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Constituent quark model study of light- and strange-baryon spectra
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We investigate the structure of the SU(3) octet and decuplet baryons employing a constituent quark model
designed for the study of the baryon-baryon interaction and successfully applied to the meson spectra. The
model considers through the interacting potential perturbative, one-gluon exchange, and nonperturbative, boson
exchanges and confinement, aspects of the underlying theory, quantum chromodynamics (QCD). We solve the
three-quark problem by means of the Faddeev method in momentum space. We analyze the effect of the different
terms in the interaction and make contact with the use of relativistic kinematics. We find an explanation to
the strong contribution of the pseudoscalar forces in the semirelativistic approach for the octet baryons. A
phenomenological recipe for the regularization parameter of the one-gluon exchange is found.
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I. INTRODUCTION

The complexity of quantum chromodynamics (QCD), the
quantum field theory of the strong interaction, has prevented so
far a rigorous deduction of its predictions even for the simplest
hadronic systems. In the meantime while lattice QCD starts
providing reliable results, QCD-inspired models are useful
tools to get some insight into many of the phenomena of the
hadronic world. One of the central issues to be addressed is
a quantitative description of the low-energy phenomena, from
the baryon-baryon interaction to the baryon spectra, still one
of the major challenges in hadronic physics.

The very success of QCD-inspired models supports the
picture which has emerged from more fundamental studies,
namely, that below a certain scale QCD is a weakly coupled
theory with asymptotically free quark and gluon degrees of
freedom, but above this scale a strong coupling regime emerges
in which color is confined and chiral symmetry is broken.
These two aspects, confinement and chiral symmetry breaking,
are now recognized as basic ingredients in any QCD-inspired
model for the low-energy (and therefore nonperturbative)
sector. Along this line, the simplest approach is doubtless
the constituent quark model, where multigluon degrees of
freedom are eliminated in favor of confined constituent quarks
with effective masses coming from chiral symmetry breaking
and quark-quark effective interactions [1]. Although little
is known about the mechanism which confines the quarks
inside hadrons, unquenched lattice QCD suggests a linear
potential screened at long distances due to the creation of
qq̄ pairs out of vacuum [2]. Finally, much evidence has been
accumulated about the importance of a color-spin force (as the
one arising from the one-gluon exchange) in the low-energy
hadron phenomenology [3].

Using these basic ingredients several quark models have
been proposed in the literature [4]. In general, they were
designed either for the study of the baryon-baryon interaction
or the baryon spectra. For example, in Refs. [5–9] the two
and/or the three-nucleon problem were studied in detail, while
Refs. [10–15] made a thorough analysis of the baryon spectra.
One of the most general conclusions arising from these works

is that the study of a particular problem does not impose
enough restrictions as to constrain neither the ingredients nor
the parameters of the model. To our knowledge, in recent
years the ambitious project of a simultaneous description of the
baryon-baryon interaction and the baryon (and meson) spectra
has only been undertaken by the constituent quark model
of Refs. [16,17], applied within the same framework to the
baryon-baryon interaction [16] as well as to the baryon spectra
[17]. This model is based on the idea that the constituent
quark mass appears because of the spontaneous breaking of
the original chiral symmetry of the QCD Lagrangian, what
generates boson-exchange interactions between quarks. Thus,
the model takes into account perturbative and nonperturbative
aspects of QCD through the one-gluon exchange and boson
exchanges and confinement, respectively. It was originally
designed to study the nonstrange sector and it has been
recently generalized to all flavor sectors. It has already been
applied to the meson spectra and baryon-baryon interaction
with encouraging results [18,19].

Any phenomenological model should be tested against
as many observables as possible to clearly understand its
strengths and weakness, this being the only way one can
extract reliable predictions. This is why in this work we pursue
the description of the nonstrange and strange baryon spectra
based on the constituent quark model of Ref. [18]. For this
purpose, we will start in the next section resuming its basic
properties. In Sec. III we will briefly describe the Faddeev
method in momentum space used to solve the three-body
problem. Section IV will be devoted to present and discuss
the results in comparison to other models in the literature.
Finally, in Sec. V we will summarize our conclusions.

II. SU(3) CONSTITUENT QUARK MODEL

Let us outline the basic ingredients of the constituent
quark model of Ref. [18]. Since the origin of the quark
model, hadrons have been considered to be built by con-
stituent (massive) quarks. Nowadays it is widely recognized
that the constituent quark mass appears because of the
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spontaneous breaking of the original chiral symmetry of the
QCD Lagrangian, what gives rise to boson-exchange inter-
actions between quarks. The quark-quark meson-exchange
potentials are given by

Vχ (�rij ) = Vπ (�rij ) + Vσ (�rij ) + VK (�rij ) + Vη(�rij ), (1)

each contribution given by
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the angle θP appears as a consequence of considering the
physical η instead the octet one. gch = mq/fπ , the λ’s are
the SU(3) flavor Gell-Mann matrices. mi is the quark mass
and mπ,mK and mη are the masses of the SU(3) Goldstone
bosons, taken to be their experimental values. mσ is determined
through the PCAC relation m2

σ ∼ m2
π + 4 m2

u,d [20]. Finally,
Y (x) is the standard Yukawa function defined by Y (x) =
e−x/x.

QCD perturbative effects are taken into account through the
one-gluon-exchange (OGE) potential [21]. The nonrelativistic
reduction of the one-gluon-exchange diagram in QCD for
point-like quarks presents a contact term that, when not
treated perturbatively, leads to collapse [22]. This is why
one maintains the structure of the OGE, but the δ func-
tion is regularized in a suitable way. This regularization,
justified by the finite size of the systems studied, has to
be flavor dependent [23]. As a consequence, the OGE
reads

VOGE(�rij ) = 1

4
αs

�λc
i · �λc

j

×
{

1

rij

− 1

6mimj

�σi · �σj

e−rij /r0(µ)

rij r2
0 (µ)

}
, (3)

where λc are the SU(3) color matrices, αs is the quark-gluon
coupling constant, and r0(µ) = r̂0µnn/µij , where µij is the
reduced mass of quarks ij (n stands for the light u and
d quarks) and r̂0 is a parameter to be determined from the
data.

The strong coupling constant, taken to be constant for each
flavor sector, has to be scale-dependent when describing dif-
ferent flavor sectors [24]. Such an effective scale dependence
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FIG. 1. Effective scale-dependent strong coupling constant αs

given in Eq. (4) as a function of momentum. The solid line represents
our parametrization. Dots and triangles are the experimental results
of Ref. [27]. We plot by a dashed line the parametrization obtained
in Ref. [28] using � = 0.2 GeV.

has been related to the typical momentum scale of each flavor
sector assimilated to the reduced mass of the system [25]. This
has been found to be relevant for the study of the meson spectra
within the present model [18]. In our case, without being
a relevant parameter, we will respect the nice determination
established there,

αs(µ) = α0

ln
[(

µ2 + µ2
0

)/
γ 2

0

] , (4)

where µ is the reduced mass of the interacting qq pair and
α0 = 2.118, µ0 = 36.976 MeV, and γ0 = 0.113 fm−1. This
equation gives rise to αs ∼ 0.54 for the light-quark sector,
a value consistent with the one used in the study of the
nonstrange hadron phenomenology [16,17], αs ∼ 0.49 for a
light-strange pair and αs ∼ 0.44 for the strange sector, and it
also has an appropriate high Q2 behavior, αs ∼ 0.127 at the
Z0 mass [26]. In Fig. 1 we compare this parametrization to the
experimental data [27] and to the parametrization obtained in
Ref. [28] from an analytical model of QCD.

Finally, any model imitating QCD should incorporate con-
finement. Lattice calculations in the quenched approximation
derived, for heavy quarks, a confining interaction linearly
dependent on the interquark distance. The consideration of sea
quarks apart from valence quarks (unquenched approximation)
suggests a screening effect on the potential when increasing
the interquark distance [2]. A screened potential simulating
these results can be written as

VCON(�rij ) = −ac (1 − e−µc rij )
( �λc

i · �λc
j

)
. (5)

At short distances it presents a linear behavior with an effective
confinement strength a = acµc

�λc
i · �λc

j , while it becomes
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constant at large distances. Screened confining potentials
have been analyzed in the literature providing an explanation
to the missing state problem in the baryon spectra [29],
improving the description of the heavy-meson spectra [30],
and justifying the deviation of the meson Regge trajectories
from the linear behavior for higher angular momentum
states [31].

We have not considered the noncentral contributions
arising from the different terms of the interacting potential.
Experimentally, there is no evidence for important effects
of the noncentral terms on the baryon spectra. This is
clearly observed in the almost degeneracy of the nucleon
ground states with Jπ = 1/2− and Jπ = 3/2−, or their first
excited states with the nucleon ground state with Jπ = 5/2−.
The same is observed around the whole baryon spectra
except for the particular problem of the relative large sepa-
ration between the �(1405), J π = 1/2−, and the �(1520),
J π = 3/2−, related to the vicinity of the NK threshold
[32].

Theoretically, the spin-orbit force generated by the OGE
has been justified to cancel with the Thomas precession term
obtained from the confining potential [33]. This is not however
the case for the two-baryon system where, by means of an
explicit model for confinement, it has been demonstrated that
the strong cancellation in the baryon spectra translates into a
constructive effect for the two-baryon system [34]. One should
notice that the scalar boson-exchange potential also presents
a spin-orbit contribution with the same properties as before, it
cancels the OGE spin-orbit force in the baryon spectra while it
adds to the OGE contribution for the nucleon-nucleon P waves
and cancels for D waves [35], as is observed experimentally.
Such a different behavior in the one- and two-baryon systems
is due to the absence of a direct term in the OGE spin-orbit
force (due to the color of the gluon only quark-exchange
diagrams are allowed), while the spin-orbit contribution of
the confining interaction in Ref. [34] and that of the scalar
boson-exchange potential in Ref. [35] are dominated by a
direct term, without quark exchanges. Regarding the tensor
terms of the meson-exchange potentials, they have been
explicitly evaluated in the literature (in a model with stronger
meson-exchange potentials) finding contributions not bigger
that 25 MeV [36]. This is due to the fact that the tensor
terms give their most important contributions at intermediate
distances (of the order of 1-2 fm), due to the direct term in
the quark-quark potential. The regularization of the boson-
exchange potentials below the chiral symmetry breaking scale
suppresses their contributions for the very small distances
involved in the one-baryon problem. This allows to neglect the
noncentral terms of the interacting potential that would provide
with a fine tune of the final results and would make very much
involved and time consuming the solution of the three-body
problem by means of the Faddeev method in momentum space
we pretend to use.

Once perturbative (one-gluon exchange) and nonperturba-
tive (confinement and chiral symmetry breaking) aspects of
QCD have been considered, one ends up with a quark-quark
interaction of the form

Vqiqj
(�rij ) = VCON(�rij ) + VOGE(�rij ) + Vχ (�rij ). (6)

III. THREE-BODY FORMALISM

If there are no tensor or spin-orbit forces the Faddeev
equations for the bound-state problem of three quarks can
be written as

〈
piqi ; �iλiSiTi

∣∣φLST
i

〉
= 1

E − p2
i

/
2ηi − q2

i

/
2νi

∑
j �=i

∑
�j λj Sj Tj

1

2

∫ 1

−1
d cos θ

×
∫ ∞

0
q2

j dqj t
�iSiTi

i

(
pi, p

′
i ; E − q2

i

/
2νi

)
A

�iλi�j λj

L

× (p′
iqipjqj )〈SiTi |SjTj 〉ST

〈
pjqj ; �jλjSjTj

∣∣φLST
j

〉
, (7)

where Si and Ti are the spin and isospin of the pair jk while
S and T are the total spin and isospin. �i ( �pi) is the orbital
angular momentum (momentum) of the pair jk, λi (�qi) is the
orbital angular momentum (momentum) of particle i with
respect to the pair jk, and L is the total orbital angular
momentum. cos θ = �qi · �qj/(qiqj ) while

ηi = mjmk

mj + mk

,

(8)

νi = mi(mj + mk)

mi + mj + mk

,

are the usual reduced masses. For a given set of values
of LST the integral equations (7) couple the amplitudes
of the different configurations {�iλiSiTi}. The spin-isospin
recoupling coefficients 〈SiTi |SjTj 〉ST are given by

〈SiTi |SjTj 〉ST = (−)Sj +σj −S
√

(2Si + 1)(2Sj + 1)

×W (σjσkSσi ; SiSj )(−)Tj +τj −T

×√
(2Ti + 1)(2Tj + 1)W (τj τkT τi ; TiTj ),

(9)

with σi and τi the spin and isospin of particle i, and W is the
Racah coefficient. The orbital angular momentum recoupling
coefficients A

�iλi�j λj

L (p′
iqipjqj ) are given by

A
�iλi�j λj

L (p′
iqipjqj ) = 1

2L + 1

∑
Mmimj

C
�iλiL
mi,M−mi,M

×C
�j λj L

mj ,M−mj ,M
��imi

�λiM−mi
��j mj

×�λj M−mj
cos[−M(�qj , �qi)

− mi(�qi, �p ′
i ) + mj (�qj , �pj )], (10)

with ��m = 0 if � − m is odd and

��m = (−)(�+m)/2√(2� + 1)(� + m)!(� − m)!

2�[(� + m)/2]![(� − m)/2]!
(11)

if � − m is even. The angles (�qj , �qi), (�qi, �p ′
i ), and (�qj , �pj ) can

be obtained in terms of the magnitudes of the momenta by
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using the relations

�p ′
i = −�qj − ηi

mk

�qi,

(12)
�pj = �qi + ηj

mk

�qj ,

where ij is a cyclic pair. The magnitude of the momenta p′
i

and pj , on the other hand, are obtained in terms of qi, qj , and
cos θ using Eqs. (12) as
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√
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(
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(13)
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√
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mk
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qiqj cos θ.

Finally, the two-body amplitudes t
�iSiTi

i (pi, p
′
i ; E − q2

i /

2νi) are given by the solution of the Lippmann-Schwinger
equation
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∫ ∞
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with
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π

∫ ∞

0
r2
i dri j�i

(piri)V
SiTi

i (ri)j�i
(p′

i ri),

(15)

and j� the spherical Bessel function.
In the case where the three quarks are identical (N and

�) the three amplitudes φLST
1 , φLST

2 , and φLST
3 in Eq. (7) are

identical so that it reduces to
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∫ ∞
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with (−)�i+Si+Ti = 1 as required by the Pauli principle since
the wave function is color antisymmetric.

In the case where two quarks are identical and one is
different (�,�, and �) only two amplitudes are independent.
Assuming that particles 2 and 3 are identical and 1 is different,
only the amplitudes φLST

1 and φLST
2 are independent and satisfy

the coupled integral equations [37,38]〈
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∫ ∞
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where the identical-particles phase G is

G = (−1)1+�2+σ1+σ3−S2+τ1+τ3−T2 . (19)

Substituting Eqs. (18) into (17) one obtains a single integral
equation for the amplitude φLST

2 . Again, in the case of identical
pairs one has (−)�1+S1+T1 = 1.

The nonrelativistic Faddeev method has a problem if the
two-body interactions allow transitions of the form a + b →
c + d, i.e., if the particles in the final state are different from the
ones in the initial state. In that case the center of mass energy is
different in the initial and final states. This problem, however,
does not arise in our model since our two-body interactions
given by Eq. (6) only allow transitions of the form n + n →
n + n, n + s → n + s, and s + s → s + s, n standing for a
light u or d quark. The center of mass ambiguity in the case
of transitions of the form a + b → c + d does not arise in
the relativistic version of the Faddeev method described in
Ref. [39].

IV. RESULTS AND DISCUSSION

The results we are going to present have been obtained
by solving exactly the Schrödinger equation by the Faddeev
method in momentum space we have just described. For
baryons made up of three identical quarks we have also
calculated the spectra by means of the hyperspherical harmonic
(HA) expansion method [40]. The HA treatment allows a
more intuitive understanding of the wave functions in terms
of the hyperradius of the whole system. These wave functions
will be used to calculate the root mean square radius. As a
counterpart one has to go to a very high order in the expansion
to get convergence. To assure this we shall expand up to
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TABLE I. Quark-model parameters.

Quark masses mu = md (MeV) 313
ms (MeV) 500

Goldstone bosons mπ (fm−1) 0.70
mσ (fm−1) 3.42
mη (fm−1) 2.77
mK (fm−1) 2.51

�π = �σ (fm−1) 4.20
�η = �K (fm−1) 5.20

g2
ch/(4π ) 0.54
θP (o) −15

Confinement ac (MeV) 230
µc (fm−1) 0.70

OGE r̂0 (fm) 0.35

K = 24 (K being the great orbital determining the order of
the expansion). Differences in the results for the 3q bound
state energies obtained by means of the two methods turn out
to be at most of 5 MeV.

As mentioned above we will not perform a systematic study
in order to determine the best set of parameters to fit the
baryon spectra. Instead, we will start from the parameters
used in Ref. [18] for the description of the meson spectra.
There are two parameters that may differ from the meson case,
they are r̂0, connected to the typical size of the system where
the contact interaction is regularized and ac, the strength of
confinement. We fix ac to drive the Roper of the nucleon to
its correct position. One could also have chosen to fix the
negative parity states knowing the sensitivity of the Roper
resonance to the kinematics used [41,42], however we prefer
to maintain the same prescription as in the study of the
nonstrange baryon spectra [17], to guarantee that a similar
description is obtained for the light baryons. We fix r̂0 to
have the correct � − N mass difference. Once we determine
r̂0 for the light baryons, its value is determined for all other
flavor sectors through the relation given in Sec. II, obtaining
a correct description of all hyperfine splittings. Finally, we
made a fine tune of the strange quark mass to improve the
description of the ground states with strangeness different from
zero. The parameters are resumed in Table I.

Our results are shown in Fig. 2 for the different octet and
decuplet baryons. As can be seen, our election of fixing ac

to reproduce the Roper resonance gives, in general, masses
somewhat smaller than experiment for the negative parity
states. As explained above, we could equally have determined
ac to describe the negative parity states producing a much
better fit of the baryon spectra except for the Roper resonance,
that it is known to decrease in energy when a semirelativistic
prescription is used [42]. Let us focus our attention on several
particular aspects that deserve a detailed discussion. A widely
discussed issue on the baryon spectra has been the so-called
level ordering problem. It can be easily illustrated for the
nucleon spectrum in the pure harmonic limit. The N∗(1440)
JP = 1/2+ belongs to the [56, 0+] SU(6)FS × O(3) irre-
ducible representation and it appears in the N = 2 band, while
the N∗(1535) JP = 1/2− belongs to the [70, 1−] appearing
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FIG. 2. Relative energy (a) N and �, (b) � and �, (c) � and
� spectra up to 1.0 GeV excitation energy. The solid lines correspond
to the results of our model. The shaded regions, whose size stands
for the experimental uncertainty, represent the experimental data. The
dashed lines stand for experimental states whose mass is given but
without indicating the error bars.

in the N = 1 band. As a consequence, the N∗(1440) has 2h̄ω

energy excitation while the N∗(1535) has only 1h̄ω energy
excitation, opposite to the order observed experimentally. The-
oretically, this situation has been cured by means of appropriate
phenomenological interactions as it is the case of anharmonic
terms [3], scalar three-body forces [12], or pseudoscalar
interactions [14,17].

The mechanism producing the reverse of the ordering
between the positive and negative parity excited states is
the following. In the case of the scalar three-body force of
Ref. [12], in the limit of zero range it would act only for states
whose wave function do not cancel at the origin. It therefore
influences the L = 0 ground states and their radial excitations,
while producing essentially no effect for states with mixed
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FIG. 3. �∗(1/2+) and �(1/2−) masses as a function of the cutoff
masses of the one-pion and one-kaon exchanges, �′

π,K = �π,K + �0.

symmetry (negative parity states). As a consequence, if this
force is chosen attractive, it explains why the Roper resonances
are lower than the negative parity excited states. In the case of
the chiral pseudoscalar interaction, its (�σ · �σ )(�λ · �λ) structure
gives attraction for symmetric spin-flavor pairs and repulsion
for antisymmetric ones. This lowers the position of the first
radial excitation, with a completely symmetric spin-flavor
wave function, with regard to the first negative parity state,
with a spin-flavor mixed symmetry wave function. This effect
appears in our model mainly through the one-pion and one-
kaon exchange contributions. It has been illustrated in Fig. 3,
where we plot the mass of the first radial and orbital excitations
of the �(1/2+) as a function of the cutoff mass of the one-pion
and one-kaon exchange potentials. The contribution of the
pseudoscalar interactions is increased by letting the cutoff
parameters �π,K to grow in the same manner �′

π,K = �π,K +
�0. As can be seen, the reverse of the ordering between
the positive and negative parity excited states is obtained for
�0 sufficiently large (around 3.2 fm−1,�π = 7.4 fm−1, and
�K = 8.4 fm−1). A model with such a strong cutoffs would not
be realistic because the decuplet-octet [�(3/2+) − �(1/2+)]
mass difference would be much larger than the experimental
value. This difficulty is known to have a well defined and
simple solution, due to the decreasing of the excitation energy
of the nucleon Roper resonance induced by the relativistic
kinematics [41,42], which would reduce the value of the cutoff
needed.

Although the level ordering problem has been solved by
potential models based only on pseudoscalar forces combined
with relativistic kinematics, they give rise to very small sizes
for baryons. We compare in Table II the root mean square radii
obtained with the constituent quark model used in this work
to those of Ref. [12], making use of a scalar three-body force,

TABLE II. Root mean square radii,
〈
r2

〉1/2
in fm, of states of

identical particles obtained with our model (CCQM), compared to
Ref. [12], considering a scalar three-body force, Ref. [15], based
only on pseudoscalar boson exchanges and relativistic kinematics,
and Ref. [11] based on a OGE potential.

State CCQM Ref. [12] Ref. [15] Ref. [11]

N (1/2+) 0.482 0.38 0.304 0.467
N∗(1/2+) 0.961 0.79 0.463 −
N (1/2−) 0.829 0.78 − −
�(3/2+) 0.635 0.51 0.390 0.537
�∗(3/2+) 1.149 0.90 0.534 −
�(3/2+) 0.513 − 0.395 0.418
�∗(3/2+) 0.897 − 0.543 −

Ref. [15], based only on pseudoscalar forces and relativistic
kinematics, and Ref. [11] based on the Bhaduri potential.
Reference [12] gives a very small size for the nucleon while
Ref. [15] finds small sizes for all baryons. The model based on
the Bhaduri potential [11] produces sizes closer to our model.
These results can be understood in the following way. As
explained above, the scalar three-body force of Ref. [12] gives
a strong attraction for the nucleon and its radial excitations,
being responsible for their small radius, while it produces
practically no effect on the other baryons, being their radius
much bigger and comparable to those of Ref. [11]. In Ref.
[15], the contribution of the pseudoscalar boson exchanges
to the baryon masses (see Table II of Ref. [15]) is very
large, especially for the octet baryons, being responsible for
their small sizes. Although for the decuplet baryons this
contribution is reduced, the sizes obtained are still very
small. As we will explain below this is a direct consequence
of smearing out the pseudoscalar meson exchange delta
function with a large cutoff. This is reflected, for example,
in the mass difference induced by the one-pion and one-
kaon exchanges between decuplet and octet baryons, � −
N,�(3/2+) − �(1/2+), �(3/2+) − �(1/2+), of the order of
900 MeV.

In the constituent quark model used in this work the
hyperfine splitting is shared between pseudoscalar forces
and perturbative QCD contributions, provided by the one-
gluon exchange. In Table III we give the contribution of
different pieces of the interacting Hamiltonian to the en-
ergy of several octet and decuplet baryons. One observes
that the hyperfine splittings are basically controlled by the
OGE (V2) and OPE (V3) [OKE (V5)] potentials in the non-
strange [strange] sector. When the OGE and OPE are consid-
ered altogether (V4) the splitting is bigger than the sum of both
contributions separately, and they generate almost the experi-
mental hyperfine splitting, the η and σ given a final small tune.
The expectation value of the OPE flavor operator for two light
quarks,

〈[fij ]F Tij |
3∑

a=1

λa
i λ

a
j |[fij ]F Tij 〉 =

{
1 if [2]F , Tij = 1

−3 if [11]F , Tij = 0

(20)
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TABLE III. Eigenvalue, in MeV, of the kinetic energy combined
with different contributions of the interacting potential. The
subindexes in the potential stand for: 1 = CON, 2 = CON + OGE,

3 = CON + π, 4 = CON + OGE + π, 5 = CON + OGE + π +
K, 6 = CON + OGE + π + K + η, 7 = CON + OGE + π + K +
η + σ .

State V1 V2 V3 V4 V5 V6 V7

N (1/2+) 1534 1254 1407 969 969 1030 939
�(3/2+) 1534 1314 1510 1291 1291 1283 1232
N∗(1/2+) 1787 1601 1716 1448 1448 1479 1435
N (1/2−) 1722 1530 1675 1422 1422 1447 1411
�(1/2+) 1679 1417 1674 1408 1326 1229 1213
�(3/2+) 1679 1462 1673 1454 1437 1438 1382
�∗(1/2+) 1983 1757 1931 1752 1703 1688 1644
�(1/2−) 1859 1677 1854 1671 1645 1634 1598
�(1/2+) 1679 1405 1600 1225 1171 1217 1122
�(1/2+) 1819 1557 1819 1557 1472 1446 1351
�(3/2+) 1955 1743 1955 1743 1743 1728 1650

is replaced by the similar effect of the OKE when a light and
a strange quarks are involved

〈[fij ]F Tij |
7∑

a=4

λa
i λ

a
j |[fij ]F Tij 〉 =

{
2 if [2]F , Tij = 1/2

−2 if [11]F , Tij = 1/2

(21)

being [fij ]F the flavor permutational symmetry in the quark
pair (i, j ) and Tij the total isospin of the pair state. They
enhance in a similar way the hyperfine splitting produced by
the OGE: the OPE for light quark pairs and the OKE for
light-strange ones. The important effect of the OGE is observed
when Table III is compared to Table II of Ref. [15], the
contribution of the pseudoscalar forces is much smaller in our
case, generating decuplet-octet mass differences of the order
of 100−200 MeV, the remaining mass difference given by the
OGE. As a consequence the radii predicted are also bigger.

This regularization effect of the OGE over the pseudoscalar
forces for the baryon spectra has been also observed in
two-baryon calculations [43] (that we consider should be
proximately linked to the one-body problem). A too strong
nucleon-nucleon pseudoscalar force was found for models
based only in Goldstone boson exchanges and, at the same
time, they do not present the required attraction to reproduce
the experimental data [43]. The consideration of the scalar
octet of Goldstone bosons [44] (as proposed long ago in the
first work of Ref. [16]) may remedy the situation for the
two-body sector, but it is incompatible with the description
of the baryon spectra, because it makes the system to collapse
[15]. The reason for that can be easily understood looking
at the results of Ref. [39], where it has been demonstrated
that a different regularization scale is obtained for the same
interaction when nonrelativistic or relativistic kinematics are
used. A larger value of the regularization parameter of
the OGE delta function was obtained for the case of the
semirelativistic calculation (see Fig. 1 of Ref. [39]). Therefore,
the regularization process of any delta function (as the ones
present in the Goldstone boson exchanges) should be done with

great care. The semirelativistic kinematics cannot be im-
plemented without worrying about the corrections to the
meson-exchange potential in a consistent way. Replacing the
nonrelativistic by the semirelativistic kinematics, the value
of the delta-function regularization parameter giving rise to
unstable results is increased, the other way around, for the
same regularization parameter the interaction is made much
stronger. In the presence of such a strong pseudoscalar force,
as shown in the results of Ref. [15], the additional attraction
provided by the scalar potential gives rise to collapse. This is
not the case of our model where the scalar interaction is crucial
to understand simultaneously the one- and the two-baryon
problems and its strength is compatible with the description
of both sectors [42], the one-gluon exchange being basic for
these results. The same conclusion was obtained for the light
baryons when the semirelativistic prescription was used [42].

Let us finally face the problem of the regularization
parameter of the OGE, r0. As explained in Sec. II this
parameter is taken to be flavor dependent, scaling with the
reduced mass of the interacting quarks. The larger the system
(the lighter the masses of the quarks involved) the larger the
value of r0 that can be used without risk of collapse. In
Fig. 4 we plot the mass of two 1/2+ ground states, N and
�, and two 3/2+ ground states, � and �, as a function of
r̂0. In the last two cases the completely symmetric spin-flavor
wave function makes the OGE to be repulsive and therefore
no important effect is observed independently of the flavor
quark substructure. However, for the 1/2+ ground states the
OGE gives attraction and the regularization should be done
with care. We observe how the masses of the N (1/2+) and
the �(1/2+) start to decrease very rapidly for almost the same
value of r̂0 (for r̂0 = 0.1 fm, marked as a vertical dashed
line in the figure, both states have diminished around 500−
600 MeV with respect to their asymptotic value). One should
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FIG. 4. N (1/2+), �(1/2+), �(3/2+), and �(3/2+) ground state
masses as a function of the regularization parameter r̂0.
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note that the value of r0 for pairs containing strange quarks is
much smaller, for example r̂0 = 0.35 fm implies rnn

0 = 0.35 fm
while rns

0 = 0.28 fm and rss
0 = 0.22 fm. This flavor depen-

dence combined with the effect of the pseudoscalar forces
provides with a correct description of the hyperfine splittings,
giving confidence to the election of the flavor dependence of
the OGE regularization parameter.

V. SUMMARY

We have used a constituent quark model incorporating the
basic properties of QCD to study the strange and nonstrange
baryon spectra. The model takes into account the most impor-
tant QCD nonperturbative effects: chiral symmetry breaking
and confinement as dictated by unquenched lattice QCD. It also
considers QCD perturbative effects through a flavor dependent
one-gluon exchange potential. The parameters of the model are
mostly fixed from other observables as the meson spectra or
the baryon-baryon interaction.

The SU(3) three-body problem has been for the first time
exactly solved by means of the Faddeev method in momentum
space, obtaining results of similar quality to others present in
the literature based on models specifically designed for the
study of the baryon spectra. The model provides with baryon
root mean square radii much bigger than models based only
in pseudoscalar boson exchanges. This is a consequence of
the reduced contribution of the pseudoscalar forces due to
the presence of the one-gluon exchange. These pseudoscalar
forces are important for the correct position of the positive
and negative parity excited states in all flavor sectors, but they

should not be artificially strengthened making the systems
highly unstable. The Roper resonances are know to be sensitive
to relativistic kinematics, and therefore a reduced contribution
of the pseudoscalar forces should be enough to solve the
so-called level ordering problem. The presence of the scalar
Goldstone boson exchanges, crucial to make contact with the
two-body problem, would not be compatible with a strong
pseudoscalar contribution.

We have analyzed the dependence of the spectra on the
regularization parameter of the OGE, obtaining a pretty
good agreement with a scale dependence based on the
reduced mass of the interacting quarks. This OGE potential
gives an important contribution to the decuplet-octet mass
difference being basic to regularize the pseudoscalar forces
needed.

Finally, although we do not believe that explanations based
on constituent quark models may rule out or contradict other
alternative ones, one should acknowledge the capability of
constituent quark models for a coherent understanding of
the low-energy phenomena of the baryon spectroscopy and
the baryon-baryon interaction in a simple framework based
on the contribution of pseudoscalar, scalar and one-gluon-
exchange forces between quarks.
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