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A model-independent irreducible tensor formalism that was developed earlier to analyze measurements of
�p �p → pp π ◦ is extended to present a theoretical discussion of �p �p → pp ω and of ω polarization in pp → pp �ω
and in p �p → pp �ω. The recent measurement of an unpolarized differential cross section for pp → pp ω is
analyzed by use of this theoretical formalism.
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Experimental study of meson production in NN collisions
has attracted considerable interest during the past decade and a
half. The early measurements of total cross section [1] for pion
production were found surprisingly to be more than a factor
of 5 than the theoretical predictions [2]. At c.m. energies close
to threshold, the relative kinetic energies between the particles
in the final state are small, and therefore an analysis involves
only a few partial waves. On the other hand, a large momentum
transfer is involved when an additional particle is produced in
the final state, thus making the reaction sensitive to the features
of the NN interaction at short distances where the nucleons
start to overlap. When a heavier meson like ω is produced,
the overlapping region corresponds [3] to a distance of about
0.2 fm. It is also known that the short-range part of the NN
interaction is dominated by the ω exchange [4]. Consequently
a variety of theoretical models have been proposed [5] not
only to bridge the gap between theory and experiment, but
also to test results of QCD-based discussions of the NN inter-
action. According to the Okubo-Zweig-Iizuka (OZI) rule [6],
φ production relative to ω production is suppressed in the
absence of strange quarks in the initial state. This ratio R
has been measured [7] in view of the dramatic violations [8]
observed in p̄p collisions and compared with the theoretical
estimate [9] of 4.2 × 10−3 after correcting for the available
phase space. We may refer to [10] for modifications of the
rule. Apart from looking for the strange quark content of the
nucleon in the initial state, attention has also been focused on
resonance contributions [11–13] to vector-meson production
in NN collisions. The constituent quark models [14] predict
highly excited N∗ states that have not been seen in πN

scattering. This “missing resonance problem” [15] has also
catalyzed the experimental study of ω meson production in the
hope that the missing resonances may couple more strongly
or even exclusively to the ωN channel in comparison with
the πN channel, although ωN decay modes of resonances
have not been observed [16]. Also the cross sections of
vector-meson production enter as inputs into transport models
for dilepton emission in heavy-ion collisions that may in
turn be used to study the off-shell ω production and medium
modifications of the widths and masses of the resonances [13].

Meson production in NN collisions involves also spin state
transitions of the NN system, which do not occur in elastic
NN scattering. In pp → ppπ0, for example, the transition
of the pp system at threshold is from an initial-spin triplet
to a final-spin singlet state (3P0 → 1S0). Rapid advances in
experimental technology have led today to high-precision
measurements of spin observables [17] at several energies up to
400 MeV, employing beams of polarized protons on polarized
proton targets. A conclusive theoretical interpretation of
all these data has remained elusive, although the model
calculations appear to do better in the case of charged pion
production as compared with the neutral pion production, and
the agreement even there seems to deteriorate increasingly
at higher energies. It has been pointed out, both by Moskal
et al. [5] and Hanhart [5], that the extensive experimental
information available comes with a drawback that “apart
from rare cases, it is difficult to extract a particular piece of
information from the data.”

A model-independent irreducible tensor formalism [18] that
has been developed to analyze measurements on �p �p → ppπ0

at the complete kinematical double-differential level was
recently [19] made use of to estimate empirically the initial
singlet and triplet state contributions to the differential cross
section by use of the experimental results of Meyer et al. [17].
The preceding theoretical formalism leads, on integration, to
the relation derived earlier by Bilenky and Ryndin [20] for the
total cross sections. It was also shown [21] how the irreducible
tensor formalism could be utilized to effect spin filtering,
in general, for any scattering or reaction process employing
polarized beams of particles with arbitrary spin sb on polarized
targets with arbitrary spin st . The production of a heavy meson
like ω at and near threshold in �p �p collisions allows us to study
additional spin-dependent features of NN interactions at much
shorter distances. Unlike the pion, which is spinless, the ω has
spin 1, which permits us to make observations with regard to
its spin state, apart from measuring the angular distributions
in polarized beam and polarized target experiments. Experi-
mental data on total [22] and differential [23] cross sections
for pp → ppω have already been published and proposals
are underway [5,24] to study heavy meson production in
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NN collisions by use of polarized beams and targets at
COoler SYnchrotron (COSY).

The purpose of the present paper is to extend the earlier
work [18,19] on the model-independent approach based on
irreducible tensor techniques to study the spin state of the
meson in pp → pp �ω and p �p → pp �ω as well as the double-
differential cross section in the proposed polarized beam and
polarized target experiments.

Let pi denote the initial c.m. momentum, q the momentum
of the meson produced with spin-parity sπ , and pf the relative
momentum (1/2)( p1 − p2), between the two nucleons with
c.m. momenta p1 and p2 in the final state. The double-
differential cross section for meson production in c.m. may
be written as

d2σ = 2πD

v
Tr(Tρi T †), (1)

where D denotes the final three-particle density of states,
T denotes the on-energy-shell transition matrix and T † its
Hermitian conjugate, v = 4| pi |/E at c.m energy E, and ρi

denotes the initial spin density matrix,

ρi = 1
4 (1 + σ 1 · P)(1 + σ 2 · Q), (2)

if P and Q denote, respectively, the beam and target
polarizations. The notation σ (ξ, P, Q) is used in [17] to
denote Eq. (1). If si and sf denote the initial- and final-spin
states of the NN system, the initial and final channel spins
for the reaction are si and S, respectively, where S can
assume values S = |sf − s|, . . . , (sf + s). Making use of the
irreducible tensor operator techniques introduced in [25], we
may express T in the operator form:

T =
∑

α

(sf +si )∑
λ=|sf −si |

(S+si )∑
	=|S−si |

× ((Ss(s, 0) ⊗ Sλ(sf , si))
	 · T 	(α, λ)), (3)

where α = (S, sf , si) denotes collectively the spin variables.
The irreducible tensor amplitudes T 	

ν (α, λ) of rank 	, which
characterize the reaction, are given by

T 	
ν (α, λ) = W (ssf 	si ; Sλ)[λ]

∑
β

∑
j

T
j

α,β W (si liSL; j	)

× ((Yl(q̂) ⊗ Ylf ( p̂f ))L ⊗ Yli ( p̂i))
	
ν , (4)

in terms of the partial-wave amplitudes

T
j

α,β = (4π )3(−1)L+li+si−j [j ]2[S][s]−1[sf ]−1

×〈((llf )L(ssf )S)j ||T ||(lisi)j 〉, (5)

which depend on E and invariant mass W of the final NN
system. Total angular momentum j is conserved, and β =
(l, lf , L, li) denotes collectively the orbital angular momentum
l of the emitted meson, the initial and final relative orbital
angular momenta li and lf of the NN system, and the total
orbital angular momentum L in the final state, which takes
values L = |lf − l|, . . . , (lf + l). It may be noted that our
coupling of angular momenta in the final state differs from
that used by Meyer et al. [17] in the case of the production of
a meson with spin s = 0. The notation [λ] = √

2λ + 1 is used
apart from standard notation [26]. The preceding formalism
is readily extendable to arbitrary charge states of hadrons in
NN → NNx, where x represents a meson with isospin Is , if
we identify

T
j

α,β =
∑
Ii ,If

C
(

1
2

1
2Ii ; ν

i
1ν

i
2νi

)
C

(
1
2

1
2If ; νf

1 ν
f

2 νf

)

×C(If IsIi ; νf νsνi)T
If Ii j

α,β , (6)

where Ii and If denote, respectively, the initial- and final-
isospin quantum numbers of the NN system. We have Ii =
If = νi = νf = 1, here with Is = 0. The Pauli exclusion
principle and parity conservation restrict the summations
in Eqs. (3) and (4) to terms satisfying (−1)li+si+Ii = −1 =
(−1)lf +sf +If ; (−1)li = π (−1)lf +l . Thus the contributing par-
tial waves in pp → ppω at and near threshold may be taken
as shown in Table I, where we use the same notation as in [17],
viz., S, P,D, . . . , for li , lf = 0, 1, 2, . . . , and s, p, d, . . . , for
l = 0, 1, 2, . . . . We use S,P,D, . . . , for L = 0, 1, 2, . . . , in
the final state. We now express

ρi =
1∑

si ,s
′
i=0

(si+s ′
i )∑

k=|si−s ′
i |
(Sk(si, s

′
i) · I k(si, s

′
i)) (7)

in terms of irreducible tensor operators Sk
ν (si, s

′
i) and the initial

polarization tensors

I k
ν (si, s

′
i) =

1∑
k1,k2=0

F (P k1 ⊗ Qk2 )kν, (8)

TABLE I. The irreducible tensor amplitudes and the partial-wave contributions to pp → ppω close to threshold.

T 	
ν (α, λ) lf l L sf S j li si T

j

α,β Initial Final
pp state ppω state

T 1
ν (101; 1) 0 0 0 0 1 1 1 1 T 1

101;0001
3P1 (1Ss)3S1

T 1
ν (100; 0) 0 1 1 0 1 0 0 0 T 0

100;1010
1S0 (1Sp)3P0

0 1 1 0 1 2 2 0 T 2
100;1012

1D2 (1Sp)3P2

T 1
ν (110; 1) 1 0 1 1 1 0 0 0 T 0

110;0110
1S0 (3Ps)3P0

1 0 1 1 1 2 2 0 T 2
110;0112

1D2 (3Ps)3P2

T 2
ν (210; 1) 1 0 1 1 2 2 2 0 T 2

210;0112
1D2 (3Ps)5P2
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of rank k, using the notation P 0
0 = Q0

0 = 1 and P 1
ν ,Q1

ν to
denote the spherical components of P and Q, respectively,
and the factor

F = 1
2 (−1)k1+k2−k[k1][k2][s ′

i]




1
2

1
2 si

1
2

1
2 s ′

i

k1 k2 k




. (9)

Using known properties [25] of the irreducible tensor
operators and standard Racah techniques, we have

d2σ =
∑

α,α′,�,k

G (I k(si, s
′
i) · Bk(si, s

′
i)), (10)

in terms of the bilinear irreducible tensors

Bk
ν (si, s

′
i) = 2πD

v
(T 	(α, λ) ⊗ T †	′

(α′, λ′))kν (11)

of rank k and the geometrical factors

G = δsf s ′
f
[sf ]2[si][s]2(−1)λ+λ′+	′

[λ][	][λ′][	′]

×W (sλ	′k; 	λ′)W (s ′
iksf λ; siλ

′), (12)

where T †	
ν (α, λ) and the complex conjugates T 	

ν (α, λ)∗ of
Eq. (4) are related through T †	

ν (α, λ) = (−1)νT 	
−ν(α, λ)∗ and

� = (λ, λ′,	,	′).
Defining the partial contributions to d2σ through d2σ =∑
si ,s

′
i
d2σ (si, s

′
i) and using Eq. (8), we have

d2σ (0, 0) = d2σ0
1
4 (1 − P · Q)

[
1 +

√
3A0

0(11)
]
, (13)

d2σ (1, 1) = d2σ0
[

1
4 (3 + P · Q)

(
1 − 1√

3
A0

0(11)
)

+ 1
2 ((P + Q) · (A(10) + A(01)))

+ ((P 1 ⊗ Q1)2 · A2(11))
]
, (14)

d2σ (1, 0) + d2σ (0, 1)

= d2σ0
[

1
2 ((P − Q) · (A(10) − A(01)))

+ ((P 1 ⊗ Q1)1 · A1(11))
]
, (15)

which add up to give Eq. (10) in the form

d2σ = d2σ0[1 + P · A(10) + Q · A(01)

+
2∑

k=0

((P 1 ⊗ Q1)k · Ak(11))], (16)

where the unpolarized double-differential cross section,

d2σ0 = 1

4

∑
α,λ,	

(−1)	[sf ]2[s]2[	]B0
0(si, si), (17)

is denoted as σ0(ξ ) in [17]. The beam and target analyzing pow-
ers A(01) and A(10) are represented by the irreducible tensors
A1

ν(10) and A1
ν(01), respectively, and the spin correlations by

Ak
ν(11) of rank k = 0, 1, 2. We have

d2σ0A
k
ν(k1k2) =

∑
α,α′,�

FGBk
ν (si, s

′
i). (18)

Our Ak
ν(k1k2) are given, in terms of the notation of Meyer

et al. [17], by

A1
0(10) = Az0(ξ ), A1

0(01) = A0z(ξ ),

A1
±1(10) = ∓ 1√

2
[Ax0(ξ ) ± iAy0(ξ )],

A1
±1(01) = ∓ 1√

2
[A0x(ξ ) ± iA0y(ξ )],

A0
0(11) = − 1√

3
[A�(ξ ) + Azz(ξ )],

A1
0(11) = − i√

2
A�(ξ ), (19)

A1
±1(11) = 1

2 [(Axz(ξ ) − Azx(ξ )) ± i(Ayz(ξ ) − Azy(ξ ))],

A2
0(11) = 1√

6
[2Azz(ξ ) − A�(ξ )],

A2
±1(11) = ∓ 1

2 [(Axz(ξ ) + Azx(ξ )) ± i(Ayz(ξ ) + Azy(ξ ))],

A2
±2(11) = 1

2 [A�(ξ ) ± i(Axy(ξ ) + Ayx(ξ ))],

where Aij (ξ ), i, j = 0, x, y, z are the same as in Eq. (4) of [17]
and A�,A�, and A� are defined by Eq. (5) of [17].

At a �p �p facility similar to Polarized INternal Tar-
get Experiment (PINTEX) at Indiana University Cyclotron
Facility (IUCF), but with sufficiently high energies E, it
should therefore be possible to determine Eqs. (13)–(15)
individually, apart from Eqs. (16) and (17). It is interesting
to note from Table I that only the T 1

ν (101; 1) from the
initial state 3P1 contribute to Eq. (14) and hence |T 1

101;0001|2
can be determined empirically, whereas Eq. (15) obtains
contributions to the interference of T 1

101;0001 with all the
other five singlet amplitudes, which by themselves determine
Eq. (13). Moreover, we note that d2σ0 given by Eq. (17) may
itself be decomposed into

∑
si ,mi

2si+1(d2σ0)mi
, where

1(d2σ0)0 = d2σ0

4

[
1 +

√
3A0

0(11)
]
, (20)

3(d2σ0)0 = d2σ0

4

[
1 − 1√

3
A0

0(11) − 2
√

2√
3
A2

0(11)
]
, (21)

3(d2σ0)±1 = d2σ0

4

[
1 − 1√

3
A0

0(11) +
√

2
3A2

0(11)
]
, (22)

which represent physically the double-differential cross sec-
tion for pp → ppω from the initial-spin states |00〉 and
|1m〉,m = 0,±1. Clearly, measurements of σ0(ξ ), Azz, and A�

are sufficient to determine Eqs. (20)–(22) individually.
Finally, we may characterize the state of polarization of

the ω meson in pp → pp �ω by the density matrix ρs , whose
elements are given by

ρs
µµ′ = 2πD

v

1

4

∑
sf

∑
mf

〈sµ; sf mf |T T †|sµ′; sf mf 〉. (23)

When ρs is expressed in the standard [27] form,

ρs = 1

2s + 1

2s∑
k=0

(τ k · t k), (24)

in terms of τ k
ν ≡ Sk

ν (s, s), the Fano statistical tensors tkν are
given by

t kν = 1

4

∑
α,λ,	,	′

(−1)λ−s[sf ]2[s]3[	][	′]

×W (s	s	′; λk)Bk
ν (si, si), (25)

at the double-differential level. It may be noted that ρs is
unnormalized so that Eq. (25) with k = 0 leads to Eq. (17).
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The vector and tensor polarizations of ω (with s = 1) are
readily obtained by setting k = 1, 2 respectively, in Eq. (25).

It is worth noting that one may measure the Fano statistical
tensors t kν by looking at the decay ω → π0γ [16], with a
branching ratio of 8.92 %. The angular distribution of circu-
larly polarized radiation emitted by polarized ω is proportional
to

Ip(θγ , ϕγ ) =
2∑

k=0

1

[k]
C(11k; p,−p)Fk(θγ , ϕγ ), (26)

where p = ±1 correspond, respectively, to left and right
circular polarizations as defined by Rose [26] and

Fk(θγ , ϕγ ) =
k∑

q=−k

(−1)q tkq Yk−q(θγ , ϕγ ), (27)

where (θγ , ϕγ ) denote the polar angles of the direction of
γ emission in the same frame of reference in which t kq are
given. If no observation is made on the polarization of the
radiation, the intensity is proportional to

∑
p

Ip(θγ , ϕγ ) =
∑
k=0,2

2

[k]
C(11k; 1,−1)Fk(θγ , ϕγ ), (28)

from which it is clear that the tensor polarization can be
measured from the anisotropy of the angular distribution. On
the other hand, the circular polarization asymmetry,

�(θγ , ϕγ ) = I−p(θγ , ϕγ ) − Ip(θγ , ϕγ ) =
√

2F1(θγ , ϕγ ), (29)

enables the measurement of vector polarization.
If the polarization of the ω meson is measured with a

nucleon polarized initially, we may express

t kν =
∑
ν ′

D(k, ν; 1, ν ′)P 1
ν ′ ; k = 1, 2 (30)

in terms of the spin transfers

D(k, ν; 1, ν ′) =
∑

ζ

HC(1	′′k; ν ′ν ′′ν)B	′′
ν ′′ (si, s

′
i), (31)

where ζ ≡ (α, α′, λ, λ′,	,	′,	′′, k′) and

H = −1

8

√
3

2
(−1)λ+λ′+k′−k[s]3[sf ]2[si][s

′
i][λ]

× [λ′][	][	′][	′′][k′]2W (sλk′1; 	λ′)
×W (s ′

i1sf λ; siλ
′)W (1	k	′; k′	′′)

×W (sλ′k	′; k′s)W
(
s ′
i

1
2 1 1

2 ; 1
2 si

)
(32)

if the beam is polarized. If the target is polarized, we may
replace P 1

ν with Q1
ν in Eq. (30) and attach a factor (−1)s

′
i−si

to H.
Denoting the six T

j

αβ in Table I serially as T1 – T6, the
irreducible tensor amplitudes T 	

ν (α, λ) that describe pp →
ppω close to threshold are explicitly given by

T 1
ν (101; 1) = 1

24π3/2
T1δν0, (33)

T 1
ν (100; 0) = 1

12π

[
T2 + 3ν2 − 2√

10
T3

]
Y1ν(q̂), (34)

T 1
ν (110; 1) = 1

12π

[
T4 + 3ν2 − 2√

10
T5

]
Y1ν( p̂f ), (35)

T 2
ν (210; 1) = 1

20
√

6π
ν(4 − ν2)1/2T6Y1ν( p̂f ), (36)

as Ylimi
( p̂i) = ([li]/

√
4π )δmi0, if we choose the beam direction

as the z axis. All the observables considered in the preceding
discussion are readily evaluated by use of Eqs. (33)–(36)
in terms of the six partial-wave amplitudes and the angles
characterizing q and pf . The unpolarized differential cross
section measured in [23] is readily evaluated after Eq. (17) is
integrated with respect to d�pf

dε, where ε = W − 2M , and
we have

dσ0 = a0 + a2 cos2 θ, (37)

where a0 derives contributions from all the irreducible
tensor amplitudes, whereas T 1

ν (100; 0) alone, which pro-
duces the meson in the p wave, contributes to a2. The
existing data [23] are in good agreement with the form
of Eq. (37), which hence provides clear evidence for the
presence of the initial-spin singlet amplitude T 1

ν (100; 0) given
by Eq. (34) in addition to the initial-spin triplet threshold
amplitude T 1

ν (101; 1) given by Eq. (33). If we can assume
that the contribution of T 1

ν (110; 1) and T 2
ν (210; 1) is small

or negligible, a0 and a2 involve the bilinear combinations
[|T1|2 + 3|T2 + 1√

10
T3|2] and [ |T3|2 − 2

√
10�(T2T

∗
3 )] of the

partial-wave amplitudes duly integrated with respect to ε. If
we measure not only the angular distribution of ω but also
its energy, we can dispense with the integration with respect
to ε.

Integrating the right-hand side of Eq. (18) with respect to
d�pf

and equating it to dσ0A
k
ν(k1k2) defines the analyzing

powers at the d3q level. It is interesting to note that the
Wigner 9j symbol in Eq. (9) ensures that the initial-spin
triplet amplitude [Eq. (33)] alone contributes to A2

0(11), a
measurement of which determines |T1|2. Knowledge of |T1|2
leads to a determination of |T2 + 1√

10
T3|2 with the preceding

expression used for a0. Moreover, it is interesting to note that
A(10) − A(01) or A(11) are proportional to the interference
of the initial-spin triplet amplitude T 1

ν (101; 1) with the initial-
spin singlet amplitude T 1

ν (100; 0). This leads to a bilinear
involving T1 with T2 + 1√

10
T3. Likewise, t kν at the d3q level are

also obtained on integration of Eq. (25) or (30) with respect
to d�pf

. There is as yet no data available on any of the spin
observables.
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