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Evaluation of the ππ-scattering amplitude in the σ -channel at finite density
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The ππ scattering amplitude in the σ -channel is studied at finite baryonic density in the framework of a
chiral unitary approach which successfully reproduces the meson meson phase shifts and generates the f0 and
σ resonances in vacuum. We address here a new variety of mechanisms recently suggested to modify the
ππ interaction in the medium, as well as the role of the s–wave selfenergy, in addition to the p–wave, in the
dressing of the pion propagators.
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I. INTRODUCTION

In the last years, several theoretical approaches have
predicted strong medium effects on the pion pion interaction
in the scalar isoscalar (σ ) channel.

In Ref. [1], Hatsuda et al. studied the σ propagator in the
linear σ model and found an enhanced and narrow spectral
function near the 2π threshold caused by the partial restoration
of the chiral symmetry, where mσ would approach mπ . The
same conclusions were reached using the nonlinear chiral
Lagrangians in Ref. [2].

Similar results, with large enhancements in the
ππ amplitude around the 2π threshold, have been found in
a quite different approach by studying the s–wave, I = 0
ππ correlations in nuclear matter [3–6]. In these cases the
modifications of the σ channel are induced by the strong
p–wave coupling of the pions to the particle-hole ( ph)
and �-hole (�h) nuclear excitations. It was pointed out in
Refs. [7,8] that this attractive σ self-energy induced by
the π renormalization in the nuclear medium could be
complementary to additional s–wave renormalizations of the
kind discussed in Refs. [1,2] calling for even larger effects.

On the experimental side, there are also several results
showing strong medium effects in the σ channel at low invari-
ant masses in the A(π, 2π ) [9–13] and A(γ, 2π ) [14] reactions.
At the moment, the cleanest signal probably corresponds to the
A(γ, 2π0) reaction, which shows large density effects that had
been predicted in both shape and size in Ref. [15], using a
model for the ππ final state interaction along the lines of the
present work. Note, however, that a part of the spectrum modi-
fication could be due to quasielastic collisions of the pion [16].

Our aim in this paper is to study the ππ scattering in
the scalar isoscalar (σ ) channel at finite densities in the
context of the model developed in Refs. [17–22]. These works,
which provide an economical and successful description of
a wide range of hadronic phenomenology, use as input the
lowest orders of the Lagrangian of chiral perturbation theory
(χPT) [23] and calculate meson meson scattering in a coupled
channels unitary way. Some nuclear medium effects, namely
the p–wave coupling of the pions to the particle hole ( ph) and
delta hole (�h) excitations, were implemented in this frame-
work in Refs. [6,24]. As in other approaches, large medium
effects were found as reflected in the imaginary part of the
ππ scattering amplitude which showed a clear shift of strength

towards low energies as the density increases. Although this
model was able to predict the size of the medium effects on the
(γ, 2π ) reaction [15], it was pointed out that some probably
large contributions related to nucleon tadpole diagrams [2]
and some vertex corrections [30] were missing. In this work,
we will include those pieces and analize its influence in the
ππ scattering amplitude at finite nuclear densities.

In the next section we present, for the sake of completeness,
a brief description of the model used for the ππ interaction
both in vacuum and in a dense medium, which is already
published elsewhere [6,24]. In Sec. III we consider further
contributions to the ππ interaction in the nuclear medium,
associated to higher order terms in the chiral Lagrangian
than those included in Refs. [6,24], and some baryonic vertex
corrections advocated in Ref. [30].

II. ππ INTERACTION

In this section we summarize the method of Ref. [22] for
ππ interaction in vacuum and Refs. [6,24] for the nuclear
medium effects. Additional information on this and related
approaches for different spin isospin channels can be found in
Refs. [19,20,22,25].

A. Vacuum

The basic idea is to solve a Bethe Salpeter (BS) equation,
which guarantees unitarity, matching the low energy results to
χPT predictions. We consider two coupled channels, ππ and
KK̄ and neglect the ηη channel which is not relevant at the
low energies we are interested in.

The BS equation is given by

T = V + V GT. (1)

Equation (1) is a matrix integral equation which involves the
two mesons one loop divergent integral (see Fig. 1), where
V and T appear off shell. However, for this channel both
functions can be factorized on shell out of the integral. The
remaining off shell part can be absorbed by a renormalization
of the coupling constants as it was shown in Refs. [22,26].
Thus, the BS equation becomes purely algebraic and the VGT
term, originally inside the loop integral, becomes then the
product of V,G, and T, with V and T the on shell amplitudes
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+ + + ...
FIG. 1. Diagrammatic representation of the

Bethe Salpeter equation.

independent of the integration variables, and G given by the
expression

Gii(P ) = i

∫
d4q

(2π )4

1

q2 − m2
1i + iε

1

(P − q)2 − m2
2i + iε

,

(2)

where P is the momentum of the meson meson system. This
integral is regularized with a cutoff (�) adjusted to optimize
the fit to the ππ phase shifts (� = 1.03 GeV).

The potential V appearing in the BS equation is taken from
the lowest order chiral Lagrangian

L2 = 1
12f 2 〈(∂µ

 − 
∂µ
)2 + M
4〉, (3)

where the symbol 〈 〉 indicates the trace in flavor space, f is the
pion decay constant, and 
,M are the pseudoscalar meson and
mass SU(3) matrices. This model reproduces well phase shifts
and inelasticities up to about 1.2 GeV. The σ and f0(980) res-
onances appear as poles of the scattering amplitude in L = 0,

I = 0. The coupling of channels is essential to produce the
f0(980) resonance, while the σ pole is little affected by the
coupling of the pions to KK̄ [22].

B. The nuclear medium

As we are mainly interested in the low energy region, which
is not very sensitive to the kaon channels, we will only consider
the nuclear medium effects on the pions. The main changes
of the pion propagation in the nuclear medium come from
the p–wave self-energy, produced basically by the coupling
of pions to particle-hole ( ph) and Delta-hole (�h) excitations.
For a pion of momentum q it is given by

�(q) =
(

D+F
2f

)2
�q 2U (q)

1 −
(

D+F
2f

)2
g′U (q)

(4)

with g′ = 0.7 the Landau-Migdal parameter, U (q) the
Lindhard function, and (D + F ) = 1.257. The expressions for
the Lindhard functions are taken from Ref. [27].

Thus, the in-medium BS equation will include the diagrams
of Fig. 2 where the solid line bubbles represent the ph and
�h excitations.

In fact, as it was shown in [28], the contact terms with the
ph (�h) excitations of diagrams (b)–(d) cancel the off-shell
contribution from the meson meson vertices in the term of
Fig. 2(a). Hence, we just need to calculate the diagrams of the
free type (Fig. 1) and those of Fig. 2(a) with the amplitudes
factorized on shell. Therefore, at first order in the baryon

density, we are left with simple meson propagator corrections
which can be readily incorporated by changing the meson
vacuum propagators by the in medium ones.

The ππ scattering amplitude obtained using this model
exhibits a strong shift towards low energies. In Fig. 3, we show
the imaginary part of this amplitude for several densities. Quite
similar results have been found using different models [5] and
it has been suggested that this accumulation of strength, close
to the pion threshold, could reflect a shift of the σ pole which
would approach the mass of the pion.

Other pion self-energy contributions related to 2ph exci-
tations, and thus proportional to ρ2, can be incorporated in
the pion propagator. As we are most interested in the region
of low energies we can take as estimation the corresponding
piece of the optical potentials obtained from pionic atoms data,
following the procedure of Ref. [6] and substituting in Eq. (4)(

D + F

2f

)2

U (q) −→
(

D + F

2f

)2

U (q) − 4πC∗
0ρ2 (5)

with ρ the nuclear density and C∗
0 = (0.105 + i0.096)m−6

π . Its
effects are small except at large densities as can be appreciated
by comparing Fig. 3, with Fig. 7 of Ref. [6] where this piece
is included.

III. FURTHER CONTRIBUTIONS

A. Higher order tadpole and related terms

The chiral Lagrangian generates tadpole terms that could
contribute to the pion self-energy and also in the form of vertex
corrections as in Fig. 4. At the lowest order these terms vanish
in isospin symmetric nuclear matter [24]. However, at next
order there are terms which provide some contribution. The
complete structure of the higher order Lagrangian adapted
to the πN system can be seen in Ref. [29]. The medium
corrections associated to these new Lagrangian terms in the
π nucleus interaction were studied in [40] and interpreted in
terms of changes of the time and space components of f and
changes of the pion mass in the medium. Further developments
in this direction are done in Ref. [30].

The repercussion of these terms in ππ scattering in the
nuclear medium has been considered in Ref. [2] and we
follow here the same steps. We start from the second order
πN Lagrangian relevant for the isoscalar sector

L(2)
πN = c3N̄ (uµuµ)N +

(
c2 − g2

A

8mN

)
N̄ (vµuµ)2N

+ c1N̄NTr(U †χ + χ †U ) + · · · , (6)

+ + + ...

(c) (d)(a) (b)

+ FIG. 2. Terms of the meson meson scat-
tering amplitude accounting for ph and
�h excitation.
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FIG. 3. (Color online) Imaginary part of the ππ scattering
amplitude at several densities.

where uµ = iu†∂µUu†, with U = u2 = exp(iτ aφa/f ) in the
SU(2) formalism used there, vµ is the four velocity of
the nucleon, gA the axial charge of the nucleon and χ =
diag(m2

π ,m2
π ). The pion nucleon amplitude obtained from the

Lagrangian in Eq. (6) is

tπN = 4c1

f 2
m2

π − 2c2

f 2
(q0)2 − 2c3

f 2
q2

=
[

4c1

f 2
m2

π − 2c2

f 2
ω(q)2−2c3

f 2
m2

π

]
− 2c2 + 2c3

f 2

(
q2−m2

π

)
= ton

πN + toff
πN, (7)

where in the last part of the equation we have separated what
we call the on-shell part and the off-shell part of the amplitude
[term with (q2 − m2

π )]. This s–wave πN interaction produces
a modification of the pion propagator which we shall consider
later in the solution of the Bethe-Salpeter equation in the
medium.

In Refs. [2] and [40] the medium effects are recast at the
mean field level in terms of a medium Lagrangian given by

〈L〉 =
(

f 2

4
+ c3

2
ρ

)
Tr[∂µU∂µU †] +

(
c2

2
− g2

A

16mN

)
ρ

× Tr[∂0U∂0U
†] +

(
f 2

4
+ c1

2
ρ

)
Tr(U †χ + χ †U ). (8)

The different corrections to the ππ scattering amplitude
coming from the ∂µU∂µU †, ∂0U∂0U † terms and the mass term

FIG. 4. Nucleon tadpole term correction to the ππ interaction.

FIG. 5. ππ rescattering diagram with tadpole vertex correction
showing the ππ cut.

in Eq. (8) (c3, c2, and c1 terms) are given by

δt (t)
ππ = − 1

f 2

{
2c3

f 2
ρ

(
s−4

3
m2

π

)
+ 2c2

f 2
ρ

[
s − 1

3

∑
i

ωi(q)2

]

+ c1

f 2
ρ

5

6
m2

π

}
+ 1

f 2

{
2c3

f 2
ρ

1

3

∑
i

(
q2

i − m2
π

) + 2c2

f 2
ρ

× 1

3

∑
i

(
q2

i − m2
π

)}
, (9)

where we have also separated the on-shell part from the
off-shell part. These are the corrections coming from the many
body tadpole diagram of Fig. 4, which are included in the ρ

dependent terms of Eq. (8). Note that in the chiral unitary
approach that we follow, the external legs are placed on shell
(q2

i = m2
π ). This is the case even when the diagrams appear

in loops, as in Fig. 5, since the underlying physics is the use
of a dispersion relation using the N/D method [39,41] which
determines the diagram contribution in terms of its imaginary
part. In the case of Fig. 5 the cut corresponds to two free pions
on shell, like in the vacuum. Hence, we shall use only the on
shell part of the correction of Eq. (9).

As mentioned before, at the same time, when solving the
Bethe-Salpeter equation, we have also to take into account
the s–wave self-energy insertion from the Lagrangian of
Eq. (6) in the pion propagators as depicted in Fig. 6. This
is easily accounted for, at lowest order in ρ, adding to each
pion propagator, Dπ , the correction DπtπNρDπ . A technically
simple way to account for that is to add to the scalar isoscalar

(b)

+ 

(a)

+ 

(c)

q q

+ ...

(d)

+

q

FIG. 6. Nucleon tadpole correction in the pion propagator.
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ππ vertex from L2, tππ , the correction

δt (s)
ππ = (

ton
πN + toff

πN

)
ρ

1

q2 − m2
π

tππ (10)

for the two pion propagator lines to the left of the ππ vertex.
Now the separation of the on-shell and off-shell parts of tπN is
most useful since the pion propagator in Eq. (10) is canceled
out by the (q2 − m2

π ) factor of the off-shell part of tπN . Thus
we have

δt (s)
ππ = ton

πNρ
1

q2 − m2
π

tππ − 2c2 + 2c3

f 2
ρtππ . (11)

This means that with the Lagrangian used, on top of the
corrections in the loops from the s–wave (on-shell) pion
self-energy, we have an additional correction [second term of
Eq. (11)] of the same topology as the tadpole term considered
before. Considering the pion self-energy insertion in either of
the two pion propagators, we obtain for this

δt (st)
ππ = −4c2 + 4c3

f 2
ρtππ . (12)

Thus, we are left with the usual contribution in the pion loops of
the ordinary on-shell s–wave pion self-energy, plus the tadpole
correction of Eq. (9), plus the tadpole equivalent of Eq. (12).

There are still further contributions belonging to the same
family. Indeed, the tππ amplitude in the scalar isoscalar
channel,

tππ = − 1

f 2

[
s − m2

π

2
− 1

3

∑
i

(
q2

i − m2
π

)]
, (13)

is also split in on- and off-shell parts. In [6,42] it was shown
that the off-shell pieces could be removed from the loop
calculations for both the free pion case and the pion with a
p–wave self-energy. However, the diagrams in Fig. 6(a) have
one free pion and a pion with a s–wave medium self-energy
insertion, hence the imaginary part of the two-pion loop is not
the same as in the mentioned cases. It is again easy to take
into account this correction and we have, from the s–wave
self-energy insertions in the pion propagators

δt (so)
ππ = tπNρ

1

q2 − m2
π

1

3f 2

(
q2 − m2

π

) ≡ 1

3f 2
tπNρ (14)

for each pion line. Next we separate the on-shell and off-shell
parts of tπN . For the on-shell part we get

1

3f 2

[
4c1

f 2
m2

π − 2c2

f 2
ω(q)2 − 2c3

f 2
m2

π

]
ρ, (15)

which compared at threshold to the free tππ amplitude, tππ =
− 1

f 2
7
2m2

π , gives

δtππ

tππ

� 1

21f 2
(8c1 − 4c2 − 4c3)ρ, (16)

which with respect to Eq. (12) gets a reduction of a factor
21, plus an extra reduction from the near on-shell cancellation
of the isoscalar tπN . Hence, this correction is negligible and
we take advantage of this large reduction factor 21 to also
neglect the part involving simultaneously the off-shell parts of
tππ and tπN .

TABLE I. ci coefficients from Ref. [45].

Coefficient Set I (GeV−1) Set II (GeV−1)

c1 −0.35 −0.32
c2 −1.49 −1.59
c3 0.93 1.15

In order to proceed we have to decide upon the
ci coefficients to be used. It is well known that the Lagrangian
of Eq. (6) leads to a part of p–wave pion self-energy [43],
but we are explicitly taking a p–wave self-energy insertion
accounting for ph and �h excitations. There is a work which
uses the same Lagrangian of Eq. (6), and in addition takes into
account explicitly the � degrees of freedom [44]. Thus, we
stick to the values of the ci coefficients obtained there from two
fits, with and without using the σ term as a constraint, shown
in Table I. For comparison, the values of the coefficients ci

without including the � are of the order of c1 = −1.53 GeV−1,

c2 = 3.22 GeV−1 and c3 = −6.20 GeV−1 [45].
As stressed in Ref. [45] the values of the coefficient ci with

the explicit contribution of the � are of natural order, while
those obtained without its consideration are too large and a
source of problems in chiral perturbative calculations [46].
But in our case, as pointed above, the choice is mandatory.

We can estimate the size of the correction of Eq. (9) at
pion threshold, and taking advantage of the reduction factor
1/3 in the term 1

3ω2
i (q) in front of s � 4m2

π , we approximate
ωi(q) � mπ . So we get

δtππ

tππ

= 32

21f 2
(c2 + c3)ρ + 10

21f 2
c1ρ, (17)

which for the two sets of parameters of Table I gives

δtππ

tππ

= −0.154ρ/ρ0 (set I)

= −0.124ρ/ρ0 (set II). (18)

Let us note that the correction is negative, reducing effectively
the strength of the ππ → ππ vertex in the medium. Note that
should we have used the values of ci without explicit � we
would obtain a value for the ratio of Eq. (17) of −0.80ρ/ρ0,
certainly too large, but also negative.

Next we consider the contribution from Eq. (12). This
correction has opposite sign to the former one. When adding
the two corrections we find, again taking the threshold for
comparison,

δtππ

tππ

= − 52

21f 2
(c2 + c3)ρ + 10

21f 2
c1ρ, (19)

which for the two sets of values of Table I gives

δtππ

tππ

= 0.18ρ/ρ0 (set I)

= 0.14ρ/ρ0 (set II). (20)

We can see that the sign of the correction is now reversed and,
altogether, we find now an effective increase of the ππ vertex
in the medium by a moderate amount.

Apart from the vertex corrections, we need to include the
effect of the on-shell s–wave pion self-energy in the pion
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propagators in the loops, produced by the nucleon tadpole
diagram. Since we have a broad range of pion energies in
the loop, we have used the tρ approximation for the s–wave
pion self-energy and the amplitude t has been taken from the
experimental fit to data [37]. This is a more realistic approach
than to take the expression from the model used here which
gives a too large s–wave scattering amplitude at high energies,
and in any case produces a minor effect.

The considered corrections are included in the ππ ampli-
tude by modifying the kernel of the BS equation with the
on-shell part of Eqs. (9) and (12), namely

T = V + δt (t) on
ππ

1 − (V + δt
(t) on
ππ + δt

(st)
ππ ) G

, (21)

and modifying the pion propagators in the calculation of the
two-pion loop function, G, as explained in Sec. III A.

B. Vertex corrections from baryonic loops

In the previous sections we have considered relevant
medium effects, according to the pion nucleus phenomenol-
ogy, which describe correctly the pion in the medium in a wide
range of energies. These mechanisms lead to s– and p–wave
pion self-energies in the propagators of the BS equation
and some associated vertex corrections. In Ref. [30], other
vertex corrections to the ππ amplitude which could provide
some effect at low energies, where the leading p–wave pion
self-energy is not so strong, were studied.

The mechanisms considered in Ref. [30] relevant for ππ

s–wave scattering, modifying the kernel of the Bethe-Salpeter
equation in the ππ interaction, are shown in Fig. 7. The
ππ isoscalar contribution in the s channel for the ph excitation
in the t channel in Fig. 7(a) is given, with the unitary
normalization, by

−it = −
(

1

4f 2

)2 (
p0

1 + k0
1

)(
p0

2 + k0
2

)
U (q) = t̃U (q), (22)

where U (q) is the ordinary Lindhard function for ph excitation,
including a factor 2 of isospin (see Appendix of [27]). The
second equation in Eq. (22) defines t̃ . We have neglected
the isoscalar πN amplitude in Eq. (22) since it is very small
compared with the isovector one [31].

p1

p2

k1

k2

(a) (b)

FIG. 7. (a) ph bubble exchange in the t channel; (b) Box diagram.

+ + +

+ + O(ρ  )2

(a) (b) (c)

(d) (e)

FIG. 8. Loop contributions to the Bethe-Salpeter equation at first
order in the nuclear density, including the t–channel ph excitation.

The magnitude of t was shown in Ref. [30] to be comparable
to the s–wave V of the lowest order chiral Lagrangian at
densities of the order of the nuclear density. Yet, there are
some observations to be made: First, at pion threshold the
diagram of Fig. 7(a) is proportional to U (q0 = 0, �q = �0). This
quantity is evaluated in Ref. [30] using the ordinary limit of
the Lindhard function at q0 = 0 and |�q| → 0, which is finite
and larger in size than for any finite value of |�q|. This limit is
however quite different from the value of the response function
at �q = �0 in finite nuclei which is strictly zero, as already noted
in [30,32,33].

We take into account the fact that the isovector
πN amplitude reflects the exchange of a ρ in the t channel
[34] and multiply (4f 2)−2 by a factor reflecting the two ρ

propagators, F (q) = [M2
ρ/(M2

ρ + �q 2)]2.
In order to estimate the importance of this contribution

as compared to the p–wave pion self-energy insertions, we
have evaluated the diagrams (a)–(e) in Fig. 8. Details of the
calculation are given in Appendix B. The results are shown
in Fig. 9 for the imaginary part of the resulting amplitude. We
find that the contribution of diagrams (d),(e) is smaller than
the changes produced by the insertion of the p–wave pion
self-energy in the pion propagators. Similar results are found
for the real part of the amplitude.

300 400 500 600
E (MeV)

-60

-50

-40

-30

-20

-10

0

Im
 (

T
)

(a)
(a)+(d)+(e)
(a)+(b)+(c)

FIG. 9. Imaginary part of the ππ amplitude from the terms in
Fig. 8, as indicated in the legend. The calculation for the dashed and
dotted lines is done for ρ = ρ0/2.
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FIG. 10. Real and imaginary parts of T, as obtained in Eq. (21),
for the two sets of parameters in Table I (set I, dash-dotted line; set II,
dashed line) and ρ = ρ0/2. The solid line corresponds to the result
of the model in Sec. II A and the dotted line is the result in vacuum.

The consideration of this mechanism in the BS equation
proceeds by adding the tree level term and modifying the
kernel in the loop terms with an effective potential δV defined
as

δV (s, ρ)

V
= F(s, ρ)

V GV
, (23)

where F(s, ρ) is the amplitude corresponding to diagram (b)
and VGV gives the amplitude of diagram (a) in Fig. 8. In this
sense, by substituting V by V + δV in the ππ vertex, the loop
function of diagram in Fig. 8(a) would account correctly for
all the diagrams (a)–(e) at the first order in the nuclear density.

One of the reasons for the small size of this contribution
is that the Lindhard function behaves roughly as q−2 for
large values of q and we should expect a large cancellation
of this piece in the loops. This would be in contrast with
the ph excitations leading to the p–wave π self-energy in
Fig. 8(b), 8(c), since there one has the combination �q 2U (q) and
a priori this type of ph excitation should be more important,
as it is indeed the case. Thus, the t-channel ph exchange
mechanism leads to a sizable correction to the tree level
ππ scattering amplitude and a small vertex correction in
the calculation of the loops appearing in the unitarization
procedure.1

Next we consider the box diagram of Fig. 7(b). This
term was found to be smaller in strength than the ph
exchange in Ref. [30], particularly at small energies, where
the p–wave character of the vertices made the contribution
negligible. The consideration of this mechanism at the pion
loop level, necessary to include it in the BS equation, makes
its contribution small since, apart from the reduction of the box
diagram for large values of q, there is a further cancellation of

1This mechanism would play an even smaller role in the position
of the σ pole [47], which is determined by the vanishing of the
denominator of the BS solution, where the tree level term does not
appear.

200 300 400 500

E (MeV)

0
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2500

|T
|2

FIG. 11. Squared modulus of T. Lines as in Fig. 10.

terms as we show in Appendix C. Similar analytic treatments
are done in Refs. [35,36]. For all these reasons this contribution
should be even smaller than the one previously evaluated and
one can safely neglect it for practical purposes.

IV. RESULTS

We solve the BS equation including the corrections dis-
cussed in Sec. III A, as they appear in Eq. (21). The results
are shown in Fig. 10. The new terms considered modify little
the results from Ref. [6]. In comparison, the imaginary part of
the ππ amplitude exhibits a small increase of strength at low
invariant energies whereas the real part decreases over all the
calculated range of energies. Altogether, the basic effect of the
nuclear medium, as found in Ref. [6], is a strong depletion of
the interaction at energies around 500 MeV, where the vacuum
σ pole is found, and some accumulation of strength close to
the 2π threshold, as it can be seen in Fig. 11, where the squared
modulus of the amplitude is depicted.

200 300 400 500 600

E (MeV)
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-40

-30

-20

-10

0
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 (

T
)

FIG. 12. Imaginary part of T including the mechanism described
in Sec. III B at ρ = ρ0/2 (dashed line). The solid line corresponds to
the result of the model in Sec. II B and the dotted line is the result in
vacuum.
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FIG. 13. Real and imaginary parts of T including the mechanisms
described in Secs. III A and III B at ρ = ρ0/2, using set I (dashed line).
The solid line corresponds to the result of the model in Sec. II B and
the dotted line is the result in vacuum.

The contribution of the terms discussed in Sec. III B is
shown in Fig. 12 for the imaginary part of the ππ amplitude.
We find a strong reduction of the amplitude at energies close
to the 2π threshold, basically produced by the repulsive tree
level term in Fig. 7(a). At these energies the amplitude stays
closer to the vacuum case. A similar reduction of the nuclear
medium effects as compared to the results of Ref. [6] is found
in the real part of the amplitude.

Finally, we have included together the contributions of the
tadpole terms, Sec. III A, and the t-channel ph exchange,
Sec. III B, in the BS equation, and the results are depicted in
Fig. 13 for the real and imaginary parts of the ππ amplitude.
We observe, compared to the model of Ref. [6] in which the
basic medium effect is due to the p–wave pion self-energy,
a considerable reduction of strength close to the two pion
threshold. The global effect in both calculations is still a sizable
depletion of the interaction at higher energies and a certain
accumulation of strength below the σ pole position in vacuum
which, as suggested in Ref. [47], could be reflecting a change
in the σ pole position to lower energies as a function of the
nuclear density.

V. CONCLUSIONS

In summary, we have considered in this work the contri-
bution of some new terms to the ππ interaction in the scalar
isoscalar channel at finite densities, starting from a previous
work [6,24] in which only medium effects associated to the
p–wave pion self-energy had been accounted for.

Tadpole insertions, sometimes advocated as a possible
source of a large attraction, have been shown to affect
little the ππ amplitude once the Bethe-Salpeter equation
is solved. This is partly due to certain cancellations which
take place between vertices and internal pion propagator
insertions.

We have also taken into account new terms in the driving
kernel of the Bethe-Salpeter equation, which have been found

to be important in a study based on a chiral power counting in
the many body problem. We could see that these new terms,
although large at tree level, when appearing inside loops were
not as important as one could guess from their comparison
with the lowest order chiral ππ amplitude in the case that all
pions are on shell. As a consequence, their consideration barely
changed the results for the ππ interaction in the medium.

Altogether, the final results are quite similar to those
obtained previously in Refs. [6,24], namely, a strong reduction
of the interaction at energies around 400 MeV and beyond,
and some increase of strength around the 2π threshold. This
confirms the leading role of the strong p–wave pion self-energy
in the medium modification of the ππ interaction in the scalar
isoscalar channel. These results are also satisfactory because
a prediction on the (γ, 2π ) reaction in nuclei [15] based on
the previous calculation [6,24] of the two-pion final state
interaction has been later confirmed by experimental data [14].
The much larger medium effects obtained at threshold energies
in other approaches are incompatible with the observed effect
in the (γ, 2π ) reaction.
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APPENDIX A

We quote in this section the Lindhard function, with
an energy gap �, separated into the direct and crossed
contributions, U = Ud + Uc. From Ref. [33] we have

Ud (q0, �q,�; ρ) = 4
∫

d3p

(2π )3

n( �p)[1 − n( �p + �q)]

q0 + ε( �p) − ε( �p + �q) − � + iε

(A1)

and Uc(q0, �q,�; ρ) ≡ Ud (−q0, �q,�; ρ). In the following we
shall use the definitions

x = q

kF

, ν = 2Mq0

k2
F

,

(A2)

δ = 2M�

k2
F

, ρ = 2

3π2
k3
F

with M the mass of the nucleon, kF the Fermi momentum, and
q ≡ |�q|. Once the integration in Eq. (A1) is done, the real part
of Ud reads, for x � 2,

Re Ud (q0, �q,�; ρ)

= −2MkF

π2

1

2x

{
x

2
− ν − δ

4
+ ν − δ

2
ln

∣∣∣∣ν − δ + x2 − 2x

ν − δ

∣∣∣∣
+ 1

2

[
1 − 1

4

(
ν − δ

x
− x

)2
]

ln

∣∣∣∣ν − δ − x2 − 2x

ν − δ + x2 − 2x

∣∣∣∣
}

(A3)
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p (p , p )0

p’ (p , −p )0

q

q + p

q− p’

FIG. 14. Loop contribution of the ph exchange in the t channel.

and, for x > 2,

Re Ud (q0, �q,�; ρ)

= −2MkF

π2

1

2x

{
−ν + δ + x2

2x
+ 1

2

[
1 − 1

4

(
ν − δ

x
− x

)2
]

× ln

∣∣∣∣ν − δ − x2 − 2x

ν − δ − x2 + 2x

∣∣∣∣
}

. (A4)

The imaginary part of Ud is given by Im Ud (q0, �q,�; ρ) =
Im Ũ (q0 − �, �q; ρ)�(q0 − �), with

Im Ũ (q0, �q; ρ) = −3

4
πρ

M

qkF

[(1 − z2)�(1 − |z|)

− (1 − z′ 2)�(1 − |z′|)] q0

|q0| , (A5)

where � is the Heaviside step function and the z, z′ variables
are defined as

z = M

qkF

[
q0 − q2

2M

]
, z′ = M

qkF

[
−q0 − q2

2M

]
. (A6)

APPENDIX B

The amplitude corresponding to the diagram in Fig. 14 is
given by

−iT =
∫

d4q

(2π )4
(−it̃ )

i

(q + p)2 − m2
π + iε

× i

(q − p′)2 − m2
π + iε

[−iV (s)]iU (q). (B1)

In order to perform the integral it is most useful to separate
U (q) into the direct and crossed parts, U (q) = Ud (q) + Uc(q),
given their different analytical structure.

In Fig. 15 we depict the pole and cut structure for the
different terms and the path followed for the integration in the
complex plane. The poles are located at

q0 =−p0 + ω( �p + �q) − iε, q0 = −p0 − ω( �p + �q) + iε,

q0 =p0 + ω( �p + �q) − iε, q0 = p0 − ω( �p + �q) + iε.

(B2)

The integration over the q0 variable is done by closing the
contour in the complex plane in the upper half plane for the
Ud part and in the lower half plane for the Uc part.

The result of the integration is

T = −
(

1

4f 2

)2

(2p0)2V (s)
∫

d3q

(2π )3

1

4ω2

{
Uc(p0 + ω, �q)

p0 + ω

− Ud (p0 − ω, �q)

p0 − ω + iε
+ Ud (p0 − ω, �q) − Uc(p0 + ω, �q)

p0

}

×
(

M2
ρ

M2
ρ + �q 2

)2

, (B3)

where ω ≡ ω( �p + �q) and we have explicitly written the
ρ meson exchange form factor arising from each ππNN

vertex.
Let us note that we have factorized the πN → πN vertex

on shell. This is done in analogy to what is done in Ref. [38]
where one shows that the off shell part can be cast into
a renormalization of the lowest order diagram (no meson
loop in this case). An alternative justification using dispersion
relations, which require only the on shell information, is given
in Ref. [39].

APPENDIX C

We evaluate the loop function of Fig. 16 containing the
box diagram of Fig. 7(b) plus all the different time orderings,
which we can see in Fig. 17. In all the diagrams the internal
nucleon lines are particle lines. This means we are taking only
the terms of order ρ, which are obtained when the external
lines are folded to give a single hole line in Fig. 17.

Diagrams (a), (b). For diagrams (a), (b) in Fig. 17 for �P =
�p1 + �p2 = �0 the intermediate nucleon line after the two pion
vertices has the same momentum as the hole line (belonging
to the Fermi sea) and hence they both vanish.

q0

x

x

o

o

q0

x

x

o

o

direct crossed

FIG. 15. Analytical structure of the inte-
grand in Eq. (B1). The poles of the pion propaga-
tors are represented by “x” and “o” symbols, and
the dotted lines correspond to the analytical cuts
of the Lindhard function. The arrows indicate
the circuit used for the integration of each term.
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FIG. 16. Box diagram with two of the pions as a part of a loop.

Next we observe some strong cancellations in the other
diagrams. The set of the two meson propagators, which is
common to all of them, can be written as

1

2P 0ω

{
1

q0 − ω + iε

1

q0 + P 0 + ω − iε

− 1

q0 + ω − iε

1

q0 + P 0 − ω + iε

}
, (C1)

with ω = ω(�q).
Diagrams (c). The diagram (c) contains three nucleon

propagators. By making a heavy baryon approximation and
neglecting the kinetic energy of the nucleons we find for the
product

1

−p0
1

1

q0 + p0
2 + iε

1

q0 + iε
. (C2)

Hence, multiplying this by the pion propagators and closing the
contour on the upper half plane to perform the q0 integration,
we find that the integral is

A
1

p0
1

{
− 1

p0
1 + ω

1

P 0 + ω
+ 1

ω

1

p0
2 − ω + iε

}
. (C3)

P = p +p
1 2

p
1

p
2

p
1

p
2

p
1

p
2

p
1

p
2

p
1

p
2

p
1

p
2

k

k

1

2
q

q+P

q+P

q

q+P

q

q+P

q

q+P

q

q+P

q

(a) (b)

(c) (d)

(e) (f)

FIG. 17. Set of different time orderings of diagram in Fig. 16.
The initial and final nucleon lines correspond to a hole propagator.

There, the first term, which comes from the negative energy
components of the mesons, is small and has no imaginary
part. The second term can lead to an imaginary part and a
more sizable real part from the principal value.

Diagram (e). The set of nucleon propagators in the heavy
baryon approximation is now

1

p0
2

1

p0
2 + q0 + iε

1

−p0
1

(C4)

and hence by closing the contour in the upper half of the
complex q0 plane we find for the q0 integration

A
1

p0
1

{
1

p0
2

1

p0
1 + ω

− 1

p0
2

1

p0
2 − ω + iε

}
, (C5)

with the same A as in Eq. (C3). The first term is again small,
coming from the negative energy components of the pions, and
has opposite sign to the first term from diagram (c). The second
term above is the same but with opposite sign to the second
term of diagram (c) at ω = p0

2, which is the singular point.
Hence there are strong cancellations in the principal part of
the integral and the imaginary part from this source vanishes.

Diagram (d). Repeating the same arguments as above we
find now

−A
1

ω

{
1

p0
1 + ω

1

P 0 + ω
+ 1

P 0 − ω + iε

1

p0
2 − ω + iε

}
.

(C6)

Diagram (f ). For this diagram we find

A
1

p0
1

{
1

ω

1

p0
2 + ω

− 1

P 0 − ω + iε

1

p0
1 − ω + iε

}
. (C7)

Once again the first two terms from (d), (f ), coming from
the negative energy part of the pion propagators, give a small
contribution and partly cancel, and the second terms which
provide an imaginary part and a larger real part from the
principal value, also show cancellations. Indeed for p0

1 = p0
2 =

ω the imaginary parts corresponding to the poles p0
1 = p0

2 = ω

cancel and the real parts from the principal value would also
largely cancel. At the P 0 = ω pole the cancellation would only
be partial.

We thus see that when considering all the time orderings for
the coupling of the two pions and the loop with the two pion
propagators there are large cancellations of terms. In addition
we have the (pi/M)2 factor of the p–wave couplings for
the initial pions, which make this contribution small at small
momenta of the pions. We have looked at strong cancellations
of terms in the heavy baryon approximation, which holds for
small values of momenta. At large momenta we must note that
we have two extra nucleon propagators which bring two extra
powers of q in the denominator, with respect to the ordinary
Lindhard function. This makes up for the two extra p–wave
vertices, and hence we have a similar behavior altogether as
the one of Fig. 14 which lead to small contributions when
evaluated into the loop. All these elements discussed above
would render this piece far smaller than the ones of Fig. 8(d),
8(e) and, given the smallness of the effects found there, this
can also be neglected.
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