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Axial-vector mesons in a relativistic point-form approach

A. Krassnigg
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 5 December 2004; revised manuscript received 9 June 2005; published 16 August 2005)

The Poincaré invariant coupled-channel formalism for two-particle systems interacting via one-particle
exchange, which has been developed and applied to vector mesons, is now applied to axial vector mesons.
We thereby extend the previous study of a dynamical treatment of the Goldstone-boson exchange by comparison
with the commonly used instantaneous approximation to the case of orbital angular momentum l = 1. Effects in
the mass shifts show more variations than for the vector-meson case. Results for the decay widths are sizable,
but comparison with sparse experimental data is inconclusive.
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During the past years, constituent quark models have
been used successfully to calculate spectra and properties of
hadrons. In the course of the development of these models,
relativity has emerged as a key ingredient in the light-quark
sector. This has found early consideration; e.g., the well-known
works of Godfrey and Isgur [1] and Capstick and Isgur [2]
introduced relativistic corrections in a nonrelativistic potential
model; Feynman et al. [3] based their model on a relativistic
harmonic oscillator; and Carlson et al. [4] used relativistic
kinetic energies plus flux-tube motivated potential terms. In
the particular case of the Goldstone-boson-exchange (GBE)
constituent-quark model (CQM) [5], the early nonrelativistic
formulation Refs. [6,7] showed severe inconsistencies and
was soon superseded by a “semirelativistic” version [8]. In
the semirelativistic treatment, the Hamiltonian of the model
contains the relativistic kinetic energy plus potential terms, and
it can in fact be reinterpreted as the mass operator of a Poincaré
invariant model as long as the potential terms are rotationally
invariant and do not depend on the total momentum of the
bound state [9]. In this form, the GBE CQM has been applied
to spectroscopy of the light and strange baryon sector with
wide success; however, an analogous calculation for mesons
seemed to indicate failure of the model in this sector [10]. Only
recently [11] has a Poincaré invariant coupled-channel (CC)
formalism for confined two-particle systems interacting via
one-particle exchange been shown to elucidate the relevance
and applicability of the GBE CQM for vector mesons.

Aside from spectroscopy, the semirelativistic GBE CQM
has also been used to determine hadronic decay widths of
baryons using perturbative calculations employing elementary
emission [12–14] (without introducing additional parameters)
and also pair creation (one additional parameter) models
[15]. At that stage, a satisfactory description of experimental
data was impossible. A relativistic treatment of hadronic
decays in an elementary-emission-type model seemed natural
[16], and recently a Lorentz invariant decay model along
the point-form spectator approximation has been suggested
in Refs. [17,18]. It was observed that, in general, the theoretical
results considerably underestimated the experimental data. In
light of these results, the next natural step is to couple the
decay channels explicitly to the qqq (for baryons) and q̄q

(for mesons) channels. In Refs. [11,19,20], a study of vector
mesons has been done to investigate the effects of such a

dynamical treatment of the exchange particle in the GBE in a
Poincaré invariant framework both in terms of mass shifts and
decay widths. The semirelativistic form of the model produces
a much too large mass splitting of � and ω. This flaw is removed
in the CC treatment, leading to small mass shifts from the GBE
in vector mesons, which confirms the expectation that this type
of interaction should not contribute much to the binding of such
states. Regarding hadronic decays, the situation is difficult to
judge with regard to comparison with experimental data, since
for only one branching ratio, which can be calculated in the
model [11], are data actually available [21].

In the present work, we follow Ref. [11], which contains
the details of all aspects of the formalism and model used
here, applying those to axial-vector mesons with quantum
numbers JPC = 1++ and JPC = 1+− as well as the strange
sector via mixing of the states with the respective quantum
numbers. The results identify dynamical effects for l = 1 and
enable the calculation of more hadronic decay widths within
the restrictions of the states contained in the model. While
the formalism could be applied to other mesons with l = 1
as well, axial vectors are most suitable for this study: their
ground- and first-excited-state masses are best matched by the
model’s confinement piece, and the structure of the hyperfine
interaction remains rather simple.

We will briefly review the main ingredients of the model,
present and discuss the results, and propose conclusions.

The central point of the CC treatment described in Ref. [11]
is the CC mass operator, which is defined on the little Hilbert
space of the direct sum of Hq̄q (quark-antiquark) and Hq̄q�

(quark-antiquark-pseudoscalar meson) as

M = Mc + MI =
(
Dc

q̄q 0
0 Dc

q̄q�

)
+

(
0 K†

K 0

)
. (1)

Here Mc represents the diagonal part of M, which includes
the confinement interaction such that in both the q̄q and
q̄q� channels the q̄q pair is confined. MI contains a vertex
piece K and its Hermitian adjoint as defined in Eqs. (31) and
(32) of Ref. [11]. This mass operator constitutes a quantum
mechanical setup of a model with a finite number of degrees
of freedom. Further channels (e.g., featuring Dq̄q��) could
in principle be included but are not for the sake of simplicity.
This is a valid approach, since contributions from the hyperfine
interaction resulting from the coupling K are small with respect
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to those from the confinement piece. When the eigenvalue
equation for M is reduced to the q̄q channel, one obtains the
effective interaction term on the right-hand side of

(
Dc

q̄q − m
)|�q̄q〉 = K†(Dc

q̄q� − m
)−1

K|�q̄q〉. (2)

In this equation, m is the eigenvalue and appears also
in the effective interaction term. We note here that the
interaction contains terms that correspond to the exchange
of a pseudoscalar meson � inside the q̄q pair and others,
in which the pseudoscalar meson � couples to the same
constituent twice. We will refer to the latter as “loop
terms.” The particular form and choices for the operators in
Eq. (2) and their matrix elements are described in detail in
the appendix of Ref. [11]. Extending the model with the
parameters established in the vector-meson sector to the axial
vectors gives rise to the question of the need for readjustment
of some of the parameters. Already for the vector-meson
calculation, the parameters used in the exchange part of the
interaction were taken without change from the semirelativistic
GBE CQM in [8], and we have kept them the same here
as well. This includes the definition and parameters of the
quark-meson vertex form factors which determine the range
of the � exchange. For the confinement piece, a harmonic
oscillator (HO) model was used in M2 for two reasons: first,
the HO mass operator’s eigenvalues and eigensolutions are
analytically known, which facilitates the calculations; second,
it mimicks the spectrum of a linear confinement potential for
M. The actual form used in Ref. [11] is

Dc
q̄q → Mnl =

√
8 a2 (2n + l + 3/2) + V0 + 4m̄2, (3)

where m̄2 is determined by the constituent quark masses, and
n and l are the radial and orbital angular momentum quantum
numbers, respectively. a is the confinement strength and V0

a constant used to fix the mass of the � ground state to its
physical value. a was adjusted such that the splitting of the �

ground and first excited states was reproduced. It should be
noted here that this is not the best possible choice for Dc

q̄q in
terms of an accurate fit to experimental data for higher excited
states. However, the main emphasis of our studies still lies
on the effects of a dynamical treatment of the one-particle
exchange as compared to an instantaneous approximation
(IA). Therefore, Dc

q̄q is sufficient for the present purpose. In
principle, one could choose any confinement operator that
is diagonal in the basis of Eq. (2), satisfies the (in our case
point-form) Bakamjian-Thomas requirements [9], and has
known solutions and can therefore be used to discretize the
problem.

In an attempt to extend the basic HO piece of the model
beyond the vector-meson sector, one can use the concept of
Regge trajectories [22]. This approach has already been used in
Ref. [3] and recently in the context of relativistic Hamiltonian
dynamics [23]. If one uses such a trajectory, which contains
the � ground state, to determine the parameters a and V0,
one finds that the parameter set established for the vector
mesons does not need to be changed. The parameters used
in all calculations presented here are thus a = 312 MeV and
V0 = −1.04115 GeV2. This completes the summary of the
model definitions.

In the calculations we make two approximations. First, we
do not treat the loop contributions in the effective interaction
explicitly. This is motivated by the assumption that their effects
can be accounted for via a change in the constituent-quark
mass. An explicit treatment of these terms is an extension
of the model which will be incorporated in future studies.
Second, some of the matrix elements occurring in Eq. (2)
contain Wigner rotations, which come from the overlap of
the various sets of basis states used in the computation of the
effective interaction, see Eq. (A16) in Ref. [11]. We neglect
these rotations because, while the numerical effort to include
them is considerable, their effects have been found to be small
compared to boost effects in calculations of electromagnetic
form factors of the nucleon [24].

We have obtained results for the axial-vector states with
quantum numbers JPC = 1++ and JPC = 1+− by solving
the eigenvalue equation for M numerically. For quark-model
mesons, one has the relations P = (−1)l+1 and C = (−1)l+s ,
where l is the orbital angular momentum and s the total spin of
the constituents. For JPC = 1++, this entails s = 1, l = 1; the
physical states corresponding to this set of quantum numbers
are the f1 (with isospin I = 0), a1 (I = 1), and K1A (I = 1/2).
For JPC = 1+−, one gets s = 0, l = 1 with the associated
particles h1 (I = 0), b1 (I = 1), and K1B (I = 1/2). Within
the isospin 0 channels, we assume ideal mixing between the
octet and singlet SU(3)-flavor configurations, meaning that the
h1 as well as the f1 spectra each contain both pure n̄n and s̄s

states (in the usual notation, n here denotes light quarks). In
the strange sector, the physical states of the K1 spectrum are
mixtures of the K1A and K1B , since they are not charge-parity
eigenstates. In our treatment of this mixing, we follow Blundell
et al. [25]. The results are presented in Fig. 1 in six “columns”
for each set of quantum numbers; the experimental values [21]
are depicted in the first column (denoted by the particle names)
by boxes indicating the experimental uncertainties; the second
to sixth columns contain results for pure oscillator (O), CC
calculation with vertex form factor (Cf), CC calculation with
the form factor set = 1 (C1), an instantaneous approximation
with vertex form factor (If), and the IA calculation with the
form factor set = 1 (I1). These are the same categories as
presented in Ref. [11]; also see this reference for details.

In the vector-meson sector [11], the q̄q states have mainly
orbital angular momentum l = 0 with small admixtures of
l = 2. There the main observation was that generally the CC
treatment produces smaller mass shifts than the IA, including
the prominent case of the ω ground state. For axial-vector
mesons, one always has l = 1 and the observations about mass
shifts are different, except that the main differences between
CC treatment and IA can be found in the isoscalar channels;
this is not surprising, because one-pion exchange is strongest
in these channels and the light mass of the exchange particle
plays a central role in the dynamical setup.

In general, the dependence of the mass shifts on the use of
a form factor at the quark-meson vertex is smaller in the CC
treatment than in the IA. This is true in particular for the case
of the h1 meson, where for the IA the shifts with and without
the form factor have opposite sign. For the b1, a different
sign change appears: while the CC shifts are positive, the IA
ones are negative (although in both cases the shifts are small).
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FIG. 1. Results for axial-vector meson spec-
tra: Experimental data with uncertainties (parti-
cle name), oscillator (O), CC with vertex form
factor (Cf), CC with FF = 1 (C1), instantaneous
approximation with vertex FF (If), and IA with
FF = 1 (I1).

In the f1 spectrum, one observes that mass shifts using the
form factor are larger for the CC than the IA results, and the
same seems to apply to the results without the form factor
except for the first s̄s state. This is opposite to the general
observation for vector mesons. The reason for these variety of
effects lies in the complexity of the dynamical setup for the
CC formalism in connection with the wave functions for l = 1
states. On different ranges of the relative momentum between
the q and the q̄, these can have support of different sign, which
gets modified in addition via the kinematical relations used in
the calculation as apparent from Eq. (A16) in Ref. [11].

The results for the decay widths are larger than in the
vector-meson case. However, similarly to the latter there is
only one branching ratio in Ref. [21] to which we can compare
our results, although most of the decays are regarded as
“seen.” Our results are generally of the order of ≈20 to
90 MeV. The known branching ratio is that of the b1(1235) with
� = 142 ± 9 MeV, which decays dominantly into channels
contained in our model; our result is 33 MeV with and
42 MeV without the form factor, underestimating experimental
data by about a factor of 4.

We have applied the Poincaré invariant coupled-channel
(CC) formalism of Ref. [11] to the sector of axial-vector
mesons. The axial-vector quantum numbers JPC = 1++/1+−
both imply orbital angular momentum l = 1 for the q̄q pair.
The effects of the dynamical treatment of the one-boson
exchange (OBE) as compared to the instantaneous approxi-
mation (IA) reveals different characteristics as compared to
the case of vector mesons (mainly l = 0). There are four
main observations: (i) As in the case of vector mesons, the
effects are strongest in the isoscalar channels, since there
one-pion exchange dominates and it is very sensitive to
the dynamical setup because of the light pion mass. (ii) In
the h1 spectrum, the use of a vertex form factor (as compared
to a form factor = 1) changes the sign of the mass shift
from the meson exchange in the IA, while the CC results
have the same sign and magnitude regardless of the details of
the form factor. (iii) In the f1 spectrum, the CC mass shifts
are larger than the IA ones—opposite to the general trend

(including the vector mesons). (iv) In the a1 spectrum, the CC
shifts have the opposite sign as compared to the IA ones. The
main conclusion from this collection of observations must be
that results from a dynamical CC treatment of one-particle
exchange can differ significantly, both in magnitude and sign,
in channels where this exchange is important. The results for
the decay widths are sizable, but comparison with experimental
data is inconclusive: the only data point with definite value [for
the b1(1235)] is underestimated by a factor of 4. This supports
the conclusion drawn in Ref. [11] from an analogous situation
in the ω(1420) case: the calculations could be improved by
explicitly including the loop contributions from the interaction
in Eq. (2) and/or taking into account final-state interactions.

These conclusions strongly suggest analogous investiga-
tions of qqq systems in this context, since such a dynamical,
Poincaré invariant treatment of OBE in the baryon sector is
still missing. In Ref. [11] and the present work, the path
is laid out and also a possible intermediate step has been
identified [26]. We note here that a treatment along the lines of
the stochastic variational method [27] used to date in the GBE
CQM [8] seems impossible because of the high dimensions and
numerical nature of the integrations involved in the solution
of the CC problem. A more promising approach is of the
Faddeev type along the lines of Ref. [28]. It is important to
proceed in this direction because a dynamical treatment of the
OBE in baryons will yield hadronic baryon decay widths in a
nonperturbative way, which could remedy their unsatisfactory
description at the present stage of the model. Furthermore,
given the limited comparison to experimental data of hadronic
meson decays predicted by the present work and in Ref. [11]
as well as the importance of GBE in the baryon sector, an
analogous investigation of baryons will clarify the full impact
of a dynamical treatment of OBE-type interactions.
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