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Microscopic analysis of K+-nucleus elastic scattering based on K+-nucleon phase shifts
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We investigate K+-nucleus elastic scattering at intermediate energies within a microscopic optical model
approach using the current K+-nucleon (KN) phase shifts from the Center for Nuclear Studies of the George
Washington University as primary input. The KN phase shifts are used to generate Gel’fand-Levitan-Marchenko
real and local inversion potentials. These potentials are supplemented with a short-range, complex separable term
in such a way that the corresponding unitary and nonunitary KN S matrices are exactly reproduced. These KN
potentials allow us to calculate all needed on- and off-shell contributions of the t matrix, the driving effective
interaction in the full-folding K+-nucleus optical model potentials reported here. Elastic scattering of positive
kaons from 6Li, 12C, 28Si, and 40Ca are studied at beam momenta in the range 400–1000 MeV/c, leading to a fair
description of most differential and total cross section data. To complete the analysis of the full-folding model,
three kinds of simpler tρ calculations are considered and the results are discussed.
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I. INTRODUCTION

Over the past two decades the study of K+-nucleus (KA)
collisions with light targets received considerable attention
both experimentally and theoretically [1–3] owing largely
the smooth energy dependence, the relative weak strength of
the K+-nucleon (KN) interaction, and the strangeness of the
projectile. Herewith, it was expected and largely confirmed
that intermediate-energy tρ optical potentials would suffice
to describe the scattering data. However, some unexpected
and persistent shortcomings were observed in the description
of total cross section data taken in transmission experiments
at beam momenta in the range 500–1000 MeV/c [1,2,4]. This
situation has triggered an outlook for new physics with models
including unconventional as well as higher order effects [5,6].
Up to now an important and unsatisfactory element in all
these discussions has been the absolute normalization error
of the measured cross sections, being ±17% [3]. Among
the various theoretical efforts we ought mention covariant
formulations [3,6], considerations of medium modifications of
the KN interaction within the target nucleus environment [7,8],
the use of on- and off-shell t-matrix contributions with the
construction of separable scattering amplitudes [9], and the
possible manifestation of �+ pentaquark in KA collisions [10].

The microscopic optical model potential (OMP) approach
we present here embodies most of these elements but puts
emphasis on the best possible direct use of KN phase-shift
data to generate on- and off-shell KN t-matrix elements. This is
achieved with the construction of a KN potential, in a true sense
a KN optical model potential when the respective S matrix is
nonunitary, which reproduces in absolute terms the phase-
shift data. This approach distinguishes several steps. First,
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for each partial wave and set of KN data, an optimal Gel’fand-
Levitan-Marchenko inversion potential Vα(r) is calculated [11,
12]. Second, a short-range rank-one separable potential, with
energy-dependent and possibly complex strengths is added to
Vα(r) and matched to the data [12]. These potentials are used
in Lippmann-Schwinger equations for the KN t matrix, the
defined effective interaction in the full-folding optical model
approach discussed here. These folding calculations are carried
out in momentum space with the use of nonlocal single-particle
target densities [13]. Herein, the full-folding calculations use
only the KN t matrix and thus neglect the Pauli blocking in the
propagation of nucleons in the nucleus.

The article is organized as follows. In Sec. II we specify the
KN data and the KN effective interaction. In Sec. III we present
the salient features of the full–folding KA optical potential
and discuss three alternative tρ approximations. In Sec. IV we
show and discuss KA elastic scattering applications for selected
nuclei. In sec. V we present a summary and conclusions of this
analysis.

II. THE KN EFFECTIVE INTERACTION

We base our study on the current KN partial-wave phase-
shift single- and continuous-energy solutions for 0 < TLab

< 1 GeV of Richard Arndt et al. and retrieved data from the
Center for Nuclear Studies (CNS) of the George Washington
University (GWU) [14,15]. These data are sufficient to specify
the partial-wave S matrix or t matrix on shell. However,
these quantities alone are insufficient in the context of the
many-body approach since the KA optical model requires the
t matrix off shell. Thus, the problem is ill posed and requires a
theoretical extension of the on-shell t matrix into the off-shell
domain. The solution to this problem is not unique. However,
since our analysis hinges upon a potential theory we chose a
KN potential concept also for this purpose. The off-shell
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extension of the t-matrix interaction takes into account free-
particle propagation, counted to all orders in the ladder ap-
proximation, but without KA medium effects. We calculate the
t matrices with a Lippmann-Schwinger equation in momentum
space.

A well-established and often-applied link between phase
shifts and potential is the inverse scattering formalism of
Gel’fand-Levitan and Marchenko. The present application
points toward use of the fixed angular momentum or partial-
wave Schrödinger-type equation version (mathematically, a
Sturm-Liouville equation), yielding energy-independent and
local potentials [11]. Before we enter into the more technical
aspects of inversion it is useful to recall the relativistic
aspects that we associate with the relative-motion Schrödinger-
type equation being used for the KN pair in the center-of-
momentum (c.m.) system.

The inversion method is useful and physically justified for
cases in which the phase shifts are smooth functions of the
energy and resonances are absent. However, actual KN phase-
shift data are not perfectly smooth, show significant error
bars, and are not free of personal preferences. To keep these
preferences at a minimum we divide the KN partial-wave po-
tentials into two parts. The first part is the result of a Gel’fand-
Levitan-Marchenko inversion with an optimal smooth rational
function fit to the unitary S-matrix sector of the data. The
resulting real potentials are smooth functions of the radial
distance and play the role of what we call a reference potential.

The basic equations of inversion are the radial Schrödinger
equation[

− d2

dr2
+ �(� + 1)

r2
+ 2µV�(r)

]
ψ�(k, r) = k2ψ�(k, r),

0 � r < ∞, (1)

where V�(r) is a local, energy-independent but explicitly
partial-wave-dependent coordinate space potential. The factor
2µ, the two-particle reduced mass, is used to make a
comparison with nonrelativistic potentials more obvious. The
right-hand side refers to the relative two-particle momentum
or wave number k, which is related to the kinetic energy of
the kaon in the laboratory system, TLab, its mass mK , and the
nucleon mass mN , by means of

s = (mN + mK )2 + 2mNTLab (2)

and

k2 = s2 + (
m2

K − m2
N

)2 − 2s
(
m2

K + m2
N

)
4s

. (3)

The boundary conditions for the physical solutions are

lim
r→0

ψ�(k, r) = 0 (4)

and

lim
r→∞ ψ�(k, r) = exp[iδ�(k)] sin

[
kr − �π

2
+ δ�(k)

]
. (5)

It is pertinent to mention that Eq. (1) is a true relativistic
equation provided the right-hand-side eigenvalue corresponds
to the square of the relativistic on-shell momentum. This
is supported by works of Crater and collaborators [16,17]

on relativistic two-particle dynamics in the framework of
Dirac’s constraint dynamics, leading to a wave equation of
the form (p2 + �(r) − k2)ψ = 0. As a matter of convenience
we express the interaction � as �(r) = 2µV (r), with 1/µ =
1/mK + 1/mN .

The Gel’fand-Levitan and Marchenko inversions are two
different algorithms that should yield exactly the same po-
tential results. The use and comparison of both calculations
guarantees robust results.

The experimental information enters in the Marchenko
inversion via the partial-wave S matrix, which is related to
the scattering phase shifts by the relation

S�(k) = exp[2iδ�(k)]. (6)

We use a rational function interpolation and extrapolation of
real data δ�(k),

δ�(k) =
M∑

m=1

Dm

k − dm

, (7)

with the asymptotic conditions

lim
k→0

δ�(k) ∼ k2�+1 and lim
k→∞

δ�(k) ∼ k−1. (8)

There are few poles dm and strengths Dm sufficient to provide
a smooth description of the data. For the KN system, there
are no bound states to be extracted; thus we simply use a
rational function interpolation and extrapolation of real data
δ�(k) with a fully symmetric distribution of poles and zeros
in the upper and lower half k plane. This implies that the
boundary conditions at the origin and at infinity are satisfied.
Furthermore, using a symmetric Padé approximant for the
exponential function guarantees that the number of zeros and
poles of the S Matrix, in the upper and lower half complex
k plane, are the same, the index is zero, and no bound states
are present.

Using a [4/4] Padé approximation for the exponential
function ez is highly accurate and substituting the rational
phase function into z = 2iδ�(k) gives a rational S matrix

S�(k) = 1 +
2N∑
n=1

sn

k − σn

=
N∏

n=1

k + σ
↑
n

k − σ
↑
n

· k + σ
↓
n

k − σ
↓
n

, (9)

where we denote {σ ↑
n } := {σn|Im(σn) > 0} and {σ ↓

n } :=
{σn|Im(σn) < 0}. The Marchenko input kernel

F�(r, t) = − 1

2π

∫ +∞

−∞
h+

� (kr) [S�(k) − 1] h+
� (kt) dk (10)

is readily computed using Riccati-Hankel functions h+
� (x) and

contour integration. This implies an algebraic equation for the
translation kernel A�(r, t) of the Marchenko equation

A�(r, t) + F�(r, t) +
∫ ∞

r

A�(r, s)F�(s, t) ds = 0. (11)

The potential is obtained from the translation kernel derivative

V�(r) = −2
d

dr
A�(r, r). (12)

Thus, the rational representation of the scattering data leads to
an algebraic form of the potential.
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The Gel’fand-Levitan inversion uses Jost functions as input.
The latter is related to the S matrix by

S�(k) = F�(−k)

F�(k)
. (13)

Using the representation (9), the Jost function in rational
representation is given by

F�(k) =
N∏

n=1

k − σ
↓
n

k + σ
↑
n

= 1 +
N∑

n=1

Bn

k + σ
↑
n

, (14)

or

|F�(k)|−2 = 1 +
N∑

n=1

Ln

k2 − σ
↓2
n

. (15)

The input kernel

G�(r, t) = 2

π

∫ ∞

0
j�(kr)

[
1

|F�(k)|2 − 1

]
j�(kt) dk, (16)

where j�(x) represent the Riccati-Bessel functions, is analytic.
The Gel’fand-Levitan equation

K�(r, t) + G�(r, t) +
∫ r

0
K�(r, s)G�(s, t) ds = 0 (17)

relates input and translation kernels, where the potential is
defined by

V�(r) = 2
d

dr
K�(r, r). (18)

Thus, this potential also has an algebraic form.
The second part is a short-range, rank-one separable poten-

tial with real or complex energy-dependent strengths fixed to
the actual data. This idea has been developed and implemented
in nucleon-nucleon studies and applied to nucleon-nucleus
scattering [12,13]. Here, we use the KN potential as the sum of
a local inversion potential Vα(r) supplemented with a separable
term

VKN (r, r ′, E) = Vα(r ′)
δ(r − r ′)

rr ′ + φα(r)�α(E)φα(r ′). (19)

The partial waves are identified with α, and �α(E) are
energy-dependent strengths with imaginary component for
those channels where the S matrix is not unitary. This is the case
for only some partial-wave data. For a given reference potential
Vα(r) and data, the determination of �α(E) is a straightforward
procedure [12].

Thus, we base the VKN on the current solution of
CNS/GWU-KN solutions [14,15]. All the used phase shifts,
L � 2, are shown in Figs. 1–4. We distinguish different data:
single-energy (full circles with error bars) and continuous-
energy (dashed curves) solutions and the inversion reference
potential phase shifts (solid curves), which reproduce the
rational functions of the kinetic energy TLab. The isospin-zero
(I = 0) stretched (J = L + 1/2) and antistretched (J =
L − 1/2) channels are shown in Figs. 1 and 2, respectively.
Similarly, the isospin-one (I = 1) stretched and antistretched
channels are presented in Figs. 3 and 4, respectively. The
corresponding inversion reference potentials are shown in
Figs. 5 and 6. In these figures we observe that all potentials
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FIG. 1. The isospin-zero stretched states phase shifts as a function
of the K+ kinetic energy. The single- and continuous-energy solutions
of the GWU analyses are represented with large and small circles. The
solid curves represent the phase shifts from the reference potential.

are short range with significant strengths limited to r < 1 fm.
The very short range behavior depends on the high-energy
extrapolation of the rational function, which we performed as
sensibly as possible.

The separable potential functions are motivated and tuned
to a short-range zone in which resonances, inelastic scattering,
and reactions are supposed to occur [12], for example,

φα(r) = NαrL exp [−(r − r0)2/a2], (20)

where we have used r0 = 0.5 fm and a = 0.2 fm, with Nα a
normalization constant.

Any identification of resonances and reaction channels is
not part of this endeavor. Thus, the separable term strengths
�α(E) are fixed to the continuous-energy-solution partial-wave
phase shifts [14], whose real phase shifts are shown as dashed
curves in Figs. 1–4. Vanishing imaginary phase shifts are
limited to the channels S01, P03, D05, and F07.
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FIG. 2. The same as Fig. 1 but for the unstretched states.
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FIG. 3. The isospin-one stretched states phase shifts as a function
of the K+ kinetic energy. The single- and continuous-energy solutions
of the GWU analyses are represented with large and small circles. The
solid curves represent the phase shifts from the reference potential.

III. THE KA OPTICAL POTENTIAL

An OMP represents an effective single-particle interaction
potential for a projectile caused by the interaction with target
nucleons. The underlying many-body problem in Brueckner’s
many-body theory yields an OMP in the form of a convolution
of a projectile-nucleon effective interaction, the reaction
matrix, with the target mixed density.

There are many practical ways to obtain a successful
representation of the effective interaction and its accurate use
in the convolution integral. Here we use the KN t-matrix
operator, on and off shell, as the effective interaction. Such
a construction has successfully been used in the past and
we recall only its salient features to make the discussion of
various results comprehensible. In the projectile-nucleus c.m.
reference frame, the collision of a projectile of kinetic energy E
is described by the full-folding OMP, which in a momentum

0 200 400 600 800
T

Lab
    [MeV] 

-30

-20

-10

0

Ph
as

e 
sh

if
t  

 [
de

g]
 

D13

P11

FIG. 4. The same as Fig. 3 but for the unstretched states.
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FIG. 5. The radial dependence of the isospin-zero KN reference
potentials.

representation is given by [13]

U (k′, k; E) =
∑

N=p,n

∫
dP ρN

(
P + q

2
, P − q

2

)

× tNK+ (kr
′, kr; K + P; s), (21)

where we define the mean momentum K = (k′ + k)/2 and
momentum transfer q = k′ − k. Here the effective interaction,
in the form of the free scattering t matrix, exhibits an explicit
dependence on the relative momenta kr and kr

′, the total pair
momentum Q = K + P, and the pair-s invariant. In particular,
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FIG. 6. The radial dependence of the isospin-one KN reference
potentials.
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the relative momenta take the general form

kr = Wk − (1 − W )p, kr
′ = W ′k′ − (1 − W ′)p′, (22)

where W and W ′ are scalar functions of the momenta of the
colliding particles with relativistic kinematics built in. Explicit
expressions for these quantities have been given in Ref. [13]
and are summarized as follows. Let ω and ε be the kaon
and nucleon on-shell energies (i.e., ω =

√
m2

K + k2 and ε =√
m2

N + k2), respectively. Then W is given by

W = ε + εr

ε + εr + ω + ωr

, (23)

with εr and ωr the on-shell relative energies

ωr =
√

m2
K + kr

2, εr =
√

m2
N + kr

2. (24)

Here the magnitude of the relative momentum is obtained from

kr
2 = 1

4sin
ξ 2

(
sin,m

2
K,m2

N

)
, (25)

where the ξ function corresponds to

ξ (x, y, z) =
√

(x − y − z)2 − 4yz, (26)

and the incoming sin invariant is given by

sin = (ε + ω)2 − (p + k)2. (27)

Identical expressions are used for the primed quantities to
obtain the outgoing coefficient W ′.

The momentum integral
∫

dP signals the folding integral.
The intricate dependence of the many vector-valued momenta
makes the convolution quite complicated and thus the name
full-folding approach was coined to signal use of the full
expression, as compared to much simpler approximated
expressions. Physically, the folding integral accounts for
dynamical effects resulting from Fermi motion as modulated
by the shape of the target mixed density. For practical reasons
we represent the mixed density in terms of the local density
ρ(R) via the Slater approximation [18], that is,

ρ
(

P + q
2
, P − q

2

)
= 1

π2

∫ ∞

0
R2 dRj0(qR)�[k̂(R) − P ]

(28)

with k̂(R) = [3π2ρ(R)]1/3.
The model equation for the t matrix in terms of a reference

KN potential in the KN c.m. reference frame takes the form of
the Lippmann-Schwinger type, that is,

tKN (p′, p; s) = VKN (p′, p) + 2µ

∫
d3k

(2π )3

× VKN (p′, k)tKN (k, p; s)

k2◦ + i0+ − k2
. (29)

Here, the energy invariant s and associated on-shell momentum
k◦ are determined from s = (mK + E + mN + ε̄N )2 − Q2,
where ε̄ is the average binding energy of the target nucleons
and Q corresponds to the total pair momentum in the KA
c.m. frame. The potential VKN is constructed following the
inversion procedure described in the previous section. The
calculation of the t matrix on and off shell at various energies

follows standard numerical procedures. In the boost of the
t matrix from the c.m. to the laboratory reference frame we
have included the corresponding Jacobian (or Møller factor)
[13].

Although full-folding OMPs were developed in the 1980s
for pion as well as nucleon scattering, most K+-nucleus
scattering analyses continue being made within an on-shell
tρ approximation. We select and discuss three of these
factorized forms in this study.

(a) Off-shell tρ: A first reduction to a tρ form emerges
after setting P = 0 in the t matrix in Eq. (21), thus allowing
the integration of the mixed density over the momentum P.
Hence,

U (k′, k; E) =
∑

N=p,n

ρN (q)tNK+(kr
′, kr; K; s), (30)

where ρN (q) represents nuclear density in momentum space.
In this factorized form the relative momenta kr and kr

′ lie
generally off shell, as no constraints on k or k′ are in place. This
reduction is referred to as an off-shell tρ approximation and
has been extensively applied in nucleon-nucleus scattering. An
additional further step can be taken to force the t matrix on
shell. Quite generally, features at the t-matrix level dictated
by four independent variables (two magnitudes, angle, and
energy) are specified by two of its arguments, one angle and
one energy. We have found that on-shell tρ results for K+A

scattering depend, albeit moderately, on the prescription used
and we focus on two of them.

(b) On-shell tρ of the s type: This is the usual form of the
on-shell tρ approximation and has been applied extensively
in hadron-nucleus collisions. We have designated it of the s

type since it privileges the energy argument in the t matrix.
Basically, the energy

√
s of the K+N pair is determined in the

Breit frame with the subsequent determination, on shell, of the
relative momenta. Details can be found in Ref. [19].

(c) On-shell tρ of the k type: An alternative prescription,
which we refer to as of the k type, emerges naturally after
considering a series expansion of U (k, k′) in terms of the
magnitudes k and k′ around the on-shell momentum kA in the
projectile-nucleus c.m. Then, to lowest order we get

U (k′, k) ≈ U (kAk̂′, kAk̂). (31)

As a result, the two relative momenta in the t matrix [c.f.
Eq. (22)] become equal in magnitude. The pair energy

√
s is

obtained on shell from these relative momenta.

IV. APPLICATIONS AND RESULTS

We focus our applications on differential and total cross
sections at kaon momenta in the range 400–1000 MeV/c by
considering 6Li, 12C, 28Si, and 40Ca targets. The ground-state
densities of the first three targets were obtained from the
nuclear charge density fit to electron scattering [20–22]. The
point densities were obtained by unfolding the electromagnetic
size of the proton from the charge density. In these cases we
assume neutron densities equal to the proton densities. In the
case of 40Ca we have used the densities from Ref. [23].
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FIG. 7. Differential cross section for K++12C elastic scattering
at PLab = 635 MeV/c. The solid curve represents the full-folding
results, the long dashed curve corresponds to the off-shell tρ results.
The on-shell tρ results of k and s type are shown with short-dashed
and dotted curves, respectively. The data are from Ref. [24].

The scattering is analyzed within the full-folding
OMP and comparisons are made with off- and on-shell
tρ approximations. Thus, we include in the best possible way
the off-shell effects in the effective interaction and switch them
partially or fully off in the simpler tρ OMP.

The KA optical potentials are calculated in momentum
space following Ref. [13]. The KA S matrix and derived
quantities linked with observables are obtained by solving
an OMP Lippmann-Schwinger equation in coordinate space
for any of the specified nonlocal potentials in the presence of
the Coulomb interaction. Furthermore, relativistic kinematics

is used to specify the correct on-shell momentum and corre-
sponding KA reduced energy needed for the Green’s function.

In Fig. 7 we show the calculated differential cross section
for K+ + 12C scattering at beam momentum 635 MeV/c with
data [24]. The solid curves are the full-folding results, whereas
the long-dashed curves are the off-shell tρ results. The on-shell
tρ results of s and k type are shown as short-dashed and
dotted curves, respectively. Although differences exist among
all four results, they are quite small. The differences among all
tρ are a measure of the off-shell contributions. The off-shell
tρ results show a uniform shift upward when compared with
the full-folding results. More obvious, but still marginal, are
differences among the results for scattering angles above 30◦.

Similar applications are shown in Fig. 8, where we present
the differential cross section for scattering from 6Li, 12C, and
40Ca at beam momenta of 715 and 800 MeV/c. The data
are taken from Refs. [25,26] and the curve designations follow
the convention of Fig. 7. Here again we evidence moderate
differences among all four approaches, being visible, at best,
for angles above 25◦. The comparison with data shows for 6Li
(upper left frame) an overestimation of the theory with respect
to the data by a factor of ∼1.8 around 10◦. We interpret
this discrepancy as being caused by uncertainties in the data
normalization. The work by Chen et al. [6] shows that they
had a similar problem with 6Li. In their study they include
a phenomenological second-order potential proportional to a
power of the nuclear density. They fit the complex strength
and power of the density to the data, obtaining results in
close resemblance to ours. Overall, the results for 12C and
40Ca shown in Fig. 8 are in good accord with the data. In the
case of 12C at 715 MeV/c (lower left frame) some differences
between theory and data, at angles above 30◦ are present.
The full-folding and any of the tρ approaches are remarkably
similar for differential cross sections.

Total cross sections for K+-nucleus collisions have been
extracted from transmission experiments [1,2,4]. Such data
are complementary to the differential cross section data and
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FIG. 8. Differential cross section for elastic
scattering of K+ from 6Li (upper left frame), 12C,
and 40Ca (lower right frame) at beam momenta
of 715 Mev/c (left frames) and 800 MeV/c (right
frames). The curve patterns are the same as in
Fig. 7. The data at 715 and 800 MeV/c are from
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often exhibit larger differences among the full-folding and
tρ results, even though the same KN effective interaction is
used. Before jumping to premature conclusions about the
effective interaction or the quality of any of the theoretical
models, it is important to remember that the transmission
total cross sections σT have their own model dependence built
into the data. This has been discussed in some detail else-
where [27,28]. Using σT (�) as the experimentally measured
transmission cross section, subtending a solid angle � from
the target along the beam axis, we obtain a total cross section
of

σT = lim
�→0

[σT (�) − σC(�>) − σCN (�>)]

+ σN (�<) + σI (�<), (32)

where �> and �< refer to the integrated cross section outside
and inside the solid angle �, respectively. Furthermore, we
use the following nomenclature for particular cross sections:
σC(�>) for the point charge Coulomb cross section, σCN (�>)
for the Coulomb and nuclear interaction interference term,
σN (�<) for the nuclear cross section from the nuclear inter-
action, and σI (�<) for that arising from inelasticities. In the
limit � → 0 the last two terms vanish. However, σCN requires
very accurate results for the nuclear plus Coulomb interaction
amplitude. This requires knowledge and availability of a
high-quality optical model in the first place; this introduces
a model dependence of σT that is beyond our judgment
and puts limits on our conclusions. Nevertheless, we have
calculated the total cross sections with all four optical models
discussed here and we compare the results with data reductions
presented by Friedman et al [1] and by Friedman, Gal, and
Marěs [2]. The difference between the data reported in these
two references lies in the way the optical potential, in a tρ(r)
form, is constructed to extract the total cross sections from
transition experiments. Whereas in Ref. [1] the tρ form is
based on a density-independent t-matrix strength, in Ref. [2]
the imaginary part of the strength exhibits a parametric density
dependence adjusted to yield, self-consistently, the total cross
sections. Thus, the data reported in the second reference
are consistent within an empirical medium dependence (c.f.
Eq. (5) of Ref. [2]) of the t matrix and reflect, to some extent,
the model dependence of their reported measurements.

In Figs. 9 and 10 we present the ratios of experimental to
calculated reaction cross sections σR(Exp.)/σR(Calc.) and the
total cross sections σT (Exp.)/σT (Calc.) for four target nuclei
at four projectile momenta. Notice that all ratios are nearly
constant as a function of projectile momentum, whereas only
the 6Li results lie somewhat below the other three cases.
Quite similar results are obtained by considering the other
three forms of the tρ model. When comparing Figs. 9 and 10
we observe a clear shift in the reaction cross section of the
latter with respect to the former. This shift is consistent with
the rescaling of the imaginary part of the strength of the
t matrix used in the construction of the optical potential [2]. The
question is, therefore, whether this prescription to incorporate
medium corrections effectively accounts for genuine medium
effects in the form of short range-correlations, Fermi motion,
and their implied nonlocal effects in the K+-nucleus coupling.
An assessment of these issues has yet to be made.
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FIG. 9. Experimental-to-calculated ratios for the total (σT ) and
reaction (σR) cross sections for K+ elastic scattering from 6Li, 12C,
26Si, and 40Ca at 488, 531, 656, and 714 MeV/c. Results are based on
the full-folding approach. Connecting lines have been drawn to guide
the eye. The data are taken from Ref. [1].

The features observed in the figures can also be seen
in Table I, where we present the measured and calculated
cross sections at four momenta for the selected targets from
calculations based on the four approaches discussed here. For
instance, the results shown in Fig. 9 correspond to the ratios
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FIG. 10. The same as Fig. 9, but with data taken from Ref. [2].
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TABLE I. Experimental and calculated reaction and total cross sections (in millibarns) for K+-nucleus scattering at the specified momenta.
The data in the first and second block are from Refs. [1,2] with corresponding errors in parentheses.

Source PLab [MeV/c] Reaction Total

6Li 12C 28Si 40Ca 6Li 12C 28Si 40Ca

Data [1] 488 65.0(1.3) 120.4(2.3) 265.5(5.1) 349.9(7.7) 76.6(1.1) 162.4(1.9) 366.5(4.8) 494.4(7.7)
531 69.8(0.8) 129.3(1.4) 280.4(3.4) 367.1(4.5) 78.8(0.7) 166.6(1.3) 374.8(3.3) 500.2(4.4)
656 75.6(1.1) 141.8(1.5) 306.1(3.4) 401.1(5.0) 84.3(0.7) 174.9(0.8) 396.1(2.7) 531.9(4.2)
714 79.3(1.2) 149.3(1.5) 317.5(3.6) 412.9(5.5) 87.0(0.6) 175.6(0.9) 396.5(2.3) 528.4(2.8)

Data [2] 488 67.8(1.3) 128.4(2.3) 276.2(5.1) 362.5(7.7) 77.5(1.1) 165.4(1.9) 373.7(4.8) 503.2(7.7)
531 73.2(0.8) 136.8(1.4) 299.1(3.4) 384.0(4.5) 80.7(0.7) 168.9(1.3) 391.7(3.3) 521.6(4.4)
656 79.0(1.1) 148.2(1.5) 311.8(3.4) 408.6(5.0) 86.4(0.7) 179.5(0.8) 403.2(2.7) 548.8(4.2)
714 82.2(1.2) 152.8(1.5) 320.2(3.6) 417.1(5.5) 88.5(0.6) 183.8(0.9) 411.3(2.3) 550.4(2.8)

Full-folding 488 68.2 120.7 257.7 344.4 83.3 167.7 379.9 525.8
531 71.8 126.4 267.3 356.4 85.8 170.1 381.2 525.4
656 78.7 136.8 288.5 383.3 91.1 176.3 394.1 542.0
714 81.4 139.8 293.9 390.0 93.3 178.5 397.6 545.5

Off-shell tρ 488 70.1 124.8 265.1 353.7 86.3 175.8 396.5 548.4
531 73.5 129.9 274.0 364.7 88.3 176.9 395.7 545.3
656 79.9 139.6 293.0 388.7 92.9 181.2 403.2 554.0
714 83.0 141.9 298.2 395.2 94.7 182.5 405.8 556.3

tρ k type 488 67.7 118.5 252.4 336.8 82.7 164.4 369.3 508.5
531 71.2 124.1 262.7 349.8 85.0 166.4 371.6 510.3
656 78.3 135.0 284.9 378.4 90.5 173.4 386.8 530.8
714 80.3 138.6 291.3 386.2 92.2 176.3 391.5 535.9

tρ s type 488 69.2 122.6 260.4 347.4 84.9 170.9 382.9 527.6
531 72.7 128.0 270.2 359.7 87.0 172.2 383.6 527.0
656 79.5 138.3 291.1 386.6 92.0 177.6 395.9 543.5
714 81.4 141.6 297.1 393.8 93.4 180.1 399.7 547.4

between the first two blocks of this table. When comparing
the full-folding cross sections with the on-shell tρ results, we
observe that the former lies systematically above the k type,
but it has below the s type. These differences may be used to
estimate the off-shell sensitivity, which we estimate as ±3%

for the worst case. The off-shell tρ result is always above
the other three results and its difference to the data is the
largest.

The features already observed become more evident in
Fig. 11, where we present the measured and calculated reaction
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σR and total σT cross sections for 12C as a function of the kaon
momentum, in the range 400–1000 MeV/c. The data from
Bugg et al. [29] and Krauss et al. [4] are shown with open
diamonds and circles, respectively. The data form Friedman
et al. [1] and Friedman, Gal, and Marěs [2] are shown with
black circles and diamonds, respectively. Here, the thicker
solid curves represent the full-folding results, whereas the
dotted ones are based on the on-shell tρ approaches. The
off-shell tρ results are shown with the thinner solid curves.
Finally, we present full-folding results when only the reference
inversion potentials are used in the KN effective interaction,
thereby completely suppressing the separable contribution.
These results for σT and σR are shown with dashed curves.

The full-folding and on-shell tρ approximations give an
overall reasonable agreement (within 5%) with the measured
total cross sections up to 900 MeV/c, above which they depart
from the data. Notice that an agreement within error bars
is achieved with the data of Krauss et al. [4] for 12C (open
circles) in the momentum range 400–800 MeV/c. Furthermore,
the s-type tρ σT results (upper dotted curves) are in poorer
agreement with the data in comparison with the k-type tρ

and full-folding approach, particularly below 500 MeV/c. The
different variants of the tρ approximations near 400 MeV/c
yield total cross sections varying between ∼160 and ∼180 mb,
representing more than 10% of the measured value (20 mb).
When only the on-shell approximations are considered these
variations diminish to about 5% (10 mb), decreasing at higher
momenta. These results illustrate the level of uncertainty
implicit in any tρ approximation when used as representa-
tions of the off-shell Fermi-motion integrals of the effective
interaction.

A closer scrutiny of the gradual departure of the calculated
total cross section relative to the data, above 900 MeV/c, would
require the study of possible uncertainties in the elemental KN
amplitude and enable an assessment of their impact on total
cross sections. These considerations go beyond the focus of the
present work. Incidentally, the results in which the separable
strength of VKN is suppressed (dashed curves) indicate that,
despite marginal differences in the description of the real
phase shifts, the absorptive component becomes important in
the asymptotic behavior of the cross sections. It is in this
high-energy regime where the single- and continuous-energy
solutions exhibit sizable differences.

The sensitivity of σT to the alternative approaches consid-
ered here is somewhat diminished in the context of the reaction
cross section, where all curves stay much closer to each other.
An interesting feature which emerges after comparing the
calculated total and reaction cross sections is their nearly
constant difference above 600 MeV/c. In the particular case of
12C we observe

σT ≈ σR + 39 [mb]. (33)

A similar behavior is exhibited by the other targets, as inferred
from Table I.

The study of total cross sections for N = Z nuclei has also
been of some interest as a means to gauge the role of medium
effects in the propagation of kaons through the nucleus. Weiss
and collaborators [30] found that the ratio σT /A for 6Li and
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on data from Refs. [1,2] and the full-folding approach. The solid,
dashed, and dotted curves represent results for 12C, 28Si, and 40Ca,
respectively.

deuterium are nearly the same, suggesting that multiple-step
contributions are rather weak in these light targets. Such is
not the case for the heavier targets. To quantify this feature,
Friedman et al. have introduced the super ratio, that is, the ratio
σExp.(A)σCalc.(6Li)/σCalc.(A)σExp.(6Li). Although it is correct
that this quantity would diminish normalization uncertainties,
its departure from unity may indicate not only medium
effects but also the level of disagreement between theory
and experiment. Indeed, their reported values for each target
exhibit distinctive curves as function of the momentum, with
values ranging between 1.15 and 1.25. Although limited by the
fact that the optical model used to extract the data in Refs. [1,2]
differs from the full-folding model used here, we have also
calculated the super ratios using the results in Table I. In Fig. 12
we plot the total (ST ) and reaction (SR) super ratios using the
data from Ref. [1] (upper two frames) and Ref. [2] (lower two
frames) against the full-folding results. Notice that all super
ratios are nearly constant as functions of the momentum, with
variations between 1.0 and 1.1, consistent with the level of
agreement shown in Figs. 9 and 10. Nonetheless, definitive
analyses of these super ratios require the use of full-folding
KA optical potentials to extract the cross-section data from
transmission experiments, an endeavor beyond the scope of
this work.

V. CONCLUSIONS

We have studied K+-nucleus elastic scattering from light
nuclei in the momentum range 400–1000 MeV/c within
the full-folding optical model potential framework. To this
purpose we have used the t matrix based on a KN potential
model with absolute match of the phase-shift analyses reported
by the GWU group. The emphasis here has been placed on a
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strict connection between the bare KN potential (consistent
with the current phase-shift analysis) and the K+-nucleus
scattering process. This feature is achieved by adding a
separable term to a local reference potential obtained within
the Gel’fand-Levitan-Marchenko quantum inversion. The
t matrix, based on this bare potential model, is convoluted with
the nuclear mixed density, leading to a nonlocal KA optical
potential. The scattering observables were compared with
those obtained within off-shell and two alternative versions
of on-shell tρ approximations, which we have designated as
of s and k type, respectively. We observe moderate log-scale
differences in differential cross sections among the calculated
results from all four approaches. With regard to reaction
and total cross sections from transmission experiments, we
observe a 10–20% sensitivity arising from the way the Fermi
motion is approximated in the different tρ variants examined
here for PLab <∼ 700 MeV/c. Considering the full-folding
model approach, the results for 12C exhibit a near complete
agreement, within error bars, with the total cross sections
reported by Krauss et al. [4] at momenta between 450 and
750 MeV/c. Such agreement is not observed with the data
reported by Friedman and collaborators for 40Ca, 28Si, 12C,
and 6Li. Although the level of agreement observed in these
cases remains within 10%, clear discrepancies are observed
(c.f. Figs. 9 and 10).

The possible manifestation of the �+(1540) pentaquark in
the collision of K+ with nuclei has been the subject of recent
interest [10]. Indeed, it has been reported that the addition of
a quadratic functional of the density to a local tρ-like optical

potential, b◦ρ(r) → b◦ρ(r) + Bρ̄ρ(r), enables a substantial
improvement in the fits of transmission-experiment total cross
sections data in KA scattering. Additionally, this phenomeno-
logical quadratic term, introduced as a means to represent
the loss of flux owing to K+nN → �+N two-nucleon
absorption, has been used by the authors of Ref. [10] to predict
submillibarn cross section for �+ production on deuterium.
From a different prospective, Tolós and collaborators [31]
have recently reported on the influence of �+(1540) degrees
of freedom in the context of the single-particle potential of
kaons in nuclear matter. In their study special emphasis has
been placed on the inclusion of Fermi motion and Pauli
blocking effects in the self-consistent determination of the
mass operator. It is found that “Tρ” representations of the
self-consistent potentials differ significantly from those where
Fermi motion and Pauli blocking are fully accounted for, and
it is observed that �+ pentaquarks affect the self-consistent
potentials up to 20% for the real part and ∼30% for its witdth.
The implications of these in-medium effects in the context
of a microscopic description of KA scattering remain to be
investigated.
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