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Proton-neutron pairing energies in N = Z nuclei at finite temperature
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The thermal behavior of isoscalar (τ = 0) and isovector (τ = 1) proton-neutron (pn) pairing energies at finite
temperature is investigated with shell-model calculations. These pn pairing energies can be estimated by double
differences of “thermal” energies that are extended from the double differences of binding energies as indicators
of pn pairing energies at zero temperature. We found that the delicate balance between isoscalar and isovector
pn pairing energies at zero temperature disappears at a finite temperature. When the temperature rises, while
the isovector pn pairing energy decreases, the isoscalar pn pairing energy rather increases. We also discuss the
symmetry energy at finite temperature.
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The proton-neutron (pn) pairing energies have become one
of hot topics in the study of the nuclear structure for proton-
rich nuclei. In particular, interest is increasing in studying
isovector (τ = 1) and isoscalar (τ = 0) pn pairing energies in
medium mass N = Z nuclei produced at radioactive nuclear
beam facilities. The study of pn pairing energies is also
important in the astrophysical context. These nuclei lie along
the explosive rp-process nucleosynthesis path, and nuclear
properties such as masses, half-lives, and isomers have a strong
influence on modeling the rp process and identifying possible
nucleosynthesis sites. Odd-odd N = Z nuclei are an ideal
experimental laboratory for the study of pn pairing energies.
It is well known that the lowest τ = 0 and τ = 1 states
compete for the ground state, changing the sign of the energy
difference Eτ=1 − Eτ=0 in odd-odd N = Z nuclei, whereas
all even-even N = Z nuclei have τ = 0 ground states. Several
authors [1–7] have already pointed out that this degeneracy in
odd-odd N = Z nuclei reflects the delicate balance between
the symmetry energy and the like-nucleon neutron-neutron
(nn) [or proton-proton ( pp)] pairing energy. On the other hand,
it has recently been shown that this degeneracy is attributed
to competition between the isoscalar and isovector pairing
energies [8–10].

It has been recently reported [11,12] that the canonical
heat capacities extracted from observed level densities in
162Dy, 166Er, and 172Yb display the S shape with a peak
around T ≈ 0.5 MeV, which is interpreted as the breaking of
like-nucleon J = 0 pairs because the BCS critical temperature
corresponds to Tc ≈ 0.57�n(T = 0) ≈ 0.5 MeV, in which
the like-nucleon pairing gap �n(T = 0) is calculated at zero
temperature by the BCS theory. Thus it seems that the S shape
is a signature of pairing transition at the critical temperature.
For a finite Fermi system like a nucleus, however, because the
nuclear radius is much smaller than the coherence length of the
Cooper pair, statistical fluctuations beyond the mean field in
the BCS theory become large. The fluctuations smooth out the
sharp phase transition, and then the like-nucleon pairing gap
�n does not quickly become zero at the BCS critical
temperature but decreases with increasing temperature. There
are many approaches to treat the fluctuations beyond the
mean field. The shell-model calculation can take into account

the large fluctuations beyond the mean field. Recently the
shell-model Monte Carlo (SMMC) calculation [13,14], in
which the fp + g9/2 shell was used, has been performed in
the even- and odd-mass Fe isotopes.

We recently proposed [15] a “thermal” odd-even-mass
difference to estimate the like-nucleon pairing energy at a
finite temperature and showed in the spherical shell-model
calculations that the drastic suppression of like-nucleon pairing
energy that is due to finite temperature brings about the S shape
in the heat capacity arround the temperature Tc ≈ 0.57�n

(T = 0) MeV. In this rapid communication, we study the
pn pairing energies at finite temperature in odd-odd N = Z

nuclei. Does pairing transition that is due to the breaking of
pn pairs take place when the temperature increases? It is now
interesting to investigate the thermal behavior of the pn pairing
energies in N = Z nuclei.

We start from the double difference of binding energies
[16–18] defined as

�τ
pn(Z,N ) = 1

2 [B(Z,N )τ − B(Z,N − 1)

−B(Z − 1, N) + B(Z − 1, N − 1)], (1)

where B(Z,N ) is the binding energy. The indicator �τ=1
pn gives

the τ = 1 pn pairing gap in N = Z nuclei. The �τ=0
pn can be

regarded as the τ = 0 pn pairing gap as well. Figure 1(a)
shows the τ = 0 and τ = 1 pn pairing gaps estimated from the
double differences of experimental binding energies [Eq.(1)]
in odd-odd N = Z nuclei with A = 18 − 58. The τ = 0 pn
energy is somewhat larger than the τ = 1 pn energy in the
sd shell nuclei and vice versa in the pf shell nuclei. Over
a wide range of odd-odd N = Z nuclei, however, basically
Fig. 1 shows almost the same magnitude of the τ = 0 and
τ = 1 pn pairing gaps. We carried out shell-model calculations
by using isospin-invariant interactions such as the unified sd
(USD) interaction [19] for odd-odd N = Z nuclei in sd shell
and GXPF1 interactions [20] for 42Sc, 46V, and 50Mn in the
fp shell. On the mean-field level the ratio between the strengths
of pp, nn, and pn pair fields is given by the orientation of the
pair field. The relative strengths of three types of pair fields
becomes definite only when isospin symmetry is restored.
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FIG. 1. (Color online) τ = 0 and τ = 1 pn pairing gaps estimated
from double differences of binding energies for odd-odd N = Z

nuclei: (a) experimental ones; (b) those of shell-model calculations.
The solid and dotted curves show 122.25(1 − 1.67A−1/3)/A and
5.18A−1/3, respectively.

Note that the shell-model calculations with isospin invariance
show �τ=1

pp = �τ=1
nn = �τ=1

pn in odd-odd N = Z nuclei.
In Fig. 1(b), we can see that the shell-model results

reproduce well the experimental pn pairing gaps and describe
the characteristic behavior in Fig. 1(a). The pn pairing gaps
are closely related to the energy difference B(Z,N )τ=1 −
B(Z,N )τ=0 between the lowest τ = 0 and τ = 1 states in
odd-odd N = Z nuclei, because the energy difference satisfies
the following identity [9]:

B(Z,N )τ=1 − B(Z,N )τ=0 = 2
(
�τ=0

pn − �τ=1
pn

)
. (2)

Odd-odd N = Z nuclei with A < 40 have ground states with
τ = 0, J > 0, except for 34Cl, whereas the ground states of
odd-odd N = Z nuclei with 40 < A < 74 are τ = 1 and J = 0,
except for 58Cu. Several authors [1–3,5–7] discussed that this
degeneracy is attributed to the delicate balance between the
symmetry energy a(A)τ (τ + 1)/A and pairing gap � and that
the energy difference δB = B(Z,N )τ=1 − B(Z,N )τ=0 is ex-
pressed as δB = 2[a(A)/A − �]. However, if we employ the
symmetry-energy coefficient a(A) = 134.4(1 − 1.52A−1/3)
and pairing gap � = 5.18A−1/3 of the Duflo and Zuker mass
formula [21], the energy difference δB becomes larger than
the experimental value. As suggested in our previous paper,
the isoscalar pairing gap �τ=0

pn is approximately written as
122.25(1 − 1.67A−1/3)/A and the isovector one, �τ=1

pn , is
equal to the like-nucleon nn pairing gap �n ≈ 5.18A−1/3.
These two curves are shown in Fig. 1(b) for comparison.
Because δB = 2(�τ=1

pn − �τ=0
pn ), the degeneracy between the

lowest τ = 0 and τ = 1 states in odd-odd N = Z nuclei comes
from the delicate balance between the isoscalar and isovector
pn pairing energies.

Let us next describe the pn pairing gaps at finite temper-
ature. We introduce the canonical partition function defined
by

Z(T ) = Tr(e−H/T ) =
∞∑

i=0

e−Ei/T , (3)

where Ei is the energy of the ith eigenstate with degeneracies
based on symmetries for the Hamiltonian H of a system.
All the eigenvalues Ei are obtained from the solution of
the eigenvalue equations H�i = Ei�i . Then the partition
function in the canonical ensemble is calculated from Eq. (3),
and any thermodynamical quantities O(T ) can be evaluated
from

O(T ) = 〈O〉 = Tr(Oe−H/T )/Z(T ), (4)

where 〈O〉 is the average value of operator O over the range of
eigenstates. For instance, the thermal energy is expressed as

E(Z,N,T ) = 〈H 〉 =
∞∑

i=0

Eie
−Ei/T /Z(T ). (5)

The heat capacity is then given by

C(Z,N,T ) = ∂E(Z,N,T )

∂T
. (6)

We now introduce the following double difference of
thermal enegies E(Z,N,T ) analogous to Eq. (1) as an indicator
of pn pairing energies:

�τ
pn(Z,N,T ) = 1

2 [E(Z,N,T )τ − E(Z,N − 1,T )

−E(Z − 1, N,T ) + E(Z − 1, N − 1,T )].

(7)

The double differences of binding energies at zero temperature
in Eq. (1) are known theoretically and experimentally as
important quantities in the evaluation of the pn pairing energies
in a nucleus [16–18]. The double differences of thermal
energies in Eq. (7) are also indicators of the pn pairing energies
and can be regarded as the pn pairing gaps at finite temperature.

Let us evaluate the double difference of thermal energies
[Eq. (7)] for N = Z sd shell nuclei. We make numerical
calculations in two steps. First, we carry out the exact
shell-model calculations in the sd shell by using the USD
interaction [19] and calculate the correlated thermal energy
Ev,tr from Eq. (5). Second, we extend the model space to
a larger one (sd + fp + s1/2d5/2) in order to display the
double difference of thermal energies in a broader range of
temperature by using an independent-particle approximation
[14]. We obtain the single-particle energies of the extended
space by diagonalizing the Woods-Saxon potential with the
spin-orbit interaction [22], in which the harmonic-oscillator
eigenfunctions are used. The Woods-Saxon parameters are
chosen so as to reproduce the single-particle energies estimated
from 17O, because it is necessary to reasonably extrapolate
the single-particle energies of the sd shell to those of the
larger space. In this way, we combine the correlated thermal
energy Ev,tr in the truncated space with the thermal energy Esp

calculated with the independent-particle approximation in the
larger space. The thermal energy which takes account of the
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FIG. 2. Calculated thermal pn pairing gaps for odd-odd N = Z

nuclei at temperature T = 2.0 MeV. The solid circles denote the
τ = 0 pn pairing gap, and the open circles denote the τ = 1 pn pairing
gap.

interaction effects in the sd shell is estimated as follows [14]:

E = Ev,tr + Esp − Esp,tr, (8)

where Esp,tr is the thermal energy of the sd shell within
the independent-particle approximation. We now obtain the
double difference of thermal energies �τ

pn by substituting
E of Eq. (8) for E(Z,N,T ) in Eq. (7).

Figure 2 shows the calculated thermal pn pairing gaps for
odd-odd N = Z nuclei, 22Na, 26Al, 30P, and 34Cl at temperature
T = 2.0 MeV. The τ = 1 and τ = 0 pn pairing gaps are largely
separated at T = 2.0 MeV. Comparing Fig. 2 with Fig. 1(b),
we note that the τ = 1 pn pairing gap decreases but the τ = 0
pn pairing gap keeps the magnitude from zero temperature to
high temperature.

Figure 3 shows the variation of the thermal pn pairing gaps
depending on temperature T for 22Na, 26Al, 30P, and 34Cl. In all
graphs, we can see an increase in the τ = 0 pn pairing gap and
a decrease in the τ = 1 pn pairing gap. As already mentioned,
at zero temperature the τ = 0 and τ = 1 pn pairing gaps are
almost the same and the lowest τ = 0 and τ = 1 states are
degenerate. As the temperature increases, the τ = 1 pn pairing
gap decreases and the τ = 0 one rather increases. Thus we
know that the τ = 0 pairing energy becomes dominant at high
temperatures.

It would be valuable to discuss the symmetry energy
∼4asym(T )τ (τ + 1)/A at finite temperature because it is
closely related to the τ = 0 pairing energy. In our previous
paper [18], we suggested that the dominant part of the
symmetry energy comes from the τ = 0 pairing energy part
in the shell-model interaction energy. For the application of
the symmetry energy in core-collapse supernova simulations,
Donati et al. [23] pointed out the possibility that the symmetry-
energy coefficient asym at finite temperature has been estimated
to be somewhat larger than that of stable nuclei at zero
temperature. The increase (∼3%) of the symmetry energy
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FIG. 3. Calculated thermal pn pairing gaps for odd-odd N = Z

nuclei as a function of temperature. The solid line denotes the
τ = 0 pn pairing gap, and the dotted line the τ = 1 pn pairing
gap.

between T = 0.0 and T = 1.0 MeV after the correction
in the SMMC calculations is implemented is smaller than
that (∼8%) of the quasiparticle random-phase approximation
with temperature [24]. We now calculate the temperature
dependence of the symmetry energy by using the shell-model
calculations. We estimate the symmetry-energy coefficient
from the thermal energy E(Z,N,T )τ with isospin τ and
temperature T obtained in the shell-model calculations as
follows:

asym(T ) = E(Z,N,T )τ − E(Z,N,T )τ
′

τ (τ + 1) − τ ′(τ ′ + 1)
A, (9)

where τ and τ ′ are different isospins for isobaric nuclei with
same mass number A. At zero temperature, the calculated
symmetry-energy coefficient asym(T = 0) ∼ 16 MeV for A =
24 is in good agreement with the value determined from
experimental masses and with the empirical value of the Duflo
and Zuker mass formula.

Figure 4 shows the symmetry-energy coefficient asym

as a function of the temperature for even-even N ≈ Z

nuclei with mass numbers A = 20, 24, and 28, in which
several isobaric pairs of N ≈ Z nuclei such as (20Ne,20O),
(24Mg,24Ne), and (28Si,28Mg) are chosen. This figure shows
that the symmetry-energy coefficients increase with increasing
temperature in these three cases. Moreover, we can see that
the symmetry-energy coefficient depends on the mass A that
is empirically fitted by adding the surface contribution with the
A−1/3 dependence at zero temperature. This mass dependence
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FIG. 4. Symmetry-energy coefficient asym as a function of tem-
perature for N ≈ Z nuclei with mass numbers A = 20, 24, and 28.

appears in the τ = 0 pn pairing gap estimated from the double
difference of binding energies in Fig. 1(b). Figure 4 also
suggests that the mass dependence changes as temperature
increases. To see the temperature dependence of the symmetry-
energy coefficient, we define the relative change of the
symmetry-energy coefficient with respect to temperature as

δasym(T ) = asym(T ) − asym(T = 0)

asym(T = 0)
. (10)

Averaging the δasym(T ) at T = 1.0 MeV over various pairs of
nuclei, we obtain an increase of ∼4%. This is in agreement
with the SMMC result ∼3% obtained after the correction is

implemented. We used here the form of symmetry energy
τ (τ + 1), which is motivated by the charge independence of the
nuclear force. However, as a phenomenological parametriza-
tion, the isospin dependence τ (τ + α) with α �= 1 is also
possible, where the linear term in τ is the so-called Wigner
term. Recently, empirical fitting to the Wigner term gave
α = 1.25 in the vicinity of the N = Z line [2,25]. However, the
symmetry-energy coefficient is little affected when τ (τ + 1)
is replaced with τ (τ + 1.25). Moreover, by definition, the
relative change of the symmetry-energy coefficient δasym(T )
does not change by this replacement.

In conclusion, we investigated the τ = 0 and τ = 1
pn pairing energies at finite temperature by using the shell-
model calculations. The pn pairing gaps at finite temperature
were estimated from the double differences of thermal energies
defined by Eq. (7), which is analogous to the double differences
of binding energies as indicators of the pn pairing energies
at zero temperature. It was shown that as the temperature
increases the isoscalar pn pairing energy increases, whereas
the isovector pn pairing energy decreases. Almost the same
pn pairing gaps of stable N = Z nuclei at zero temperature
are separated with increasing temperature. We also studied
the temperature dependence of the symmetry energy in
N ≈ Z nuclei. The symmetry energy coefficients increase
with increasing temperature. The increase of the calcu-
lated symmtery-energy coefficient between T = 0.0 and T =
1.0 MeV is in good agreement with that of the SMMC
calculations. We suggest that the pn pairing energies can be
estimated by use of Eqs. (5) and (7) from the measured level
densities of nuclei. We expect that the pn pairing energies play
an important role in the astrophysics.
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