy operator T into
a center-of-mass contribution tcm and a relative contribution
that in turn is written as a sum of a radial and an angular part

tr = 1

2µ
q2

r , t� = 1

2µ

L2

r2
. (22)

Applying the central correlator cr in two-body space leads to
a correlated Hamiltonian consisting of the bare kinetic energy
T and two-body contributions for the correlated radial and
angular kinetic energy, t̃ [2]

r and t̃
[2]
� , respectively, as well as the

correlated two-body interaction ṽ[2]

c†rhcr = T + t̃ [2]
r + t̃

[2]
� + ṽ[2]. (23)

The explicit operator form of the correlated terms can
be derived from a few basic identities. The similarity trans-
formation for the relative distance operator r results in the
operator-valued function R+(r):

c†r r cr = R+(r). (24)

The unitarity c
†
r = c−1

r implies that an arbitrary function of r

transforms as follows:

c†rf (r) cr = f (c†r r cr ) = f [R+(r)]. (25)

The interpretation of the unitary transformation in terms of
a norm-conserving coordinate transformation r �→ R+(r) is
evident. For the radial momentum operator qr one finds the
following correlated form [14]:

c†rqr cr = 1√
R′+(r)

qr

1√
R′+(r)

. (26)

With this, we obtain the following expression for the square of
the radial momentum, which enters into the radial part of the
kinetic energy

c†rq
2
r cr = 1

2

[
1

R′+(r)2
q2

r + q2
r

1

R′+(r)2

]
+ w(r) (27)

with an additional local term depending only on the correlation
function R+(r)

w(r) = 7R′′
+(r)2

4R′+(r)4
− R′′′

+ (r)

2R′+(r)3
. (28)

All other basic operators, such as L2, (L · S), s12 and so on
commute with the correlation operator cr and are therefore
invariant.
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Based on these elementary relations we can explicitly
construct the two-body contributions to the correlated kinetic
energy. For the radial part we obtain using Eq. (27)

t̃ [2]
r = c†r trcr − tr

(29)

= 1

2

(
1

2µr (r)
q2

r + q2
r

1

2µr (r)

)
+ 1

2µ
w(r)

with a distance-dependent effective mass term

1

2µr (r)
= 1

2µ

(
1

R′+(r)2
− 1

)
. (30)

The two-body contribution to the correlated angular part of the
kinetic energy involves only the basic relation (26) and reads
as follows:

t̃
[2]
� = c†r t�cr − t� = 1

2µ�(r)

L2

r2
(31)

with a distance-dependent angular effective mass term

1

2µ�(r)
= 1

2µ

[
r2

R+(r)2
− 1

]
. (32)

The momentum-dependent terms of the NN interaction (19)
transform in a manner similar to that of the kinetic energy.
Using Eqs. (26) and (27) we obtain the following:

c†r
1

2

(
q2

r v(r) + v(r)q2
r

)
cr

= 1

2

{
v[R+(r)]

R′+(r)2
q2

r + q2
r

v[R+(r)]

R′+(r)2

}

+v[R+(r)] w(r) − v′[R+(r)]
R′′

+(r)

R′+(r)2
. (33)

For all other terms of the NN interaction (19) the commutator
relations [qr,Op] = [r,Op] = 0 are fulfilled and the similarity
transformation with the central correlator reduces to

c†r v(r) Op cr = v[R+(r)]Op. (34)

Many of the other relevant operators (e.g., the quadratic
radius or transition operators) can be transformed just as
easily.

E. Correlated Hamiltonian—tensor correlations

The transformation of the Hamiltonian with the tensor
correlation operator c� is more involved. In general, it can
be evaluated via the Baker-Campbell-Hausdorff expansion as
follows:

c
†
�Ac� = A + i[g�,A] + i2

2
[g�, [g�,A]] + · · · . (35)

Evaluation of the iterated commutators in some cases results
in a termination of the series expansion. A trivial case is the
distance operator r that commutes with the tensor generator
g� and is thus invariant under the transformation

c
†
�rc� = r. (36)

For the radial momentum operator qr , the expansion (35)
terminates after the first-order commutators and we obtain

the following simple expression:

c
†
�qrc� = qr − ϑ ′(r) s12(r, q�). (37)

Likewise, we find for the tensor correlated quadratic radial
momentum operator

c
†
�q2

r c� = q2
r − [ϑ ′(r)qr + qrϑ

′(r)]s12(r, q�)

+ [ϑ ′(r) s12(r, q�)]2, (38)

where s12(r, q�)2 = 9[S2 + 3(L · S) + (L · S)2]. For all other
operators of the interaction (19) that involve angular degrees of
freedom, the Baker-Campbell-Hausdorff series does not termi-
nate. Through the commutators additional tensor operators are
generated. For example, the relevant first-order commutators
are as follows:[
g�, s12

(
r
r
,

r
r

)]
= iϑ(r)

[
−24�1−18(L · S)+3s12

(
r
r
,

r
r

)]
[g�, (L · S)] = iϑ(r)[−s̄12(q�, q�)]

(39)
[g�, L2] = iϑ(r)[2 s̄12(q�, q�)]

[g�, s12(L, L)] = iϑ(r)[7 s̄12(q�, q�)],

where

s̄12(q�, q�) = 2r2s12(q�, q�) + s12(L, L) − 1

2
s12

(
r
r
,

r
r

)
.

(40)

The next order generates in addition higher powers of the
orbital angular momentum operator [e.g., an L2(L · S) term].
The resulting accumulation of new operators enforces a
truncation of the Baker-Campbell-Hausdorff expansion at
some finite order for the operator representation [16]. The
basis representation introduced in Sec. III does not require this
approximation.

F. Correlated Interaction—VUCOM

Subtracting the uncorrelated kinetic energy operator from
the central and tensor correlated Hamiltonian in two-body
space defines the correlated interaction vUCOM in two-body
approximation:

vUCOM = c†r c
†
�hc�cr − T . (41)

If we start from a realistic interaction that is given in an
operator representation (e.g., the AV18 potential) then the
correlated interaction also has a closed operator representation

vUCOM =
∑

p

1

2
[ṽp(r)Õp + Õpṽp(r)], (42)

where

Õp =
{

1, (σ1 ·σ2), q2
r , q2

r (σ1 ·σ2), L2, L2(σ1 ·σ2),

(L · S), s12

(
r
r
,

r
r

)
, s12(L, L),

(43)
s̄12(q�, q�), qrs12(r, q�), L2(L · S),

L2s̄12(q�, q�), . . .

}
⊗ {1, (τ1 ·τ2)}.
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The dots indicate that higher order contributions of the Baker-
Campbell-Hausdorff expansion for the tensor transformation
have been omitted. The terms shown above result from a
truncation of the expansion (35) after the third order in
commutators with g�. For most applications the inclusion of
these terms is sufficient [16].

The existence of an operator representation of vUCOM is
essential for many-body models that are not based on a simple
oscillator or plane-wave basis. One example is the fermionic
molecular dynamics model [23,24] that uses a nonorthogonal
Gaussian basis and does not easily allow for a partial-wave
decomposition of the relative two-body states. Nevertheless, it
is possible to evaluate the two-body matrix elements of vUCOM

analytically, which facilitates efficient computations with this
extremely versatile basis [16–18].

As we have emphasized already, the operators of all
observables have to be transformed consistently. The uni-
tary transformation of observables such as quadratic radii,
densities, momentum distributions, or transition matrix ele-
ments is straightforward given the toolbox acquired for the
transformation of the Hamiltonian. The unitary correlation
operator method owes this simplicity to the explicit state and
representation-independent form of the correlation operators.
In contrast, in many other approaches for the construction of
an effective interaction (e.g., the Lee-Suzuki transformation
[7,9,19] or the Vlowk renormalization group method [12]),
the consistent derivation of effective quantities other than the
interaction is a complicated and rarely addressed problem [25].

An important feature of vUCOM results from the finite range
of the correlation functions sST (r) and ϑT (r) entering into the
generators. Because the correlation functions vanish at large
distances—i.e., the correlation operator acts as a unit operator
at large r—asymptotic properties of a two-body wave function
are preserved. This implies that vUCOM is by construction
phase-shift equivalent to the original NN interaction. The
unitary transformation can, therefore, be viewed as a way to
construct an infinite manifold of realistic potentials, which all
give identical phase shifts.

It is interesting to observe in which way the unitary
transformation changes the operator of the interaction while
preserving the phase shifts. The central correlator reduces the
short-range repulsion in the local part of the interaction and,
at the same time, creates a nonlocal repulsion through the
momentum-dependent terms. The tensor correlator removes
some strength from the local tensor interaction and creates
additional central contributions as well as new nonlocal tensor
terms. Hence, the unitary transformation exploits the freedom
to redistribute strength between local and nonlocal parts of
the potential without changing the phase shifts. The nonlocal
tensor terms establish an interesting connection to the CD
Bonn potential, which among the realistic potentials is the
only one including nonlocal tensor contributions [26].

III. CORRELATED TWO-BODY MATRIX ELEMENTS

Having introduced the basic formalism of the unitary cor-
relation operator method, we can now derive two-body matrix
elements of the correlated interaction vUCOM. We consider

relative LS-coupled states of the form |n(LS)JM T MT 〉, with
a generic radial quantum number n, relative orbital angular
momentum L, spin S, total angular momentum J, and isospin
T. The matrix elements of vUCOM thus read as follows:

〈n(LS)JMT MT |vUCOM|n′(L′S)JMT MT 〉
(44)

= 〈n(LS)JMT MT |c†r c†� h c�cr − T |n′(L′S)JMT MT 〉.
The center-of-mass part of the two-body states is irrelevant
for the unitary transformation, because the correlation op-
erator only acts on the relative degrees of freedom of the
two-body states. In the following derivations the projection
quantum numbers M and MT are omitted for simplicity. The
formal framework discussed in the following is completely
independent of the particular choice of basis, only the angular
momentum structure is relevant.

The unitary correlation operator method offers different
ways to compute these matrix elements. If we assume an NN
interaction of the form shown in Eq. (19), then we can use
the operator representation (42) of vUCOM and evaluate the
matrix elements directly. This approach is computationally
quite efficient. If one expands the radial dependencies of the
individual operator channels in a sum of Gauss functions,
all radial integrals can be calculated analytically. The matrix
elements of the additional tensor operators contained in vUCOM

can be given in closed form as well. However, this direct
approach relies on the truncation of the Baker-Campbell-
Hausdorff expansion [Eq. (35)] employed to evaluate the
tensor correlation.

To avoid this approximation for the tensor transformation
we apply the tensor correlators to the two-body states and
make use of the exact expressions (14) and (15). The central
correlators will be applied to the operator as before, because
a simple and exact expression for the central correlated
Hamiltonian exists (cf. Sec. II D). We formally interchange
the ordering of the correlations operators using the identity

c†r c
†
�hc�cr = (c†r c

†
�cr )c†rhcr (c†r c�cr )

(45)
= c̃

†
�c†rhcr c̃�

with the “centrally correlated” tensor correlation operator

c̃� = c†r c�cr = exp{−iϑ[R+(r)]s12(r, q�)}. (46)

The central correlator commutes with s12(r, q�) and trans-
forms therefore only ϑ(r), see Eq. (25). The tensor correlator
c̃� acts on LS-coupled two-body states with L = J like the
identity operator (cf. Sec. II B)

c̃�|n(JS)JT 〉 = |n(JS)JT 〉. (47)

For states with L = J ± 1 we have the simple relation

c̃�|n(J ∓ 1, 1)JT 〉 = cos θ̃J (r)|n(J ∓ 1, 1)JT 〉
± sin θ̃J (r)|n(J ± 1, 1)JT 〉, (48)

where

θ̃J (r) = 3
√

J (J + 1)ϑ[R+(r)]. (49)

Using these relations we can calculate the correlated two-body
matrix elements exactly.
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A. Interactions in operator representation

We first consider a bare potential given in the generic
operator representation [Eq. (19)] and derive the correlated
matrix elements for the local contributions of the form v(r)O
with [r,O] = [qr,O] = 0, which includes all operators of the
set [Eq. (20)] except for the q2

r terms.
The matrix elements for L = L′ = J are not affected

by the tensor correlations, only the central correlators act
according to Eq. (34). In coordinate representation we obtain
the following:

〈n(JS)JT |c†r c†�v(r)O c�cr |n′(JS)JT 〉
=

∫
dr u�

n,J (r)un′,J (r) ṽ(r) 〈(JS)JT |O|(JS)JT 〉, (50)

where ṽ(r) = v[R+(r)] is the transformed radial dependence
of the potential. The un,L(r) = rφn,L(r) are the radial relative
wave functions of the oscillator basis or any other basis
under consideration. For the diagonal matrix elements with
L = L′ = J ∓ 1 we get

〈n(J ∓1, 1)JT |c†r c†�v(r)O c�cr |n′(J ∓1, 1)JT 〉
=

∫
dr u�

n,J∓1(r)un′,J∓1(r) ṽ(r)

× [〈(J ∓1, 1)JT |O|(J ∓1, 1)JT 〉 cos2 θ̃J (r) (51)

+〈(J ±1, 1)JT |O|(J ±1, 1)JT 〉 sin2 θ̃J (r)

±〈(J ∓1, 1)JT |O|(J ±1, 1)JT 〉2 cos θ̃J (r) sin θ̃J (r)]

with θ̃J (r) = θJ [R+(r)]. Finally, the off-diagonal matrix ele-
ments for L = J ∓ 1 and L′ = J ± 1 read as follows:

〈n(J ∓1, 1)JT |c†r c†�v(r)O c�cr |n′(J ±1, 1)JT 〉
=

∫
dru�

n,J∓1(r)un′,J±1(r) ṽ(r)

× [〈(J ∓1, 1)JT |O|(J ±1, 1)JT 〉 cos2 θ̃J (r)
(52)

−〈(J ±1, 1)JT |O|(J ∓1, 1)JT 〉 sin2 θ̃J (r)

∓〈(J ∓1, 1)JT |O|(J ∓1, 1)JT 〉 cos θ̃J (r) sin θ̃J (r)

±〈(J ±1, 1)JT |O|(J ±1, 1)JT 〉 sin θ̃J (r) cos θ̃J (r)].

Apart from the integration involving the radial wave functions,
the matrix elements of the operators O in LS-coupled angular
momentum states are required. Only for the standard tensor
operator O = s12( r

r
, r

r
) the off-diagonal terms on the right-

hand side of Eqs. (51) and (52) contribute. For all other
operators in Eq. (20) the off-diagonal matrix elements vanish,
and the above equations simplify significantly.

The effect of the tensor correlator is clearly visible in
the structure of the correlated matrix elements (51) and
(52). It admixes components with 	L = ±2 to the states.
Therefore, the correlated matrix element consists of a linear
combination of diagonal and off-diagonal matrix elements
〈(LS)JT |O|(L′S)JT 〉. In this way even simple operators,
such as L2 or (L · S) acquire nonvanishing off-diagonal
correlated matrix elements [Eq. (52)].

The momentum-dependent terms of the potential (19) allow
for an exact evaluation of the similarity transformation on
the operator level. For the tensor correlated form of the

operator

vqr = 1
2

[
v(r)q2

r + q2
r v(r)

]
(53)

we obtain

c
†
�vqrc� = 1

2

[
v(r)q2

r + q2
r v(r)

] + v(r)[ϑ ′(r)s12(r, q�)]2

− [v(r)ϑ ′(r)qr + qrϑ
′(r)v(r)]s12(r, q�) (54)

by using Eq. (38). Subsequent inclusion of the central
correlations leads to the following expression for the di-
agonal matrix elements with L = L′ = J in coordinate
representation:

〈n(JS)JT |c†r c†�vqrc�cr |n′(JS)JT 〉

=
∫

dr

{
u�

n,J (r)un′,J (r)

[
ṽ(r) w(r) − ṽ′(r)

R′′
+(r)

R′+(r)2

]

− 1

2
[u�

n,J (r)u′′
n′,J (r) + u′′�

n,J (r)un′,J (r)]
ṽ(r)

R′+(r)2

}
, (55)

where ṽ′(r) = v′[R+(r)]. As before, the tensor correlator
does not affect these matrix elements and only the central
correlations lead to a modification. For the diagonal matrix
elements with L = L′ = J ∓ 1 the tensor terms contribute
and we obtain the following:

〈n(J ∓1, 1)JT |c†r c†�vqrc�cr |n′(J ∓1, 1)JT 〉

=
∫

dr

{
u�

n,J∓1(r)un′,J∓1(r)

[
ṽ(r) w(r) + ṽ(r) θ̃ ′

J (r)2

− ṽ′(r)
R′′

+(r)

R′+(r)2

]
− 1

2
[u�

n,J∓1(r)u′′
n′,J∓1(r)

+u′′�
n,J∓1(r)un′,J∓1(r)]

ṽ(r)

R′+(r)2

}
, (56)

with θ̃ ′
J (r) = θ ′

J [R+(r)]. Likewise, we find

〈n(J ∓1, 1)JT |c†r c†�vqrc�cr |n′(J ±1, 1)JT 〉

= ±
∫

dr [u�
n,J∓1(r)u′

n′,J±1(r)−u′�
n,J∓1(r)un′,J±1(r)]

ṽ(r)θ̃ ′
J (r)

R′+(r)

(57)

for the off-diagonal matrix elements with L = J ∓ 1 and L′ =
J ± 1.

The matrix elements for the correlated radial and angular
kinetic energy can be constructed as special cases of the
interaction matrix elements discussed above. By setting v(r) =
1/[2µr (r)] in Eqs. (55) to (57) we obtain the matrix elements
for the effective mass part of the correlated radial kinetic
energy (29). The matrix elements of the additional local
potential in (29) and the angular kinetic energy (31) follow
directly from Eqs. (50) to (52).

B. Interactions in partial-wave representation

So far we have discussed interactions given in a closed
operator representation of the form (19). However, many
modern interactions (e.g., the CD Bonn potential or re-
cent chiral potentials) are defined using a nonlocal partial-
wave representation. This makes it difficult to employ
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them within many-body models that do not allow for a
partial-wave expansion of the two-body states [16]. Nev-
ertheless, the calculation of central and tensor correlated
matrix elements of the form (44) is straightforward for those
interactions.

Consider a general nonlocal NN potential in partial-wave
representation. For simplicity we assume the potential given
in a generic coordinate space representation

v =
∫

dr r2
∫

dr ′ r ′2

(58)
×

∑
L,L′,S,J,T

|r(LS)JT 〉 vLL′SJT (r, r ′) 〈r ′(L′S)JT |,

where M and MT have been omitted for brevity. Interactions
given in momentum space can be easily transformed into this
representation.

For the construction of the correlated matrix elements we
only need the expressions for correlated two-body states used
in the previous section. For L = L′ = J the tensor correlations
are not active and we obtain

〈n(JS)JT |c†r c†�v c�cr |n′(JS)JT 〉
=

∫
dr r R+(r)

∫
dr ′ r ′ R+(r ′) u�

n,J (r)un′,J (r ′)ṽJ,J,S,J,T (r, r ′),

(59)

where ṽLL′SJT (r, r ′) = vLL′SJT [R+(r), R+(r ′)]. Because of
the nonlocal character with respect to the relative coordi-
nate, the metric factors R+(r) = √

R′+(r) R+(r)/r resulting
from the transformation of the radial wave function remain.
For the diagonal matrix elements L = L′ = J ∓ 1 of the
nonlocal interaction (58) we obtain the following:

〈n(J ∓1, 1)JT |c†r c†�vc�cr |n′(J ∓1, 1)JT 〉
=

∫
dr r R+(r)

∫
dr ′ r ′ R+(r ′) u�

n,J∓1(r)un′,J∓1(r ′)

× [ṽJ∓1,J∓1,1,J,T (r, r ′) cos θ̃J (r) cos θ̃J (r ′)
+ ṽJ±1,J±1,1,J,T (r, r ′) sin θ̃J (r) sin θ̃J (r ′)
± ṽJ∓1,J±1,1,J,T (r, r ′) cos θ̃J (r) sin θ̃J (r ′)
± ṽJ±1,J∓1,1,J,T (r, r ′) sin θ̃J (r) cos θ̃J (r ′)] (60)

with θ̃J (r) = θJ [R+(r)]. Finally, the off-diagonal matrix ele-
ments with L = J ∓ 1 and L′ = J ± 1 read

〈n(J ∓1, 1)JT |c†r c†�vc�cr |n′(J ±1, 1)JT 〉
=

∫
dr r R+(r)

∫
dr ′ r ′ R+(r ′) u�

n,J∓1(r)un′,J±1(r ′)

× [ṽJ∓1,J±1,1,J,T (r, r ′) cos θ̃J (r) cos θ̃J (r ′)
− ṽJ±1,J∓1,1,J,T (r, r ′) sin θ̃J (r) sin θ̃J (r ′)
∓ ṽJ∓1,J∓1,1,J,T (r, r ′) cos θ̃J (r) sin θ̃J (r ′)
± ṽJ±1,J±1,1,J,T (r, r ′) sin θ̃J (r) cos θ̃J (r ′)]. (61)

For local interactions vLL′SJT (r, r ′) = vloc
LL′SJT (r)δ(r −

r ′)/(r ′r) the metric factors R+(r) can be eliminated and the
above equations simplify substantially.

IV. OPTIMAL CORRELATION FUNCTIONS

The unitary correlation operator method encapsulates the
physics of short-range central and tensor correlations in the
set of correlation functions s(r) and ϑ(r). In this section, we
discuss a scheme to determine these correlation functions for
a given NN potential. One important task is to isolate the
short-range state-independent correlations from residual long-
range correlations that should not be described by the unitary
transformation but by the many-body state.

The most convenient procedure to fix the correlation
functions is based on an energy minimization in the two-body
system [15]. For each combination of spin S and isospin T
we compute the correlated energy expectation value using a
two-body trial state with the lowest possible orbital angular
momentum L. The uncorrelated radial wave function should
not contain any of the short-range correlations, i.e., it should
resemble the short-range behavior of a noninteracting system.
In the following we will use a free zero-energy scattering
solution φL(r) ∝ rL. One could just as well use harmonic
oscillator wave functions, the difference in the resulting
correlation functions is marginal.

The correlation functions are represented by parametriza-
tions with typically three variational parameters. The long-
range part is generally well described by a double-exponential
decay with variable range. For the short-range behavior,
several different parametrizations have been compared. For
the AV18 potential, the following two parametrizations for the
central correlation functions have proven most appropriate:

RI
+(r) = r + α(r/β)η exp[− exp(r/β)],

(62)
RII

+(r) = r + α[1 − exp(−r/γ )] exp[− exp(r/β)].

Which of these parametrizations is best suited for a particular
channel will be decided on the basis of the minimal energy
alone. Note that rather than s(r), we directly parametrize
the function R+(r), which enters into the expressions for
correlated operators and matrix elements. For the tensor
correlation functions the following parametrization is used:

ϑ(r) = α[1 − exp(−r/γ )] exp[− exp(r/β)]. (63)

The S = 0 channels are only affected by the central
correlators. Their parameters are determined from the energy
minimization within the lowest possible orbital angular mo-
mentum state (i.e., L = 1 for T = 0 and L = 0 for T = 1,
respectively),

E00 = 〈φ1(10)10|c†rhcr |φ1(10)10〉,
(64)

E01 = 〈φ0(00)01|c†rhcr |φ0(00)01〉.
For S = 0, T = 1 the minimization of E01 by variation of the
parameters of the central correlation function is straightfor-
ward. The resulting parameters are summarized in Table I. For
S = 0, T = 0 the potential is purely repulsive and, therefore,
the energy minimization, for a negligible gain in energy, leads
to central correlation functions of very long range. To avoid
this pathology we employ a constraint on the strength of the
correlation function defined through

IR+ =
∫

drr2[R+(r) − r]. (65)
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TABLE I. Parameters of the central correlation functions R+(r)
for the AV18 potential obtained from two-body energy minimization.

S T Param. α [fm] β [fm] γ [fm] η

0 0 II 0.7971 1.2638 0.4621 —
0 1 I 1.3793 0.8853 — 0.3724
1 0 I 1.3265 0.8342 — 0.4471
1 1 II 0.5665 1.3888 0.1786 —

The value of this constraint on the central correlation function
for the S = 0, T = 0 channel is fixed to IR+ = 0.1fm4 in
accord with the typical values in the other channels.

For S = 1 the tensor correlations are active as well and
we determine the parameters of the central and the tensor
correlation functions simultaneously. For T = 0 the energy is
defined by the matrix element with L = 0 states

E10 = 〈φ0(01)10|c†r c†�hc�cr |φ0(01)10〉. (66)

For T = 1 the lowest possible orbital angular momentum is
L = 1. From angular momentum coupling we obtain 0, 1, and
2 as possible values for J. Therefore, we define the energy
functional that is used in the minimization procedure as the
sum over all three possibilities with relative weights given by
2J + 1

E11 = 1
9 〈φ1(11)01|c†rhcr |φ1(11)01〉
+ 3

9 〈φ1(11)11|c†rhcr |φ1(11)11〉
+ 5

9 〈φ1(11)21|c†r c†�h c�cr |φ1(11)21〉. (67)

As mentioned, the long-range character of the tensor force
leads to long-range tensor correlations. However, long-range
tensor correlation functions are not desirable for several
reasons: (i) The optimal long-range behavior would depend
strongly on the nucleus under consideration. Hence, our goal of
extracting the state-independent, universal correlations forbids
long-range correlation functions. (ii) The two-body approxi-
mation would not be applicable for long-range correlators.
(iii) Effectively, higher order contributions of the cluster
expansion lead to a screening of long-range tensor correlations
between two nucleons through the presence of other nucleons
within the correlation range [16]. For these reasons, we
constrain the range of the tensor correlation functions in our
variational procedure. We use the following integral constraint
on the “volume” of the tensor correlation functions

Iϑ =
∫

drr2 ϑ(r). (68)

The constrained energy minimization for the S = 1, T = 0 and
the S = 1, T = 1 channels with different values of the tensor
correlation volume Iϑ leads to optimal parameters reported in
Table II. The optimal parameters for the central correlation
functions change only marginally with the tensor constraint.
Therefore, we adopt a fixed set of parameters for the central
correlators given in Table I.

The optimal central correlation functions for the AV18
potential are depicted in Fig. 2. In the even channels, the
correlation functions decrease rapidly and vanish beyond
r ≈ 1.5 fm. The central correlators in the odd channels are

TABLE II. Parameters of the tensor correlation functions ϑ(r) for
the AV18 potential with different values Iϑ for the range constraint
obtained from two-body energy minimization.

T Iϑ [fm3] α β [fm] γ [fm]

0 0.03 491.32 0.9793 1000.0
0 0.04 521.60 1.0367 1000.0
0 0.05 539.86 1.0868 1000.0
0 0.06 542.79 1.1360 1000.0
0 0.07 543.21 1.1804 1000.0
0 0.08 541.29 1.2215 1000.0
0 0.09 536.67 1.2608 1000.0
0 0.10 531.03 1.2978 1000.0
0 0.11 524.46 1.3333 1000.0
0 0.12 517.40 1.3672 1000.0
1 0.01 −0.1036 1.5869 3.4426
1 0.02 −0.0815 1.9057 2.4204
1 0.03 −0.0569 2.1874 1.4761
1 0.04 −0.0528 2.3876 1.2610
1 0.05 −0.0463 2.6004 0.9983
1 0.06 −0.0420 2.7984 0.8141
1 0.07 −0.0389 2.9840 0.6643
1 0.08 −0.0377 3.1414 0.6115
1 0.09 −0.0364 3.2925 0.5473
1 0.10 −0.0353 3.4349 0.4997

weaker and of slightly longer range because of the influence
of the centrifugal barrier. For the tensor correlation functions
the constraints on the range are important. Figure 3 shows
the triplet-even (a) and triplet-odd (b) tensor correlation
functions ϑ(r) for different Iϑ . Because the tensor interaction
is significantly weaker for T = 1 than for T = 0, the tensor
correlator for this channel has a much smaller amplitude. The
relevant values for the constraint Iϑ are therefore smaller for
the triplet-odd channel.

We stress that the range constraint for the tensor corre-
lation functions has an important physical and conceptual
background. The unitary correlation operator method is used
to describe state-independent short-range correlations only.
Long-range correlations of any kind have to be described by

0 1 2 3
r [fm]

0

0.05

0.1

0.15

0.2

0.25

R
+
(r

)
r

[f
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]
−

FIG. 2. (Color online) Optimal central correlation functions
R+(r) − r for the AV18 potential according to the parameters given in
Table I. The curves correspond to the different spin-isospin channels:
(S, T ) = (0, 1) ( ), (1, 0) ( ), (0, 0) ( ),
(1, 1) ( ).
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FIG. 3. (Color online) Optimal tensor correlation functions ϑ(r)
for different values of the range constraint Iϑ . (a) Correlation func-
tions for T = 0 with Iϑ = 0.06, 0.09, and 0.12 fm3. (b) Correlation
functions for T = 1 with Iϑ = 0.01, 0.03, and 0.06 fm3. The arrows
indicate the direction of increasing Iϑ .

the model space employed in the solution of the many-body
problem. By constraining the range of the tensor correlators
we set the separation scale between short-range and long-range
correlations. The optimal value for tensor constraints cannot
be fixed in the two-body system alone, but requires input
from few-nucleon systems. We will come back to this point in
Sec. VI.

V. PROPERTIES OF CORRELATED MOMENTUM-SPACE
MATRIX ELEMENTS

A. Effect of the correlators

To illustrate the effect of the unitary transformation in more
detail, we discuss relative momentum space matrix elements
of the form 〈q(LS)JT |vUCOM|q ′(L′S)JT 〉, where q is the
relative two-body momentum. The calculation of correlated
momentum-space matrix elements is performed using the
relations derived in Sec. III with radial wave functions given
by the spherical Bessel functions.

First, we consider the full set of matrix elements in the
(q, q ′)-plane for the lowest partial waves and compare the bare
AV18 potential with the correlated interaction. The plots in
Fig. 4 depict the matrix elements for the 1S0 and the 3S1 partial
waves as well as for the mixed 3S1 − 3D1 channel (from top to
bottom). The left-hand column corresponds to matrix elements
of the bare AV18 potential, the center column to correlated
matrix elements using the central correlator only, and the right-
hand column to the fully correlated matrix elements of vUCOM,
including central and tensor correlators.

The gross effect of the unitary transformation on the
dominant S-wave matrix elements depicted in the upper two

rows of Fig. 4 is similar. In both cases the matrix elements
of the bare interaction are predominantly repulsive except
for a very small region at small momenta. The inclusion
of the central correlator, accounting for correlations induced
by the repulsive core of the interaction, causes a substantial
change in the correlated matrix elements. In a region of low
momenta q, q ′ <∼ 2 fm−1 the matrix elements become strongly
attractive. For larger momenta the magnitude of the matrix
elements is reduced, outside a band along the diagonal the
momentum space matrix elements practically vanish. Only
within this band a moderate repulsion remains. The inclusion
of the tensor correlator does not change the matrix elements
in the spin-singlet channel. In the spin-triplet channel the
addition of tensor correlations enhances the effect of the
central correlations. The attractive matrix elements at low
momenta are enhanced while the off-diagonal matrix elements
are further suppressed.

These matrix elements demonstrate the two major effects
of the unitary correlators: (i) For the important L = 0 partial
waves, the low-momentum matrix elements become strongly
attractive as a result of the proper treatment of the correlations
induced by the repulsive core and the tensor part. (ii) The
off-diagonal matrix elements outside a band along the diagonal
are strongly suppressed. Hence the unitary transformation acts
like a prediagonalization.

The importance of tensor correlations is accentuated in the
3S1 − 3D1 channel depicted in the bottom row of Fig. 4. For
the bare interaction only the tensor part contributes to this
channel and the matrix elements reveal strong off-diagonal
contributions. In many-body calculations (e.g., in a shell-
model framework) these off-diagonal matrix elements are
responsible for the admixture of high-lying basis states to the
ground state contributing strongly to the binding energy [27].
The effect of the central correlator on these matrix elements is
marginal. The tensor correlator, however, causes a significant
reduction of the off-diagonal matrix elements. Outside of a
band along the diagonal the matrix elements vanish, i.e., the
admixture of higher momenta or oscillator shells is suppressed
significantly.

The off-diagonal contributions from the tensor interaction
are not fully suppressed by the tensor correlators—only the
high-momentum components are eliminated. This corresponds
to the short-range part of the tensor correlations in coor-
dinate space, which we constrained the tensor correlation
operator to.

The dependence of the momentum space matrix elements
on the range of the tensor correlation functions is illustrated
in Fig. 5. Note that only the tensor correlation functions are
changed, the central correlators stay the same. Therefore, only
the matrix elements in the spin-triplet channels change, and of
those the S = 1, T = 0 channels are affected most. The upper
panel depicts the diagonal q = q ′ matrix elements for the 3S1

channel. With increasing correlator range Iϑ , as indicated by
the arrow, the attraction at low momenta is enhanced. This can
be easily understood in the picture of correlated states: Longer
ranged tensor correlators generate a longer range D-wave
admixture such that the tensor attraction of the bare potential
can be exploited to a larger degree. In the picture of a correlated
Hamiltonian, the increased low-momentum attraction results
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FIG. 4. (Color online) Relative momentum-space matrix elements of the bare AV18 potential (left-hand column), the central correlated
AV18 potential (center column), and the fully correlated AV18 potential. The different rows correspond to different partial waves: 1S0 (top
row), 3S1 (middle row), and 3S1 − 3D1 (bottom row). The optimal tensor correlator for Iϑ = 0.09 fm3 is used. The red dots mark the plane of
vanishing matrix elements. The momenta are given in fm−1 and the matrix elements in MeV.

from a transformation of longer ranged components of the
tensor interaction into operator channels that are accessible to
uncorrelated S-wave states (cf. Sec. II F).

The off-diagonal matrix elements in the 3S1 − 3D1 channel
show a complementary behavior. The lower panel in Fig. 5
depicts the off-diagonal matrix elements as functions of
q ′ for fixed q = 0. As mentioned, the matrix elements far
off the diagonal are strongly suppressed by the unitary
transformation—they are associated with short-range tensor
correlations. With increasing range of the tensor correlator,
off-diagonal matrix elements at successively lower momenta
are suppressed as well. Hence, the band of nonvanishing
matrix elements along the diagonal is narrowed with increasing
correlator range.

B. Comparison with Vlowk

On the level of momentum-space matrix elements we
can directly compare the correlated interaction vUCOM with
the Vlowk matrix elements resulting from a renormalization

group decimation of the bare interaction [12,13]. Both ap-
proaches aim at the construction of a phase-shift equivalent
low-momentum interaction, though their formal background
is completely different. The Vlowk approach relies on a
decoupling of a low-momentum P-space, constrained by a
momentum cutoff �, and a complementary high-momentum
Q space via a similarity transformation. After a second
transformation to restore hermiticity, the momentum-space
matrix elements within the P space are obtained. Matrix
elements between P and Q space vanish by virtue of the
decoupling condition, Q-space matrix elements are discarded
(hence violating unitarity) such that nonvanishing matrix
elements exist only for momenta below the cutoff. In con-
trast to vUCOM the Vlowk approach is entirely formulated
at the level of momentum-space matrix elements for the
different partial waves. This entails that a general operator
representation of the effective interaction is not directly
accessible.

Despite their formal differences the matrix elements of
both methods show a remarkable agreement in the dominant
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FIG. 5. (Color online) Momentum-space matrix elements of the
correlated AV18 potential for different ranges of the tensor correlator
(solid lines): Iϑ = 0.06 fm3, 0.09 fm3, 0.12 fm3. The arrow indicates
the direction of increasing correlator range. The dashed line represents
the matrix elements of the bare potential. The upper panel shows
diagonal matrix elements in the 3S1 channel as function of q = q ′.
The lower panel depicts the off-diagonal 3S1 − 3D1 matrix elements
for fixed q = 0 as function of q ′.

partial waves. Figure 6 compares the Vlowk matrix elements
for a cutoff momentum � = 2.1 fm−1 with the momentum-
space matrix elements of vUCOM obtained with the optimal
correlators for Iϑ = 0.08 fm3. Up to momenta q ≈ 1.5 fm−1

the matrix elements agree very well in most partial waves.

For the dominant S-wave channels the agreement extends
right up to the cutoff momentum for Vlowk . Above the cutoff
momentum the Vlowk matrix elements are zero by construction.
In contrast, the matrix elements of vUCOM continuously extend
to larger momenta. This reflects the different conceptual ideas:
Whereas Vlowk attempts a decimation of the interaction to
low-momentum contributions below the cutoff scale, vUCOM

uses a prediagonalization of the matrix-elements by a unitary
transformation.

VI. FEW-BODY SHELL-MODEL CALCULATIONS

The correlated interaction and the correlated matrix el-
ements can be used as input for all kinds of many-body
calculations. We have already discussed nuclear structure
studies in the framework of fermionic molecular dynamics
[15,16], which rely on the operator form of the correlated
interaction. The correlated matrix elements serve as an input
for shell-model or Hartree-Fock calculations. In forthcoming
publications we present nuclear structure calculations based
on correlated realistic interactions in the framework of the
Hartree-Fock and the random phase approximation covering
all mass regimes.

In this section we discuss the application of the correlated
matrix elements in no-core shell model calculations for 3H and
4He. These few-body systems provide important information
on the correlated interaction beyond the two-body level. We
use the no-core shell-model code developed by Petr Navrátil
et al. [28]. It is formulated in a translationally invariant
harmonic oscillator basis using Jacobi coordinates. Input for
the shell-model diagonalization are the relative two-body
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FIG. 6. (Color online) Comparison of the diagonal momentum space matrix elements of the correlated interaction vUCOM (red lines) with
the Vlowk matrix elements (blue dots) for the AV18 potential. The dashed line corresponds to the matrix elements of the bare potential. The
optimal tensor correlators for Iϑ = 0.08 fm3 are used and the Vlowk momentum cutoff is � = 2.1 fm−1.
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FIG. 7. (Color online) Ground-state energy of 4He as function
of the oscillator parameter h̄� for different model model-space sizes
Nmax = 0, 2, . . . , 16 as indicated by the labels. The upper panel shows
results for the bare AV18 potential, the lower panel corresponds to
the correlated potential vUCOM for Iϑ = 0.09 fm3. The horizontal lines
represent the exact binding energy for the bare potential taken from
Ref. [29].

matrix elements of the correlated AV18 potential, including
charge-dependent terms and Coulomb interaction. We stress
that the Lee-Suzuki transformation usually employed in the
no-core shell model [7,9,28] is not used here. We perform only
a plain shell-model diagonalization. The task of transforming
the bare interaction into an effective interaction suitable for
shell-model calculations in small model-spaces is performed
by the unitary correlation operators.

The effect of the unitary correlation operators in a no-core
shell model calculation for the ground state of 4He is illustrated
in Fig. 7. For a given size of the model space, characterized
by the maximum relative oscillator quantum number Nmax =
2Nmax + Lmax, the ground-state energy is plotted as a function
of the oscillator parameter h̄�. The upper panel depicts the
shell-model result for the bare AV18 potential without any
explicit treatment of correlations. All correlations induced by
the interaction have to be described by the degrees of freedom
of the model space alone. As expected, huge model spaces
are required to adequately describe short-range correlations.
Within the computational limits of Nmax � 16 for 4He, one
is not able to achieve convergence with the bare interaction.
The exact 4He ground-state energy for the AV18 potential [29]
(marked by the horizontal line) is still somewhat lower than
the result from the shell-model diagonalization forNmax = 16.

The convergence behavior changes dramatically once we
use the correlated matrix elements instead of the bare ones.

The lower panel in Fig. 7 depicts the no-core shell model
results for 4He obtained with the correlated AV18 potential
using the tensor correlator for Iϑ = 0.09 fm3 in the dominant
S = 1, T = 0 channel. The S = 1, T = 1 channel is irrelevant
for the nuclei considered in this section and the corresponding
tensor correlation function is set to zero. The comparison with
the calculation for the bare AV18 potential reveals three major
effects of the unitary transformation:

(i) The ground-state energy for very small model spaces,
e.g., Nmax = 0, for which the space consists of a single
Slater determinant, is lowered dramatically. Evidently,
the inclusion of the dominant short-range central and
tensor correlations through the unitary transformation is
sufficient to reproduce the bulk of the binding energy.

(ii) With increasing model-space size the energy is lowered
by a moderate amount. The convergence is drastically
improved. Fully converged results, featuring a flat energy
curve over a significant range of oscillator parameters
h̄� can be obtained in spaces of moderate size. The
energy gain compared to the results in small model spaces
can be attributed to residual long-range correlations not
described by the unitary correlator. In contrast to short-
range correlations, these long-range correlations can be
described quite easily in model spaces of manageable size,
hence the fast convergence.

(iii) The converged energy is generally below the exact
ground-state energy for the potential under consideration.
This violation of the variational bound is solely because
of the omission of the three- and four-body terms
in the cluster expansion [Eq. (17)] of the correlated
Hamiltonian. As a direct consequence of the unitarity of
the transformation, the exact energy eigenvalues of the
correlated Hamiltonian, including all terms of the cluster
expansion, are identical to the exact energy eigenvalues
of the bare Hamiltonian. Hence, the difference between
the exact result using the bare interaction and the corre-
lated interaction in two-body approximation equals the
contribution of higher cluster orders and thus provides
a quantitative measure for the quality of the two-body
approximation.

A more detailed view of the convergence behavior for the
correlated AV18 potential is presented in Fig. 8 for 3H and
4He. For both systems the three aforementioned effects can be
observed. The convergence for 3H is somewhat slower because
of the long-range structure of the wave function that cannot
easily be described within the oscillator basis.

The no-core shell model results directly reflect the ba-
sic aims of the unitary correlation operator method. The
short-range correlations are described explicitly by a state-
independent unitary transformation such that the bulk of the
binding energy can readily be obtained in very small model
spaces. Residual system-dependent long-range correlations
have to be described by the model space, which is easily
possible in the framework of the no-core shell model.

Considering the omission of the higher order terms in the
cluster expansions, the no-core shell model results allow for
a study of the range dependence of these contributions. The
difference between converged result and exact calculations
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FIG. 8. (Color online) Ground-state energy of 3H and 4He as func-
tion of the oscillator parameter h̄� for the correlated AV18 potential
(Iϑ = 0.09 fm3) obtained in a no-core shell-model diagonalization.
The different curves correspond to different model-space sizes Nmax

as indicated by the labels. The horizontal lines represent the exact
binding energies for the bare potential taken from Ref. [29].

with the bare potential (i.e., the size of the omitted three-
and four-body terms) increases with increasing range of the
tensor correlators. This dependence is summarized in Fig. 9,
where we plot the ground-state energies of 4He and 3H
in the E(3H)-E(4He) plane. The results for different tensor
correlators with range constraints Iϑ = 0.03, . . . , 0.12 fm3 (cf.
Table II) are represented by the triangles. All those points
fall onto a straight line. Moreover, this line coincides with
the so-called Tjon line [29], which characterizes a correlation
between the 4He and 3H binding energies found for different
realistic two-body potentials that reproduce the same phase
shifts (blue circles in Fig. 9). It is not surprising that the
correlated interactions follow the same trend, because the
correlated interaction vUCOM generates the same phase shifts
as the original potential. For each set of correlators, the
resulting correlated interaction vUCOM provides a new phase-
shift equivalent realistic potential. The value of the range
constraint Iϑ can be used to map out the Tjon line. A similar
behavior was observed for the Vlowk interaction as a function
of the cutoff parameter [30].

In our calculation only the range of the tensor correlators
in the spin-triplet channels is varied and of those only the
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FIG. 9. (Color online) Binding energies of 4He versus 3H. The
blue circles show the results of exact Faddeev calculations obtained
by A. Nogga et al. [29] using different modern NN-potentials. The
green diamonds show results obtained by including simple three-body
forces in addition to the realistic two-nucleon potentials [29]. The red
triangles are the converged no-core shell model results for the corre-
lated AV18 potential for different values Iϑ = 0.03, . . . , 0.12 fm3 of
the range-constraint for the tensor correlator.

S = 1, T = 0 channel is relevant for 4He and 3H. Hence,
the variation along the Tjon line is related exclusively to
the tensor correlations. As discussed in Sec. II E, the unitary
transformation of the Hamiltonian with the tensor correlators
produces additional momentum-dependent tensor terms in
vUCOM as well as different central contributions. The nonlocal
tensor contributions seem to play an important role regarding
the Tjon line: Increasing the strength of the nonlocal tensor
contribution by increasing the strength of the tensor correlators
shifts the binding energies toward the experimental values and
away from the realistic potentials with purely local tensor
contributions. This is in accord with the results for the CD
Bonn potential, which is the only one among the high-precision
NN potentials including nonlocal tensor contributions [26].

By choosing an appropriate value for the range constraint,
one obtains a phase-shift equivalent two-body potential, which
produces binding energies for 4He and 3H close to the
experimental point (cf. Fig. 9). This is the result of a subtle
cancellation among different three-body contributions. For
exact calculations using the bare potentials one immediately
finds that the two-body potential alone (blue circles in Fig. 9)
does not generate enough binding. It has to be supplemented
by a three-body force that produces a net attraction. The
green diamonds in Fig. 9 show results obtained by A.
Nogga et al. [29] using various simple parametrizations of
phenomenological three-nucleon forces supplementing the
different realistic two-body potentials. For the calculation with
the correlated interactions we have not included any of the
three-body contributions (i.e., neither the genuine three-body
force nor the three-body contributions of the cluster expansion
are taken into account). The proximity to the experimental
point for, e.g., Iϑ = 0.09 fm3, thus indicates, that the omitted
three-body terms of the cluster expansion can be tuned such
that they cancel the contributions of the genuine three-body
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force to a large extent. The influence of the genuine three-body
force on the binding energies in these small systems can
therefore be minimized by a proper choice of the correlators,
i.e., by choosing the phase-shift equivalent two-body force
that needs the weakest three-body force. This, however, does
not mean that the three-body force can be avoided completely.
One should keep in mind that the above observations refer to
a single observable and to very small systems only.

VII. CONCLUSIONS

The unitary correlation operator method provides a pow-
erful and transparent tool to construct phase-shift equivalent
low-momentum interactions by means of an explicit unitary
transformation of a realistic NN potential. The physics of
short-range central and tensor correlations is encapsulated in
the optimal correlators that are determined in the two-body
system. For the long-ranged tensor component a separation
of short-range state-independent correlations and long-range
correlations is performed through an additional constraint on
the range of the correlators. Once the correlators are fixed,
we can evaluate the unitary transformation of either states or
operators directly.

In the case of two-body matrix elements of the correlated
Hamiltonian in an LS-coupled basis, it is convenient to map
the unitary correlators onto the two-body angular momentum
eigenstates. The resulting correlated matrix elements reveal
some of the important features of the correlated interaction.
The unitary transformation causes a prediagonalization of the
Hamiltonian, i.e., large off-diagonal momentum-space matrix
elements induced by the central core and the tensor interaction
are eliminated and nonvanishing matrix elements remain solely
in a band along the diagonal.

Correlated matrix elements (e.g., with respect to a harmonic
oscillator basis) serve as universal input for different many-
body calculations.2 We have demonstrated the use of those

2An optimized code for the calculation of the correlated oscillator
matrix elements is available from the authors on request.

matrix elements in the no-core shell model for A � 4. In
comparison to a shell-model diagonalization with the bare
interaction we observe a dramatic reduction of the ground-state
energy in very small model spaces and a significant improve-
ment of convergence with increasing size of the model space.
Here the interplay between unitary correlator and model space
becomes evident: The unitary correlation operator describes
the state-independent short-range correlations induced by the
central and the tensor part of the interaction—this accounts
for the bulk of the binding energy. State-dependent long-range
correlations are described by the model-space—this leads to
the moderate gain in binding energy with increasing model
space size. The rapid convergence indicates that those long-
range correlations, unlike the short-range correlations, can be
quite easily treated in small and computationally accessible
model spaces.

The no-core shell model calculations also provide a
guideline for the choice of the range constraint for the tensor
correlators. As function of the range of the tensor correlators a
manifold of phase-shift equivalent potentials is generated that
maps out the Tjon line. The correlator range can be chosen
such that the exact ground state energies for A � 4 are in good
agreement with experiment. Thus the net impact of the residual
three-nucleon force on the binding energies in these small
systems can be minimized.

The next step is to use the correlated matrix elements
as input for nuclear structure calculations also for heav-
ier isotopes. In a forthcoming publication we will dis-
cuss Hartree-Fock as well as RPA calculations across the
whole nuclear chart using the same correlated realistic
interactions.
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