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Dispersive coupled-channel analysis of nucleon scattering from 232Th up to 200 MeV
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An isospin-dependent coupled-channels optical model potential containing a dispersive term (including
nonlocal contribution) is used to simultaneously fit the available experimental database (including strength
functions and scattering radius) for neutron and proton scattering on strongly deformed 232Th nucleus. The
energy range 0.001–200 MeV is covered. A dispersive coupled-channel optical model potential with parameters
that show a smooth energy dependence and energy independent geometry are determined from fits to the entire
data set. Dispersive contribution is shown to be the dominant Coulomb correction to the proton real potential below
the Coulomb barrier. Inclusion of nonlocality effects in the absorptive volume potential and its corresponding
dispersive contribution to the real potential is needed to achieve an excellent agreement above 100 MeV.
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I. INTRODUCTION

During the past 50 years the nuclear optical model has
been extensively applied to analyze the elastic scattering
of pions, nucleons, and heavier particles by nuclei over
a wide range of energies [1–3]. It has been extended to
include inelastic scattering by the coupled-channels formalism
[4,5] and consideration of dispersion effects allows us to
describe both bound and scattering states by the same nuclear
mean field [6–16]. These dispersion effects follow from the
requirement of causality, namely that the scattering wave is
not emitted before the incident wave arrives [7]. In this way
a physically self-consistent description of the energy depen-
dence of the optical model potential is obtained. Moreover,
additional constraint imposed by dispersion relations helps to
reduce the ambiguities in deriving phenomenological optical
model potential (OMP) parameters from the experimental
data.

Pioneering works on dispersive optical model (DOM)
analysis for nucleon scattering have been done by Lipperheide
[17,18], Passatore [19], and Lipperheide and Schmidt [20]. A
great success has been achieved in deriving DOM potentials for
nucleon scattering on closed shell nuclei such as 40Ca,90Zr, and
208Pb. Many studies have dealt also with neutron scattering on
near to magic nuclei. A global spherical potential for nucleon-
induced reactions derived by Koning and Delaroche [21]
used local dispersive OMPs as starting point [22]. Recently
a global dispersive spherical potential for neutron-induced
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reactions was derived by Morillon and Romain [23]. However,
very few studies have been devoted to DOM potentials for
strongly deformed nuclei, where coupled-channel formalism
should include dynamical potential corrections arising from
dispersion effects. The first work on this subject was, to our
knowledge, the contribution of Romain and Delaroche [24],
which was devoted to the analysis of the nucleon scattering
data on 181Ta and tungsten isotopes. An explicit treatment of
the nonlocality of the surface imaginary potential (symmetric
about the Fermi energy EF ) was used to achieve excellent
agreement with Los Alamos–Ohio University experimental
data up to 200 MeV [25]. They found that the effect of includ-
ing the nonlocality in the calculations was the weakening of
the dispersive contribution as the energy increases. However,
in an earlier contribution from Mahaux and Sartor [15], they
pointed out that because of nonlocality effects, the absorptive
potential will be highly asymmetric (with respect to EF ).
The DOM analysis of neutron scattering on 27Al [26] showed
the importance of the dispersive contribution to describe σT

data for energies above 100 MeV using a nonsymmetric
version of the volume absorptive potential for large positive
and large negative energies. We present strong evidence to
favor nonsymmetric volume absorptive potential for a proper
description of the nucleon scattering data for energies above
100 MeV on deformed targets.

Recent studies on gadolinium, hafnium, and holmium
isotopes [27–29] also consider dispersive coupled-channel
description using symmetric imaginary potentials, but no
clear advantage of dispersive against conventional coupled-
channel approach was shown, probably because the employed
experimental database included only data in very limited
energy range up to 20 MeV.
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Additional motivation for our work is that thorium is an
important fissile material for the accelerator-driven system
(ADS). Moreover, there is rising interest in innovative fuel
cycle concepts based on thorium fuel [30]. Knowledge of
accurate cross sections of a number of reactions (e.g., total,
elastic and inelastic scattering, capture, and fission) between
neutrons and actinides is crucially important for design of
various reactor systems. In the ADS of radioactive-waste
transmutation and energy generation, the nuclear reaction
data are needed both for neutrons and protons as projec-
tiles up to several hundred mega-electron-volts. Optimization
of accelerator-driven minor actinide transmutation strategy
requests evaluation of cross sections of a large number of
actinide nuclides up to ∼200 MeV, above which calculations
with Monte Carlo cascade-model based codes can be applied.
Below this energy, the coupled-channel calculation is required
for actinides, which are highly deformed. Using the optical
model, one can calculate not only total, elastic, and reaction
cross sections but also transmission coefficients needed in the
statistical and preequilibrium model calculations. Thus, the
OMP parameters that can reproduce well nucleon scattering
data over a wide energy range are essential to make reliable
nuclear data prediction.

The main purpose of this contribution is to construct a
deformed complex mean field felt by neutrons and protons in
232Th theoretically valid from the Fermi energy up to 200 MeV.
We follow the “dispersive optical model analysis” [13,14,31],
where the unknown potential parameters are derived by
performing optical-model fits to experimental scattering cross
sections that need to be available over an energy range as broad
as possible. The real and imaginary parts of the mean field are
connected by a dispersion relation and, moreover, the mean
field is required to closely reproduce the experimental value of
the Fermi energy EF for both neutrons and protons. The Lane
model [32,33], which assumes isospin symmetry in nuclei, is
employed so our nucleon-nucleus OMP can be decomposed
into isoscalar and isovector parts.

Recent measurements of the neutron total cross sections for
232Th at energies from 5 MeV up to 560 MeV were published
by a Livermore–Los Alamos–Ohio University collaboration
[34]. Average total cross section data in the unresolved
resonance region were derived by IRMM’s group in 2004 [35].
These high-precision data together with earlier nucleon scatter-
ing angular distributions and low-energy observables (strength
functions and scattering radius) are the database considered
at positive energies. The Fermi energy values derived from
nuclear masses are used to constrain the mean field value
at negative energies. Therefore the energy variation of the
model parameters is reasonably defined over a wide range, an
extremely important point for a successful dispersive analysis.
Because the employed database extends up to 200 MeV and
because the recent high-energy σT data are very accurate [34]
(i.e., the uncertainty �σT is about ±1%), we use relativistic
corrections in all our calculations.

There exist nondispersive coupled-channel OMPs describ-
ing nucleon scattering on thorium up to high incident energy.
Most of the CC potentials suggested for actinides are based on
the potentials determined by Lagrange [36]. A new global

parametrization using nondispersive CC OMP for actinide
nuclei valid from 1keV to 200 MeV was recently proposed by
Soukhovitskii and coworkers [37] (in the following we refer
to this work as NDOMP04). During the past year, several new
OMPs are being discussed in the framework of the ongoing
IAEA Coordinated Research Program [30].

The article is structured as follows. Section II provides
a description of the coupled-channel dispersive optical model
formalism and the forms of the energy and radial dependencies
of the real, imaginary and spin-orbit potentials. Section III
describes the 232Th experimental scattering database and
the resulting isospin dependent potential for the simulta-
neous description of neutron and proton induced reactions
on thorium. In the same section we compare derived DC-
COM potential with state-of the-art nondispersive potential
[37] and experimental data. Finally Sec. IV contains our
conclusions.

II. COUPLED-CHANNEL DISPERSIVE OPTICAL
MODEL FORMALISM

A. Optical-model potential

Thorium is a well-deformed rigid rotor, where low-lying
collective levels are strongly excited in nucleon inelastic
scattering. The customary coupled-channels calculations were
performed by coupling the first five states of the ground state
Kπ = 0+ rotational band, Jπ = 0+, 2+, 4+, 6+, and 8+. This
coupling scheme is denoted as the “saturated coupling” [38]. It
means that inclusion of additional levels changes the calculated
results within the experimental errors. One must be aware that
the experimental data may be described with a coupling of
fewer levels. However, optical potential parameters in such a
case depend on the coupling scheme used to compensate a
lack of coupling strengths. Therefore such optical potential
parameters cannot guarantee reliable prediction when they
are used with any other coupling schemes or to neighboring
actinide nuclei whose experimental data is not available. Our
analysis spans an energy range from 0.001 to 200 MeV. Both
direct and statistical processes contribute to nucleon-nucleus
elastic scattering at these energies. However, according to our
estimation, the statistical processes are not important above
3 MeV so we neglect them in the OMP derivation. The direct
processes, increasingly dominant at higher energies, can be
described by the optical model.

The deformed nuclear optical potential arises from de-
formed instant nuclear shapes

Ri(θ
′, ϕ′) = R0

i

{
1 +

∑
λ=2,4,6,8

βλ0Yλ0(θ ′, ϕ′)

}
, i = v, s, so, c,

(1)

where Yλ0 is spherical harmonics; θ ′ and ϕ′ are angular
coordinates in the body-fixed system; v, s, so, and c are
volume, surface, spin-orbit, and Coulomb terms; and R0

i =
riA

1/3, with A being the target mass number.
The optical model potential is taken to be a standard Woods-

Saxon form but with account of the deformed nuclear shapes.
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It may be written as follows:

V (r, R(θ ′, ϕ′), E) = − [
Vv(E) + iWv(E) + �V Coul

v (E)
]

× fWS[r, Rv(θ ′, ϕ′)] − [
Vs(E) + iWs(E)

+ �V Coul
s (E)

]
gWS[r, Rs(θ

′, ϕ′)]

−
(

h̄

mπc

)2

[Vso(E) + iWso(E)]

× 1

r

d

dr
fWS[r, Rso(θ ′, ϕ′)](σ̂ · L̂)

+ VCoul[r, Rc(θ ′, ϕ′)], (2)

where the successive complex-valued terms are the volume,
surface, and spin-orbit potentials with the form factors given
as follows:

fWS[r, Ri(θ
′, ϕ′)]

= {1 + exp[r − Ri(θ
′, ϕ′)]/ai}−1, i = v, so

(3)

gWS[r, Rs(θ
′, ϕ′)] = −4as

d

dr
f [r, Rs(θ

′, ϕ′)]

and deformed radii Ri as described in Eq. (1). The Coulomb
potential VCoul[r, Rc(θ ′, ϕ′)] was calculated using a multipole
expansion of charged ellipsoid with a uniform charge density
within the Coulomb radius Rc and zero outside as suggested
by Satchler et al. [39]. The spherical term of the Coulomb
potential was calculated by taking account of the diffuseness of
the charge density distribution of the form fc = [1 + exp(r −
R0

c )/ac]−1 [40].
The Coulomb correction volume �V Coul

v (E) and surface
�V Coul

s (E) terms are set to have an energy dependence that is
a minus derivative of the real potential, so that

�V Coul
v,s (E) = −CCoul

ZZ′e2

A1/3

d

dE
[Vv,s(E)], (4)

where the symbols Z′ and Z denote charges of projectile and
target in electron charge units.

In our formulation of the OMP in Eq. (2) the real and
imaginary volume terms share the same geometry parameters
rv and av and likewise the real and imaginary surface (spin-
orbit) terms share the same rs(rso) and as(aso) parameters. This
assumption [9] can be seen as a consequence of the dispersive
relations, allowing us to reduce the number of geometrical
parameters in the OMP.

As energy losses because of collective levels excitation
compared with the nucleon incident energies for low incident
energies involved in the analysis are noticeable, the depen-
dence of the local optical potential for different channels was
taken into account as follows:

Vif = V

(
Ep − Ei + Ef

2

)
, (5)

where i and f denote initial and final channels, whereas Ei and
Ef the corresponding level energies.

The present optical potential includes relativistic correc-
tions as discussed by Elton [41]. First, the nucleon wave
number k was calculated in the relativistic form:

(h̄k)2 = [E2 − (Mpc2)2]/c2 (6)

where E denotes the total energy of projectile, Mp the projectile
rest mass, and c the velocity of light. Second, projectile
and target masses were replaced by corresponding relativistic
energies in reduced mass formulae.

In a dispersion relation treatment, the real potential strength
consists of a term that varies slowly with energy, the so-called
Hartree-Fock (HF) term, VHF(r, E), plus a correction term,
�V (r, E), which is calculated using a dispersion relation.
Under favorable conditions of analiticity in the complex E-
plane the real part �V can be constructed from the knowledge
of the imaginary part W on the real axis through the dispersion
relation

�V (r, E) = P
π

∫ ∞

−∞

W (r, E′)
E′ − E

dE′, (7)

where we have now explicitely indicated the radial and
energy dependence of these quantities and P means that the
principal value of the integral should be taken. Assuming that
�V (r, E = E

F
) = 0, where E

F
is the Fermi energy, Eq. (7)

can also be written in the subtracted form

�V (r, E) = P
π

∫ ∞

−∞
W (r, E′)

(
1

E′ − E
− 1

E′ − EF

)
dE′.

(8a)
Here EF denotes the Fermi energy, determined as
EF (Z,A) = − 1

2 [Sn(Z,A) + Sn(Z,A + 1)] for neutrons and
EF (Z,A) = − 1

2

[
Sp(Z,A) + Sp(Z + 1, A + 1)

]
for protons,

where Si(Z,A) denotes the separation energy of nucleon i
from a nucleus labeled by Z and A.

For energy-dependent geometry we should use Eq. (8a)
directly to calculate the dispersive contribution to the real
potential. To simplify the problem, however, the geometry
of the imaginary terms of the OMP are usually assumed to
be energy independent and they are expressed in terms of
a Woods-Saxon function fWS(r) or its derivative. In such
case the radial functions factorize out of the integrals and the
energy dependence is completely accounted for by two overall
multiplicative strenghts �V (E) and W (E). Both of these
factors contain, we note, volume and surface contributions.
Using the definitions of Eq. (2), the real volume Vv(E) and
surface Vs(E) parts of the dispersive OMP are given by the
following:

Vv(E) = VHF(E) + �Vv(E)
(9)

Vs(E) = �Vs(E).

It should be noted that the general definition of the
Coulomb correction (4) implies the existence of the dynamical
dispersive Coulomb correction arising from the derivative of
the dispersive contributions �Vv(E) and �Vs(E). To our
knowledge such corrections never were discussed before.
These dynamical contributions to the Coulomb corrections are
the dominant contribution below 20 MeV to the total Coulomb
correction to the real potential as discussed later.

It is known that the energy dependence of the depth VHF(E)
is because of the replacement of a microscopic nonlocal HF
potential by a local equivalent. For a Gaussian nonlocality
VHF(E) is a linear function of E for large negative E and is an
exponential for large positive E. Following Mahaux and Sartor
[15], the energy dependence of the Hartree-Fock part of the
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nuclear mean field is taken as that found by Lipperheide [18]:

VHF(E) = AHF exp[−λHF(E − EF )], (10)

where the parameters AHF and λHF are undetermined constants.
Equation (10) can be used to describe HF potential in the
scattering regime [15].

It is useful to represent the variation of surface Ws(E)
and volume absorption potential Wv(E) depth with energy
in functional forms suitable for the dispersive optical model
analysis. An energy dependence for the imaginary volume
term has been suggested in studies of nuclear matter theory by
Brown and Rho [42]:

Wv(E) = Av

(E − EF )2

(E − EF )2 + (Bv)2
, (11)

where Av and Bv are undetermined constants. An energy
dependence for the imaginary-surface term has been suggested
by Delaroche et al. [13] to be as follows:

Ws(E) = As

(E − EF )2

(E − EF )2 + (Bs)2
exp(−Cs |E − EF |), (12)

where As, Bs , and Cs are undetermined constants.
The isospin dependence of the potential (the Lane term

[32,33]) was considered in real VHF(E) and imaginary surface
Ws(E) potentials as follows:

AHF = V0

[
1 + (−1)Z

′+1 Cviso

V0

N − Z

A

]
(13)

As = W0

[
1 + (−1)Z

′+1 Cwiso

W0

N − Z

A

]
, (14)

where V0, Cviso,W0, and Cwiso are undetermined constants.
The symmetry condition

W (2EF − E) = W (E) (15)

is used to define imaginary part of the OMP for energies below
the Fermi energy.

B. High-energy behavior of the volume absorption

The assumption that the imaginary potential Wv(E) is
symmetric about E′ = EF [according to Eq. (15)] is plausible
for small values of |E′ − EF |; however, as was pointed out by
Mahaux and Sartor [15], this approximate symmetry no longer
holds for large values of |E′ − EF |. In fact the influence of the
nonlocality of the imaginary part of the microscopic mean
field will produce an increase of the empirical imaginary part
W (r, E′) at large positive E′ and approaches zero at large
negative E′ [6,43]. Following Mahaux and Sartor [15], we
assume that the absorption strengths are only modified above
some fixed energy Ea . They used Ea = 60 MeV; however,
this value is fairly arbitrary [15] and we use it as a fitting
parameter. Let us assume the nonlocal imaginary potential
to be used in the dispersive integral is denoted by W̃v(E). We

can then write [16]

W̃v(E) = Wv(E) − Wv(E)

× (EF − E − Ea)2

(EF − E − Ea)2 + E2
a

, for E < EF − Ea

(16)

and

W̃v(E) = Wv(E) + α

[√
E + (EF + Ea)3/2

2E

− 3

2

√
(EF + Ea)

]
, for E > EF + Ea. (17)

These functional forms are chosen in such a way that
the function and its first derivative are continuous at E′ =
|EF − Ea|. At large positive energies nucleons sense the “hard
core” repulsive region of the nucleon-nucleon interaction and
W̃v(E) diverges like α

√
E. Using a model of a dilute Fermi

gas hard-sphere the coefficient α can be estimated to be equal
to 1.65 MeV1/2 [43], assuming that the Fermi impulse kF is
equal to 1.36 fm−1and the radius of the repulsive hard core is
equal to 0.4 fm. On the contrary, at large negative energies the
volume absorption decreases and goes asymptotically to zero.

The asymmetric form of the volume imaginary potential of
Eqs. (16) and (17) results in a dispersion relation that must
be calculated directly from Eq. (8a) and separates into three
additive terms [44]. Therefore, we write the dispersive volume
correction in the following form:

�Ṽv(E) = �Vv(E) + �V<(E) + �V>(E), (18)

where �Vv(E) is the dispersive correction because of the
symmetric imaginary potential of Eq. (11) and the terms
�V<(E) and �V>(E) are the dispersive corrections because
of the asymmetric terms of Eqs. (16) and (17), respectively.
Although the symmetric case features an equal contribution
coming from negative and positive energies, in the asymmetric
case the negative energy contribution to the dispersive integral
is very different from the positive energy value. The resulting
dispersive correction for the asymmetric case starts to increase
already for energies above 50 MeV, making a significant
contribution to the real part of the OMP at high energies.
It should be noted that nonlocality corrections [Eqs. (16) and
(17)] can be used either for the volume or surface imaginary
potential; however, Mahaux and Sartor [15] have shown that
nonlocality consideration for the surface imaginary potential
has a very small effect on the calculated cross sections.
Therefore in this work we followed Ref. [16] and considered
only the effects of nonlocality in the volume absorption.

C. Spin-orbit potential

For the energy dependence of the spin-orbit potential we
started from the functional form suggested by Koning and
Delaroche [21], namely:

Vso(E) = VSO exp[−λso(E − EF )] (19)

Wso(E) = WSO
(E − EF )2

(E − EF )2 + (Bso)2
. (20)
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In this work we connected the imaginary spin-orbit po-
tential Wso(E) to the real spin orbit potential Vso(E) by a
dispersion relation as discussed by Walter [45] and first carried
out by Morillon and Romain [23]. The real spin-orbit potential
is calculated as follows:

Vso(E) = VSO exp[−λso(E − EF )] + �Vso(E). (21)

Spin-orbit functional (20) is exactly the same as the one
employed for symmetric volume absorptive potential (11),
so the dispersive contribution �Vso(E) to the real spin-
orbit potential can be calculated using the analytical expres-
sions for volume absorptive potential derived by Quesada
et al. [46].

III. DISPERSIVE COUPLED-CHANNEL OPTICAL
MODEL ANALYSIS

A. Summary of the experimental databases

A survey of the experimental data spanning from 0.001 to
200 MeV used in the DCCOM analyzes is presented in this sec-
tion. The potential parameters were searched for to reproduce
available neutron and proton-induced cross-section data for
232Th. At incident energies above several mega-electron-volts.
It is almost impossible to separate neutron inelastic scattering
data into each excitation level experimentally for actinide
nucleus. Thus experimental proton-scattering data, which can
be done with much higher resolution, was highly relevant to
determine the optical potential parameters uniquely.

Averaged total neutron cross sections with associated errors
for energies from 0.001 up to 5 MeV [47–51] were employed
to avoid oscillating behavior of the experimental total cross
section. Additional average total cross-section data in the
unresolved resonance region from 1 up to 140 keV were
recently measured by IRMM’s group [35]. Energy-averaged
total cross sections σT were obtained from Abfalterer et al. [34]
from 5 to 200 MeV. The total cross section data considered
cover all the critical energy points which are necessary to
reveal the structure because of the Ramsauer effect. The
following experimental scattering data for 232Th were used
in the current analysis: neutron-scattering data by Haouat
et al. for excitation of resolved 0+, 2+, and 4+ levels for
energy of 3.4 MeV [52]; neutron-scattering data by Smith
and Chiba for excitation of a sum of 0+, 2+, 4+, 6+, and 8+
12 at twelve incident energies from 4.5 to 10.0 MeV [53];
neutron-scattering data by Batchelor et al. for excitation of a
sum of 0+, 2+, 4+, 6+, and 8+ levels at 4 and 7 MeV [54];
neutron-scattering data by Iwasaki et al. for excitation of a sum
of 0+, 2+, and 4+ levels at 5.7 MeV [55]; neutron-scattering
data by Dagge et al. for excitation of a sum of 0+, 2+, 4+, 6+,
and 8+ at 7.75 MeV [56]; neutron-scattering data by Hansen
et al. [57] and Dukarevich et al. [58] for excitation of a sum of
0+, 2+, 4+, 6+, and 8+ levels at 14.1 MeV; neutron-scattering
data by Hudson et al. for excitation of a sum of 0+, 2+, 4+,
6+, and 8+ levels at 15.2 MeV [59]; proton-scattering data
by Hansen et al. for excitation of resolved 0+, 2+, 4+, 6+,

and 8+ levels at 20 and 26 MeV [60]; proton-scattering data
by King et al. for excitation of resolved 2+, 4+, 6+, and 8+
levels at 35 MeV [61]; and proton-scattering data by Takeuchi
et al. for excitation of resolved 0+, 2+, 4+, and 6+ levels at
65 MeV [62,63]. It must be noted that the data of Takeuchi
et al. for the first four levels of 232Th [62], which are very
important for fixing cross sections at a high-energy region (this
is the only angular distribution measured above 35 MeV with
high energy resolution), were erroneously given in EXFOR
database. Professor H. Sakaguchi kindly supplied us correct
data [63]. Evaluated neutron strength function for 232Th, S0

and, S1, and potential scattering radius R′ [35,64] were used
in parameter search.

For chosen scattering experimental data we assumed that
the interaction of nucleons with 232Th proceeds only via
the direct mechanism. For this reason, the neutron-scattering
data at incident energies below 3.4 MeV were not used
in this investigation becuase those data contain a com-
pound contribution that was not considered in the search
procedure.

The optical potential parameters were searched for by
minimizing the quantity χ2 defined by the following:

χ2 = 1

N +M + 3

[ ∑
i=0,1

(
Si,calc −Si,eval

�Si,eval

)2

+
(

R′
calc −R′

eval

�R′
eval

)2

+
N∑

i=1

1

Ki

Ki∑
j=1

(
dσij /d
calc − dσij /d
exp

�dσij /d
exp

)2

+
M∑
i=1

(
σtotcali

− σtotevali

�σtotevali

)2
]
, (22)

where N denotes number of experimental scattering data sets,
Ki the number of angular points in each scattering data set,
and M the number of energies for which the experimental
(evaluated) neutron total cross section is involved.

B. The 232Th DCCOM analysis

1. Parameter fitting

Optical model code OPTMAN [65,66] was used for OMP
parameter fitting. Originally the code did not include disper-
sion terms, so numerical [67] and analytical solutions [46,68]
of dispersion relations were implemented within the OPTMAN

code. We were using symmetric surface and nonsymmetric
volume imaginary absorptive potentials according to Eq. (12),
(16), and (17), therefore we adjusted 14 parameters, namely
(V0, λHF, Cviso), which define the smooth energy dependence
of the real volume potential; W0, Cwiso, Bs, Cs and Av,Bv,Ea

defining the surface and volume absorptive potential re-
spectively plus geometrical parameters (rv, av, rs, as). After
proper values were obtained by this global minimization spin-
orbit parameters Vso, λso, Aso, Bso, rso, and aso, parameters of
the Coulomb interaction, CCoul, rc, and ac and multipolar
deformation parameters βi were also optimized. The final
iteration involved a free variation of all parameters using
the best-fit search option of the OPTMAN code. The derived
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TABLE I. Dispersive coupled-channel OMP parameters for 232Th (RIPL OMP index 608 [64]).

Volume Surface Spin-orbit Coulomb

Real depth V0 = 49.97 Vso = 5.75 CCoul = 1.3
(MeV) λHF = 0.01004 dispersive λso = 0.005

Cviso = 15.9

Imaginary depth Av = 12.04 W0 = 17.20 Wso = −3.1
(MeV) Bv = 81.36 Bs = 11.19 Bso = 160

Ea = 385 Cs = 0.01361
Cwiso = 23.5

Geometry rv = 1.2568 rs = 1.1803 rso = 1.1214 rc = 1.2452
(fm) av = 0.633 as = 0.601 aso = 0.59 ac = 0.545

Note. We used the following deformation parameters of 232Th: β2 = 0.213, β4 = 0.066, and β6 = 0.0015.

DCCOM potential parameters are listed in Table I. The attained
minimum χ2 value, as defined by Eq. (22), for all the available
232Th experimental data is 2.55, being 2.23 for the neutron
database, whereas for proton angular data description the
corresponding χ2 minimum is 3.49. These values compared
favorably with the NDOMP04 values, which are 2.55 and 3.8
for neutron and proton databases respectively.

2. Fermi energies

We used the DCCOM parameters to calculate the Fermi
energies predicted by the extension of our potential to
negative energies. The dispersive corrections and all imag-
inary potentials vanish at the Fermi energy. Therefore, we
needed to consider only the real volume potential defined by
Eqs. (10) and (13) and the real spin-orbit potential Eq. (19).
Additionally, the nondispersive part of the Coulomb correction
[Eq. (4)] must be taken into account for the proton poten-
tial. Using the parameters from the Table I, we calculated
real volume and spin-orbit potential depths at the Fermi
energy. The obtained values are 46.41/53.5 MeV for the
neutron/proton volume potential, whereas the spin-orbit depth
is 5.75 MeV. Additionally, 10.23 MeV coming from the
Coulomb correction should be added to the proton potential
depth. We employed the shell-model code CASSINI [69] to
calculate the single-particle level energies in a neutron/proton
potential corresponding to n+ 232Th/p + 232Th system. For
the neutron system, we obtained EF = −6.3 MeV, whereas
for the proton system EF = −9.0 MeV. These values should
be compared with the experimental Fermi energies of −5.61
and −6.50 MeV respectively. Given the uncertainty in the
real potential depth and limitations of the available data, we
consider the agreement to be satisfactory, specially for the
neutron channel. It should be stressed that proton potential
is strongly influenced by a Coulomb correction. A 20%
change in the Coulomb correction is enough to bring the
proton Fermi energy within 1 MeV of the experimental value.
Unfortunately, the lack of proton measurements near and
below the Coulomb barrier makes very difficult a precise
estimation of the Coulomb correction.

3. Comparison with experimental databases

The total neutron cross-section data for 232Th in the
energy region from 0.001 up to 200 MeV is compared
against selected experimental data [34,35,49–51] in Fig. 1.
The measurements are excellently reproduced by the axial
rigid-rotor DCCOM calculations with the present optical
potential parameters from Table I. The coupled-channel model
makes it possible to calculate also the angular distributions
for scattering of neutrons and protons to the low-lying
collective levels of 232Th. Elastic and inelastic experimental
neutron- and proton-scattering data are described fairly well
with the DCCOM calculations as can be seen in Figs. 2
and 3. Furthermore, calculated average resonance parameters
reproduce the evaluated values very well, as shown in Table II.
It is important to remark the advantage of dispersive ap-
proach for average resonance parameters description. The
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FIG. 1. Neutron total cross sections for 232Th for energies 0.001
to 1 MeV (top panel) and 1 to 200 MeV (bottom panel). Solid lines
are the result of present calculations, whereas dotted lines correspond
to the nondispersive OMP of Ref. [37]. Experimental data are shown
by various symbols.
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FIG. 2. Selected neutron scattering cross sections on 232Th in center of mass (c.m.) system. Solid lines are the result of present calculations.
Experimental data are shown by various symbols. The scattering cross sections to the resolved 0+, 2+, and 4+ levels of 232Th at 3.4 MeV are
shown in the left column. The scattering cross sections for excitation of a sum of 0+, 2+, 4+, 6+, and 8+ levels of 232Th from 4.5 to 15.2 MeV
are shown in the right column. Incident energy for plots appearing on the right pannel is indicated by a number on top of each plot.

real potential of this work is almost flat toward the low
energies, by a combination of the increasing contribution of the
smooth “Hartree-Fock” VHF(E) potential with the decreasing
dispersive contribution (which goes to zero at Fermi energy).
Such behavior allows for a good simultaneous description of
the average low-energy total cross sections, strength functions,
and scattering radius. This simultaneous description is a
tough challenge for conventional non-dispersive potentials.
The proton nonelastic cross section, σp,non, can be compared
favorably with experimental data [70,71], Varashenkov’s
systematic [72], and NDOMP04 results, as can be seen in
Fig. 4. It should be noted that proton nonelastic cross section
was not included in the fitting process, so its description
validates the derived potential and, specially, its isospin
dependence. Analysis of the 232Th(p, n) process could be
useful for further testing of the isovector component of the
DCCOM potential and its Lane’s consistency, but it is out of
the scope of the present work.

The derived optical potential energy dependence is very
simple. We do not need to introduce energy-dependent
geometry and the potential parameters are unique for both
neutron and proton projectiles. The dispersion relations,
coupled to the smooth energy-dependent Hartree Fock poten-
tial VHF(E), fully determine the real part of the dispersive
contribution once the imaginary part of the mean field is
fixed. Very few parameters are required in comparison with
a conventional nondispersive coupled-channel OMP analysis
(like NDOMP04). The methodology presented here allows
to derive similar dispersive coupled-channel optical model of
other actinides, This study is ongoing and will be presented
elsewhere.

4. Effective mass

The real-potential energy dependence is related to the
effective mass m∗ through the expression

m∗

m
= 1− d

dE
[V r (E)] (23)

The effective mass, m∗, can be compared with values deduced
from the nonlocality of the nuclear forces [28], as discussed,
for example, by Brueckner et al. [73] and Perey and Buck [74].
It is shown by Brown et al. [75] and Mahaux and Ngo [76]
that well away from the Fermi energy the ratio m∗/m ∼= 0.68,
which is reasonably consistent with nuclear matter estimates
[77,78]. The derivative in energy of the real-volume part
(including the volume dispersive contribution) of the proposed
neutron OMP is almost constant below 10 MeV and equal 0.26,
which implies a ratio m∗/m˜0.74, a litle higher than theoretical
estimates. However, we should keep in mind that the derivative
of the real-surface potential, being purely dispersive in nature,
changes rapidly in the same energy region from 0.2 up to
−0.25. Given the uncertainty and limitations of the available
data, the derived potential seems to be in good agreement with
these theoretical concepts.

5. Volume Integrals

The spherical volume integrals per nucleon of the real
JV /A and imaginary JW/A parts of the optical potential were
determined for DCCOM and NDOMP04 parameters and are
displayed in Fig. 5. The volume and surface contributions
are also shown. The inset shows the low-energy dependence
of the neutron real volume integral, which is proportional
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FIG. 3. Selected proton scattering cross sections on 232Th from
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corresponding excited level of the Th232 rotational band is indicated
in the top right corner of each pannel (ELASTIC corresponds to the
0+ ground state). Incident energy is indicated by a number on top of
each plot.

to the cube of the effective radius of the real potential. The
typical behavior of the effective potential radius for dispersive
potential is observed for DCC OM curve. The absorption in
both neutron and proton channels is slightly decreased in
our potential for energies above 100 MeV in comparison
with NDOMP04 results. The biggest difference between
DCCOM and NDOMP04 real-volume integrals is observed
in the proton channel, below 30 MeV, where surface Coulomb
correction is quite significant as discussed in the next section.
The agreement between real-volume integral calculated by
DCCOM and NDOMP04 potentials in the neutron channel
is almost perfect. However, such “perfect” agreement, which
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FIG. 4. Reaction cross section for protons incident on 232Th. Solid
bold line is the result of present calculations, whereas thin line
corresponds to the nondispersive OMP of Ref. [37]. Experimental
data are shown by various symbols. Barashenkov systematic [72] is
represented by dotted line (systematic is given for U238 reaction cross
section, which was corrected by the 0.9832 = 2321/3/2381/3 ratio).
Uncertainty of 6% was assumed, equal to the difference between
total cross section measured by Abfalterer et al. [34] and predicted
by systematic [72].

is because of parameter adjustment to the same experimental
database, hides the fact that the real-volume integral of our
potential is largely determined by dispersive contributions. In
fact, we represented in Fig. 6 the contribution of different
components in percentage of the real-volume integral both for
neutron and proton projectiles, namely

(i) the full dispersive contribution to the real-volume integral
(ii) the dispersive volume contribution to the real-volume

integral J�Ṽv (E)/JV (E) and its nonsymmetric part,
J�V<+�V>

/JV (E)
(iii) the dispersive surface contribution to the real-volume

integral J�Vs
/JV (E)

(iv) the volume J�V Coul
v

/JV (E) and surface J�V Coul
s

/JV (E)
Coulomb correction’s contributions to the real-volume
integral for protons

We can observe that dispersive effects contribute to more
than 40% of the real-volume integral already at 100 MeV.
However the surface and volume dispersive contributions are
of different sign, so the overall effect is reduced to about
13% for protons and about 20% for neutrons at 100 MeV.
These values reach almost 40 and 50% at 200 MeV for
protons and neutrons respectively. It is interesting that the

TABLE II. Comparison of predicted resonance parameters with experimental ones.

Present work (evaluated at 2 keV) Evaluated values

S0, (eV )−1/210−4 S1, (eV )−1/210−4 R′, f m S0, (eV )−1/210−4 S1, (eV )−1/210−4 R′, f m

0.868 1.91 9.588 0.94 (0.05) [35] 1.83 (0.02) [35] 9.52 (0.2) [35]
(at 10 keV) 0.87 (0.07) [64] (at 10 keV)
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dispersive contribution itself is dominated at high energies by
the contribution coming from the nonsymmetric imaginary
volume potential as a result of the nonlocality. In addition,
there is an increase of the dispersive correction’s contribution
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FIG. 6. Energy dependence of partial contributions (in percent-
ages) of the dispersive potentials to the real-volume integral per
nucleon JV (E)/A for the proton (top) and neutron (bottom) DCCOM
potential of this work. Solid lines correspond to the full dispersive
contribution in each panel. The volume-dispersive contribution
J�Ṽv (E)/JV (E) is shown by a dashed line and the asymmetric part
J�V<+�V>

/JV (E) by dotted line. The dispersive surface contribution
to the real-volume integral J�Vs

/JV (E) is displayed with a dot-
dashed line. The volume J�V Coul

v
/JV (E) (open circles) and surface

J�V Coul
s

/JV (E) (solid circles) Coulomb correction’s contributions to
the real-volume integral for protons, including dispersive Coulomb
correction, are also shown in the upper panel.

below 50 MeV, related to the surface dispersive contribution.
Around 30 MeV the surface dispersive contribution reachs a
minimum and then changes the sign, becoming positive. This
pure dispersive effect cannot be simulated by any variation of
nondispersive OMP parameters.

6. Coulomb correction to the real potential

In the comprehensive study of Koning and Delaroche
[21] it was carried out an analysis of the effect of the
energy dependent Coulomb correction term �V Coul

v (E) on
their OMP predictions. A comparison with the usual constant
Coulomb correction term �V Coul

v = 0.42Z/A1/3 revealed that
the description of proton-scattering data with the constant
term was not as satisfactory as it was with the energy depen-
dent Coulomb correction, specially for energies higher than
120 MeV [21]. In Fig. 7 we compare the volume integral of the
Coulomb correction derived in this work, with the correction
used in NDOMP04. The NDOMP04 Coulomb correction is
similar to the one derived by Koning and Delaroche [21].
The volume Coulomb correction �V Coul

v (E) also behaves like
the NDOMP04 correction, even if it includes a dispersive
Coulomb correction contribution d/dE[�Vv(E)]. However,
we have an additional contribution to the real Coulomb
volume integral coming from the surface dispersive Coulomb
correction d/dE[�Vs(E)]. We can see that surface dispersive
Coulomb correction �V Coul

s (E) is the dominant contribution
to the total Coulomb correction below 20 MeV, making
the Coulomb correction for our DCCOMP almost 3 times
bigger than the NDOMP04 correction around 10 MeV. These
big differences between NDOMP04 and DCCOMP Coulomb
corrections are not reflected in the calculated proton reaction
cross section (see Fig. 4), probably because the maximum
effect is located well below the Coulomb barrier. However, the
χ2 obtained for the proton angular data description was 3.49,
which can be favorably compared to the NDOMP04 χ2 of 3.8
(see p. 916 of Ref. [37]). Therefore, the Coulomb correction, as
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for the Coulomb correction to the real potential calculated for the
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defined by Eq. (4), including dispersive contributions, was
important for satisfactory simultaneous fit of neutron- and
proton-scattering data. A careful measurement of reaction
cross section for proton induced reactions below the Coulomb
barrier might provide additional constrains to derive dispersive
potentials of the type discussed in this contribution. We

would like to point out that dynamical Coulomb correction
d/dE[�Vv,s(E)] introduced here could be also important in
the dispersive optical model description of heavy ion elastic
scattering near the Coulomb barrier [7,79,80].

IV. CONCLUSIONS

In this work we have presented a dispersive isospin
dependent relativistic coupled-channel optical model analysis
of nucleon scattering on 232Th nucleus from 1 keV to 200 MeV.
The use of proton and neutron scattering data simultaneously
made it possible to increase the accuracy of estimated optical
potential parameters especially at high energy region. The
isovector terms give the possibility to extend the derived
potential parameters to neighboring actinide nuclei. The
excellent overall agreement obtained between predictions and
experimental data would not have been possible without
including dispersive terms in the calculations and nonlocality
effects in the volume absorptive potential.
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