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The nonmesonic weak decay of a � hyperon is studied in nuclear matter. Special emphasis is placed on a
consistent treatment of correlations introduced by the strong interaction on its weak counterpart. The latter is
described by the exchange of mesons between the initial �N state and the final NN one. The weak decay is studied
in terms of the weak self-energy, which allows a systematic evaluation of short-range and tensor correlation effects
that are determined by a realistic hyperon-nucleon interaction. The admixture of �N components through the
strong interaction is also included in the calculation of the � decay properties. Calculations for the ratio of the
neutron-induced partial width to the corresponding proton-induced one, �n/�p , are discussed in connection with
recent experimental results.
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I. INTRODUCTION

Hypernuclei continue to be studied widely, with early
reviews going back to Refs. [1,2]. In view of the relevance
of the properties of a strange particle in a nuclear system,
the study of an embedded � hyperon has taken many forms.
The binding properties of a � hyperon have been studied by
several groups [3–6]. The general conclusion, confirmed by
experiment, is that the � hyperon is bound in a potential well
with a depth of about 30 MeV in heavier nuclei. Additional
information is available from the � self-energy studied in
Refs. [7,8]. Global properties of the � hyperon can be studied
in nuclear matter (NM). Results of such calculations have also
been reported by several groups [9–15]. The onset of hyperon
formation in neutron stars [13,14,16] and the equation of state
including hyperons have been studied in Refs. [17–21]. The
stability of strange matter has been discussed in Refs. [22,23],
and the properties of a neutron star, including strangeness,
have been explored in Refs. [24,25].

As in the case of nucleon-nucleon (NN) interactions,
typical hyperon-nucleon (YN) interactions [26–31] incorporate
substantial repulsion at short relative distances. The conse-
quences of such realistic interactions on the single-particle
(sp) properties of a � have recently been studied recently by
use of the Green’s function method [32]. The presence of a
� hyperon in the nuclear environment automatically requires
the consideration of its heavier sibling, the � hyperon, on
account of their strong coupling, mediated by pion exchange,
which is present in realistic interactions. When the coupled
�N -�N equations are solved for the effective interaction
(G matrix), it becomes possible to fully explore the � self-
energy and spectral functions in the medium. The work of
Ref. [32] demonstrates that such correlation effects on a �

are weaker than for a nucleon but still reduce its production
probability on top of the ground state by about 15% compared
with the noninteracting case, whereas for a nucleon this
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reduction is about 30%. It is the purpose of the present work
to explore the consequences of the study reported in Ref. [32]
on the weak-decay properties of a � in NM.

The weak decay of � hypernuclei continues to provide an
intriguing window on the properties of strangeness inside the
nuclear environment. Several review articles are available that
discuss this topic [33–36]. In free space the � decays primarily
through the weak pionic modes [Fig. 1(a)],

� → p + π− + 38 MeV (64%), (1)

� → n + π0 + 41 MeV (36%), (2)

with a lifetime of

τ� = 2.63 × 10−10 s, (3)

which corresponds to a decay width of

�� = 2.5 × 10−12 MeV. (4)

In the center of mass of the decaying �, the final-state
particles have momenta of about 100 MeV/c. The presence
of a nuclear medium forces fundamental changes in the
� decay mode. If one imagines producing a � at rest in a
Fermi gas of nucleons (kF = 270 MeV/c), then the final-state
nucleon in Fig. 1(a) is Pauli blocked, resulting in complete
suppression of the mesonic decay mode. In a realistic nuclear
medium, correlations among the nucleons “soften” the sharp
momentum-distribution characteristic of a Fermi gas [37].
Although this might seem to indicate a significant easing
of the Pauli restriction, energy- and momentum-conservation
requirements for the decay still ensure that the mesonic decay
width in heavy hypernuclei is well below the free width [38].

If interactions between the � and nucleons in the medium
are considered, then a new two-body decay mode becomes
possible, as illustrated in Fig. 1(b). The weak vertex is the same
as in Fig. 1(a), but now the meson is subsequently absorbed
by a nucleon from the medium, resulting in a net YN →
NN transition. Because this nonmesonic mode involves a
virtual meson exchange, the entire �-N mass difference
of 176 MeV is made available for the kinetic energy of
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FIG. 1. Part (a) illustrates the mesonic decay and part (b) the
nonmesonic decay of the � hyperon. The weak vertex is indicated by
a circle containing a W.

the final-state particles. This translates into a momentum of
about 400 MeV/c for the final-state nucleons, overcoming any
Pauli blocking. Because the nonmesonic decay is catalyzed
by a nucleon from the medium, the decay rate is expected
to be proportional to the nuclear density. Conversely, the
mesonic decay is suppressed at high nuclear densities, and
it follows that the nonmesonic mode will dominate for
sufficiently heavy hypernuclei. Experimentally, it is found that
the nonmesonic mode dominates for all but the very lightest
hypernuclei [34].

One can fruitfully perform general studies of this process
by considering the weak nonmesonic decay in NM. Many
theoretical calculations employ as a starting point the weak
pion-exchange mechanism [39–42]. Both the weak and strong
vertices of this interaction are constrained by experimental
data. Less is known about other meson-exchange contributions
but the work of Ref. [42] has often been employed to
include such terms. The effect of form factors (FFs) and
the treatment of short-range correlations (SRCs) have been
incorporated in previous studies. Such treatments of SRCs
typically involve the introduction of a correlation function
in coordinate space, which suppresses the weak amplitude at
short distances. Although such correlation functions have been
related qualitatively to microscopic G-matrix calculations by
use of realistic �N interactions, it appears that no detailed
investigation of a consistent treatment of SRCs is available.
In particular, the strong interaction between the � and a
nucleon in the medium is capable of inducing tensor, i.e.,
nondiagonal, correlations, as well as (diagonal) SRCs into
the relative wave function before the � decays [32]. These
microscopically calculated effects of the strong interaction on
the �N relative wave function provide the appropriate tools
for studying the nonmesonic decay properties. The strong
coupling to the �N channel generates additional relative
wave-function components that also require a treatment at the
same level as the �N ones [43,44].

The paper starts in Sec. II with the introduction of the
relevant formalism for the determination of the lowest-order
weak self-energy of the � in NM. The weak meson-exchange
potential employed in this work is presented in Sec. III. Results
without the inclusion of correlations are discussed in Sec. IV to
establish contact with other calculations in the literature. The
effects of a consistent treatment of SRCs on the nonmesonic
weak decay of the � are then documented in Sec. V. This

(b)

(a)

 W

W

W

W

W

=W

==W

W

W

Σ
W

W

FIG. 2. Part (a) illustrates the lowest-order self-energy diagram
for nonmesonic � decay. External lines represent � particles and
internal lines represent nucleons, which should, in principle, be
dressed by the medium (double lines). In part (b) the weak effective
interaction, denoted by the square containing W, is approximated by
the second-order contribution in the weak interaction. For strange
meson exchange the weak and strong vertices must be switched. The
W box can be generalized to include the effects of SRCs and tensor
correlations induced by the strong interaction.

section also contains a discussion of the relevance of the
present results for corresponding quantities in finite nuclei.
This includes a discussion of the ratio of the neutron-induced
partial width, ��n→nn, to the proton-induced one, ��p→np.
This ratio is often denoted by �n/�p. Earlier experimental
results in hypernuclei yielded a value of the order of 1 whereas
theoretical results generated much smaller values for this
quantity. Only recently smaller experimental values for this
ratio have been obtained when nucleon-nucleon coincidence
data were employed. Details related to wound integrals are
relegated to the appendix.

II. SELF-ENERGY AND THE WEAK-DECAY WIDTH

The nonmesonic decay width may be expressed in terms
of the second-order self-energy diagram [33] shown in
Fig. 2(a):

�
(nm)
� (k) = −2 Im�

(nm)
� (k). (5)

The self-energy is evaluated on-shell and averaged over the
spin of the �:

�
(nm)
� (k) ≡ 1

2

∑
α

�
(nm)
� (kα; ε�(k)), (6)

where sp spin and isospin quantum numbers are denoted by

|α〉 ≡ |smstmt 〉. (7)

024320-2



CORRELATION EFFECTS ON THE NONMESONIC WEAK . . . PHYSICAL REVIEW C 72, 024320 (2005)

By use of standard Feynman diagram rules [45–47], the self-
energy of Fig. 2(a) is given by

�
(nm)
� (k) = 1

2

∑
αβ

∫
dω′

2πi

∫
d3p

2π3

×〈�kα; �pβ|W (Q; ε�(k) + ω′)|�kα; �pβ〉gN (p; ω′),
(8)

where the second-order weak-transition matrix [Fig. 2(b)] is
defined by

〈�kα; �pβ|W (Q; 
)|�kα; �pβ〉
= −1

2

∑
µλ

∫
d3q1

∫
d3q2〈�kα; �pβ|V (w)|�q1µ; �q2λ〉

× gII
NN (�q1, �q2; 
)〈�q1µ; �q2λ|V (w)|�kα; �pβ〉, (9)

including the two-nucleon propagator gII
NN further specified in

Sec. II A. The nucleon hole propagator is taken to have the
form appropriate for a noninteracting particle:

gN (p; ω′) = �(kF − p)

ω′ − εN (p) − iη
. (10)

Changing to total spin and isospin

�S = �s� + �sN , (11)
�T = �t� + �tN , (12)

and to total and relative momentum,

�Q ≡ �k + �p, (13)

�q ≡
(

µ�

mN

)
�p −

(
µ�

m�

)
�k, (14)

leads to
1

2

∑
αβ

〈�kα; �pβ|W (Q; 
)|�kα; �pβ〉

= 1

4

∑
ST

∑
MSM ′

S

(2T + 1)〈�qSMST |W (Q; 
)|�qSM ′
ST 〉. (15)

Making a change in the integration variable from �p to �Q,
performing the integration over the nucleon hole energy, and
expanding in a partial-wave basis transform Eq. (8) into

�
(nm)
� (k) = 1

4

∑
JLT

(2J + 1)(2T + 1)

×
∫

dQQ2
∫ 1

ξmin
Q

dξQ

2
〈qJ (LS)T |W

× [Q; ε�(k) + εN (p)]|qJ (LS)T 〉, (16)

where

q = q(k,Q, ξQ), (17)

p = p(k,Q, ξQ), (18)

ξQ is the cosine of the angle between �Q and �k, and

〈qJ (LS)T |W (Q; 
)|qJ (LS)T 〉
= −1

2

∑
L′

∫
d3q ′|〈qJ (LS)T |V w|q ′J (L′S ′)T 〉|2

× ḡII
NN (q ′,Q; 
). (19)

Equations (5), (16), and (19) yield the following expression
for the decay width:

�
(nm)
� (k) = −1

8

∑
JLL′T

(2J + 1)(2T + 1)
∫

dQQ2

×
∫ 1

ξmin
Q

dξQ

2

∫
d3q ′|〈qJ (LS)T |V w|q ′J (L′S ′)T 〉|2

× Im ḡII
NN (q ′,Q; 
). (20)

A. Approximate expression for the weak-decay width

To facilitate comparison with other work and simplify
the numerical calculation, Eq. (20) is further modified in
this section. The two-particle energy, 
 ≡ ε�(k) + εN (p), is
dependent on the integration variables through the nucleon
hole momentum, as indicated in Eq. (18). The nucleon hole
propagator in Eq. (10) contains a Pauli function that restricts
the nucleon momentum to a range below kF . The two-nucleon
propagator in Eq. (19) may be evaluated at a single energy if
an average value of the nucleon momentum,

p̄ ≡ 3kF

5
, (21)

is used as an approximation.
When the noninteracting particle approximation is used

for the intermediate nucleons, the angle-averaged two-particle
propagator is

ḡII
NN (q,Q; 
) = −�NN (q,Q; kF )


 − ε̄NN (q,Q) + iη
, (22)

where � represents the angle-averaged version incorporating
the Pauli principle for the two-nucleon state (see, e.g.,
Ref. [48]). A similar angle averaging is applied to the two-
particle energy in the denominator of Eq. (22). The imaginary
part is then given by

ImḡII
NN (q,Q; 
) = πδ(
 − ε̄NN (q,Q))

= π

∣∣∣∣∂ε̄NN

∂q

∣∣∣∣−1

q=q0

δ(q − q0), (23)

where q0 is defined by

ε̄NN (q0,Q) ≡ 
 + (M� − MN ). (24)

The two-particle energy 
, as determined from the initial
�N state by use of the average momentum p̄ for a nucleon
hole and k = 0 for the �, is


 = ε�(k) + εN (p̄) ≈ −80 MeV. (25)

With this value of the two-particle energy, the angle-averaged
value of the final-state two-nucleon energy is

ε̄NN (q0,Q) = 2εN (q̄N ) ≈ −80 + (1116 − 939) MeV,

εN (q̄N ) ≈ 52 MeV, (26)

which yields a value of the relative momentum, q̄N ≈
420 MeV/c.

For a � at rest, the total momentum is just Q = p̄ ≈
160 MeV/c, which is sufficiently small compared with q̄N
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that q̄N (q0; Q) ≈ q0 to a good approximation. The derivative
of the two-nucleon energy in Eq. (23) may be evaluated as

∂ε̄NN (q0,Q)

∂q
≈ 2

∂εN (q0)

∂q
≡ 2

q0

M∗
N

, (27)

where a nucleon effective mass M∗
N has been introduced. The

nucleon energy spectrum is

εN (q) ≡ tN (q) + UN (q), (28)

where a Woods-Saxon parametrization is used to fit a numer-
ically determined nucleon sp potential. The ratio MN/M∗

N is
approximately 1.37 for q0 = 420 MeV/c and goes to unity as
q0 becomes large enough that the potential term in Eq. (28)
can be neglected [32].

The resulting expression for the imaginary part of the two-
nucleon propagator is

Im ḡII
NN (q, Q̄; 
̄) = iπM∗

N

2q0
δ(q − q0), (29)

and the W matrix is

〈qJ (LS)T |W (Q̄; 
̄)|qJ (LS)T 〉
= −πM∗

Nq0

4

∑
L′

|〈qJ (LS)T |V w|q0J (L′S ′)T 〉|2. (30)

The remaining dependence on the integration variables Q
and ξQ can be eliminated by taking an average value of the
relative momentum q(Q, ξQ; k) in the initial �N state. The
imaginary part of the on-shell self-energy from Eq. (16) is

Im �̄
(nm)
� (k) = 1

4

∑
JLT

(2J + 1)(2T + 1)
k3
F

3

[
−πM∗

Nq0

4

×
∑
L′

|〈q̄J (LS)T |V w|q0J (L′S ′)T 〉|2
]
, (31)

with q̄ ≈ 70 MeV/c. This yields a simple approximation for
the nonmesonic decay width

�̄
(nm)
� (0) = 3π3

16
(q0M

∗
Nρ)

∑
JLL′T

(2J + 1)(2T + 1)

× |〈q̄J (LS)T |V w|q0J (L′S ′)T 〉|2, (32)

where ρ denotes the nuclear density. Calculation of the
weak-decay width is now reduced to evaluating a few ma-
trix elements of the �N → NN transition potential. This
approach is similar to that used in Ref. [40]. Although the use of
Eq. (32) is not strictly necessary, it provides a sufficiently
accurate representation of the more general result of Eq.
(20) and makes the comparison with earlier work more
straightforward. Furthermore, the expression of the width in
this form facilitates the presentation of the inclusion of the
influence of the coupling to the �N on the decay properties
(see Sec. V B).

III. THE WEAK MESON-EXCHANGE POTENTIAL

A weak meson-exchange interaction may be constructed
formally in much the same way as the strong Nijmegen and

TABLE I. Coupling constants in units of GF m2
π = 2.21 × 10−7

are taken from Table XII-5 in Ref. [50], except the sign of the
B values has been flipped to correspond with the Bjorken and
Drell [51] sign convention for γ5. Coupling constants are calculated
from data in Ref. [52]. The latest experimentally determined lifetimes,
from which these coupling constants are generated, have errors less
than 1% [53].

Y → Nπ A B

� → pπ− 1.47 −10.00
� → nπ 0 −1.07 7.15

�+ → pπ 0 −1.48 −12.04
�+ → nπ+ 0.06 −19.10
�− → nπ− 1.93 0.65

Jülich potentials [26–31]. Parameters of the strong interaction
are determined by fits to YN scattering data (and NN scattering
data through the use of flavor symmetries). This procedure
determines coupling constants for the strong NNm vertices
that may be carried over directly to the weak interaction.
The only experimentally accessible quantities that can be
readily related to needed weak-coupling constants are hyperon
decay amplitudes and these provide information only for the
YNπ vertices. The exchange of heavier mesons occurs only as
a virtual process, and weak coupling constants must be derived
in the context of some theoretical model.

Except where noted, �N → NN potential matrix elements
are generated with a code provided by Parreño, Ramos, and
Bennhold, based on their work as reported in Ref. [49].
Necessary �N → NN matrix elements are related to the
�N → NN matrix elements as discussed in Sec. III B.

A. Weak-coupling constants from experimental
decay amplitudes

The amplitude for the Y → Nπ decay may be written [50]
as

MY→Nπ = ŪN (A + Bγ5)φπUY . (33)

The hyperon and nucleon fields are represented by UY and UN ,
respectively, and the pion field by φπ . A and B are coupling
constants for the parity-violating (PV) and parity-conserving
(PC) amplitudes, respectively. The partial width for this decay
is found to be [50]

�Y→Nπ = q(EN + mN )

4πmY

[
|A|2 +

(
EN − mN

EN + mN

)
|B|2

]
, (34)

with

EN = (
m2

N + q2
)1/2

. (35)

The constants A and B are obtained from experimental
partial decay rates (which determine only the magnitudes)
and polarization measurements (required for determining the
signs). These are listed in Table I.

Although isospin is not conserved in weak interactions, it is
empirically observed to change only in a restricted manner. As
an example, expression (2) is consistent with a purely T =
1/2 final state even though the nucleon and pion can in
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principle also couple to T = 3/2. This empirical �T =
1/2 rule is also observed in kaon and � hyperon decays
[54]. Although the reason for this rule is not well under-
stood, it may be incorporated in the weak-decay formal-
ism to find relationships among the coupling constants of
Table I, reducing the number of independent amplitudes
from 10 to 6.

The �T = 1/2 rule may be implemented by the association
with each hyperon state |Y 〉 of a corresponding “spurion” state
[54]:

|Ỹ 〉 ≡ ∣∣ 1
2 − 1

2

〉 ⊗ |Y 〉. (36)

Coupling to the “spurious” | 1
2 − 1

2 〉 isospin state enforces a
change of 1/2 in the total isospin while conserving charge.
The resulting isospin structure of the � spurion is

|�̃〉 ≡ ∣∣ 1
2 − 1

2

〉 ⊗ |00〉 = ∣∣ 1
2 − 1

2

〉
. (37)

Note that the � spurion has the same quantum numbers as
a neutron. The spurion field may be used in place of the
hyperon field to construct an isospin-conserving weak vertex,
effectively mimicking a �T = 1/2 transition. The amplitude
of Eq. (33), modified to make use of the isospin 1/2 spurion
field, becomes

M�→Nπ = ŪN (A� + B�γ5)�τ · �φπU�̃, (38)

where the vertex operator is now explicitly an isoscalar and
A� and B� are isospin-independent “reduced” couplings for
� decay. Aside from inclusion of the PV amplitude on the
same footing as the PC amplitude, Eq. (38) for the weak vertex
is exactly the same form as is typically used for the strong
NNπ vertex.

The isospin structure of the � spurion is constructed in
analogy with Eq. (37) [55] and yields

|�̃+〉 =
√

2

3

∣∣∣∣1

2

1

2

〉
−

√
1

3

∣∣∣∣3

2

1

2

〉
,

|�̃0〉 = −
√

1

3

∣∣∣∣1

2
− 1

2

〉
+

√
2

3

∣∣∣∣3

2
− 1

2

〉
, (39)

|�̃−〉 =
∣∣∣∣3

2
− 3

2

〉
.

Note that the � spurions are a combination of isospin 1/2
and 3/2 components. As an example, the �̃+ has a t =
1/2 component with the same isospin as a proton and a t = 3/2
component with the isospin of a �+ isobar. In light of this
isospin structure, the weak isoscalar vertex appropriate for
� decay contains two terms:

M�→Nπ = ŪN

(
A

(1)
� + B

(1)
� γ5

)�τ · �φπU�̃

+ ŪN

(
A

(3)
� + B

(3)
� γ5

) �T · �φπU�̃. (40)

The first term has the same form as Eq. (38) and accounts for
decay from the isospin 1/2 component of the � spurion. The
second term involves the isospin transition operator T, in place
of τ , and accounts for decay from the isospin 3/2 component
of the � spurion. The �T · �φ operator is the form that is also
used for a �Nπ vertex [56].

TABLE II. Reduced coupling constants in units of GF m2
π as

determined from the � pionic decays.

Decay A B

� → pπ− 1.04 −7.07
� → nπ 0 1.07 −7.15

Average 1.05 −7.11

The spurion formalism implements the �T = 1/2 rule,
but also results in a weak-decay amplitude with a compact
isospin structure that describes the YNπ vertex with a minimal
number of coupling constants. One may determine these six
independent constants (A�,A

(1)
� , etc. . . .) from the data in

Table I by evaluating the isospin operator for the various
decay modes. Amplitudes for the two � decay channels
may be expressed in terms of an isospin factor times an
isospin-independent “reduced” amplitude:

a(� → Nπ ) ≡ 〈�̃|�τ · �φ|Nπ〉ã(� → Nπ ). (41)

Evaluating the isospin factor for each decay channel [55]
leads to

a(� → pπ−) =
√

2ã(� → Nπ ), (42)

a(� → nπ0) = −ã(� → Nπ ). (43)

These relationships hold separately for the PV and PC
amplitudes and allow the reduced coupling constants (Table II)
to be found.

For � decay, the amplitude for a particular decay channel
may be expressed in terms of reduced amplitudes for each of
the two isospin components that comprise the � spurion:

a(� → Nπ ) ≡ a(1)(� → Nπ ) + a(3)(� → Nπ )

≡ 〈�̃|�τ · �φ|Nπ〉ã(1)(� → Nπ )

+ 〈�̃| �T · �φ|Nπ〉ã(3)(� → Nπ ), (44)

where

|�̃〉 = α
∣∣ 1

2m�̃

〉 + β
∣∣ 3

2m�̃

〉
, (45)

with constants α and β as given in Eq. (39). Evaluating the
isospin factor for each decay channel [55] leads to

a(�+ → pπ0) =
√

2

3
ã(1/2)(� → Nπ )

−
√

2

3
ã(3/2)(� → Nπ ), (46)

a(�+ → nπ+) = 2√
3
ã(1/2)(� → Nπ )

+ 1

3
ã(3/2)(� → Nπ ), (47)

a(�0 → pπ−) = −
√

2

3
ã(1/2)(� → Nπ )

+
√

2

3
ã(3/2)(� → Nπ ), (48)
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TABLE III. Reduced coupling constants in units of GF m2
π as

determined from the � pionic decays.

First decay Second decay A(1) A(3) B (1) B (3)

�+ → pπ 0 �+ → nπ+ −0.57 1.52 −15.94 −1.47
�+ → pπ 0 �− → nπ− −0.70 1.36 −14.37 0.46
�+ → nπ+ �− → nπ− −0.51 1.36 −16.73 0.46

Average −0.59 1.41 −15.68 −0.18

a(�0 → nπ0) = 1√
3
ã(1/2)(� → Nπ )

+ 2

3
ã(3/2)(� → Nπ ), (49)

a(�− → nπ−) = ã(3/2)(� → Nπ ). (50)

Constants from two decay modes are required for determining
both T = 1/2 and T = 3/2 sets of reduced coupling con-
stants. Only three of the five possible decay modes given in
Eqs. (46)–(50) have entries in Table I. This is because the �0

decays primarily through an electromagnetic mode that masks
the weak mesonic decay. The three remaining decay channels
represented by Eqs. (46), (47), and (50) still overdetermine the
desired couplings. Determining couplings from each pair of
decay channels leads to the results of Table III. Note that there
is more variation among the reduced coupling values for the
� in Table III than for the � in Table II. This suggests that the
�T = 1/2 rule is not as well satisfied for � decays.

B. Isospin operators in the baryon-baryon basis

The two-baryon state composed of a � spurion, | 1
2 − 1

2 〉, and
a nucleon, | 1

2 , ± 1
2 〉, can couple to total isospin 1 or 0:

|�̃N〉 =
∣∣∣∣1

2
− 1

2

〉
⊗

∣∣∣∣1

2
mN

〉

= δmN

1

2

{
1√
2

[|10〉 − |00〉]
}

+ δmN − 1
2
|1−1〉. (51)

If the |�̃N〉 state now undergoes a strong transition to the |�̃N〉
state, how much of the |�̃N〉 = |1m〉 state is |( 3

2
1
2 )1m〉 and how

much is |( 1
2

1
2 )1m〉? Each of these states decays differently, so

the decomposition is important. This apparent ambiguity arises
because the strong interaction used in Ref. [29] (denoted as
NSC89 from now on) does not treat the hyperons as spurions.
For purposes of the strong interaction, the isospin of the
�N state is

|�N〉 = |00〉 ⊗ ∣∣ 1
2m

〉 = ∣∣ 1
2m

〉
, (52)

and couples unambiguously to a �N state with the same
isospin,

|�N〉 = ∣∣ 1
2m

〉
. (53)

This state can be decomposed into |1m�〉 ⊗ | 1
2 mN 〉 product

states. Now the � spurion can be introduced,

|1m�〉 → ∣∣ 1
2 − 1

2

〉 ⊗ |1m�〉, (54)

and coupled to the nucleon. This completes the |�N〉 → |�̃N〉
transformation in an unambiguous manner, and paves the way
for calculation of the necessary ỸN → NN weak-transition
matrix elements. The final result is

|�N〉 =
∣∣∣∣1

2
m

〉
→ |�̃N〉

= δm 1
2

{
2

3

∣∣∣∣
(

3

2

1

2

)
10

〉
−

√
2

6

∣∣∣∣
(

1

2

1

2

)
10

〉

− 1√
2

∣∣∣∣
(

1

2

1

2

)
10

〉}
+ δm− 1

2

{√
8

3

∣∣∣∣
(

3

2

1

2

)
1 − 1

〉

− 1

3

∣∣∣∣
(

1

2

1

2

)
1 − 1

〉}
. (55)

The details can be found in Ref. [55].
One may formally rewrite Eq. (55) in the same form as

Eq. (51) for the |�̃N〉 state,

|�̃N〉 = δm 1
2

{
1√
2

[|10〉 − |00〉]
}

+ δm− 1
2
|1−1〉, (56)

by defining

|1m〉 ≡
√

8

9

∣∣∣∣
(

3

2

1

2

)
1m

〉
−

√
1

9

∣∣∣∣
(

1

2

1

2

)
1m

〉
, (57)

|00〉 ≡
∣∣∣∣
(

1

2

1

2

)
00

〉
. (58)

The transition potential for weak decay by means of virtual
pion exchange is given by [50]

Vπ (�q) = −GF m2
π

gNNπ

2MN

(
A + B

2M̄Y

�σ1 · �q
)

× �σ2 · �q
q2 + µ2

T̂12, (59)

where

M̄Y ≡ MN + MY

2
(60)

and

T̂12 =
{�τ1 · �τ2 t = 1/2

�T1 · �τ2 t = 3/2.
(61)

For the isospin transition operator T̂ used in this work, the
matrix elements of T̂12 on the two-baryon basis are determined
to be 〈(

1

2

1

2

)
0m

∣∣∣∣�τ1 · �τ2

∣∣∣∣
(

1

2

1

2

)
0m

〉
= −3, (62)

〈(
1

2

1

2

)
1m

∣∣∣∣�τ1 · �τ2

∣∣∣∣
(

1

2

1

2

)
1m

〉
= 1, (63)

〈(
1

2

1

2

)
1m

∣∣∣∣ �T1 · �τ2

∣∣∣∣
(

3

2

1

2

)
1m

〉
= −4√

3
. (64)

These expressions, together with Eqs. (57)–(59) relate the
�N → NN matrix elements to those for �N → NN :
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TABLE IV. Ratio of the weak matrix elements V�N→NN to
V�N→NN for meson exchanges for which coupling constants are
available. The ratio is different for the spin-independent and spin-
dependent parts of the central potential, but this affects only the
PC part of the K∗ meson.

π K K∗

T = 0 T = 1 Spin-dependent Spin-independent

PC 2.12 −0.76 −0.29 −0.16 0.58
PV −0.56 −2.74 −0.30 −0.16

T = 1 :
〈�̃N |VPV|NN〉
〈�̃N |VPV|NN〉

=
[√

8

9

A
(3)
� 〈T = 1| �T1 · �τ2|T = 1〉

A�〈T = 1|�τ1 · �τ2|T = 1〉 −
√

1

9

A
(1)
�

A�

]

= [−2.92 + 0.19] = −2.74, (65)

〈�̃N |VPC|NN〉
〈�̃N |VPC|NN〉

= M̄�

M̄�

[√
8

9

B
(3)
� 〈T = 1| �T1 · �τ2|T = 1〉

B�〈T = 1|�τ1 · �τ2|T = 1〉 −
√

1

9

B
(1)
�

B�

]

= [−0.05 + −0.71] = −0.76; (66)

T = 0 :
〈�̃N |VPV|NN〉
〈�̃N |VPV|NN〉 = A

(1)
�

A�

= −0.56, (67)

〈�̃N |VPC|NN〉
〈�̃N |VPV|NN〉 = M̄�

M̄�

B
(1)
�

B�

= 2.12. (68)

These ratios, collected in Table IV, show that the �N → NN

transition is comparable with the �N → NN transition. Note
that the t = 3/2 contribution to Eq. (66) is small compared
with the t = 1/2 contribution. This is fortunate because B

(3)
�

is poorly determined (see Table III).
It is also possible to generate potentials for �N → NN

transitions that proceed by means of an exchange of strange
mesons (K and K∗). The connection to the related �N → NN

potential is simpler in this case because the weak coupling
is at the NN vertex, which is the same for each case. Only
the strong �NK couplings are required for relating the two
decay modes. Table IV shows that, unlike for the pion case,
weak decays from a �N intermediate are always weaker
than from a �N state when mediated by strange mesons.
Furthermore, except for the spin-independent part of the
K∗ central potential, all the ratios in Table IV are negative.
This results in a destructive interference between decays
from different YN states. For K∗ the spin-dependent and
spin-independent components of the T = 1 central channel
interfere destructively and are delicately balanced against each
other already in the �N → NN potential. Therefore, although
this channel actually gets a boost from the �N decay mode,
this can occur only because it was small (insignificantly so) to
begin with.

TABLE V. Partial decay widths in units of �free, considering only
the contribution of the weak π exchange. Various combinations of
FFs and initial-state correlations are considered, but no final-state
correlations. The “Sing” and “Dbl” entries correspond to a single FF
or a FF at each vertex. The entries in the column labeled SRC are
explained in the text.

FF SRC S → S S → D S → P Total

None None 0.01 1.54 0.68 2.23
Sing None 0.18 0.69 0.31 1.18
Dbl None 0.27 1.01 0.45 1.74
Dbl fHC 0.02 1.12 0.43 1.57
Dbl fSC 0.11 0.96 0.39 1.46
Dbl Tensor 0.21 1.05 0.43 1.69
Dbl � 1.30 1.75 0.35 3.40

Assuming an initial S state for the �N pair, six matrix
elements contribute to the sum in Eq. (32):

T = 0 : 3S1 → 3S1,
3S1 → 3D1,

3S1 → 1P1;
(69)

T = 1 : 1S0 → 1S0; 1S0 → 3P0; 3S1 → 3P1.

Partial widths for purely central (S → S), tensor (S → D),
and PV (S → P ) decays may be defined by summation of an
appropriate subset of terms. Partial widths of definite isospin
may also be defined by

�tot = 1

2

∑
T

(2T + 1)�T . (70)

These partial widths are closely related to an important
observable: the ratio of the neutron-induced decay width �n to
the proton-induced decay width �p. From Eq. (51),

�n = �1,
(71)

�p = 1
2 (�0 + �1).

IV. � DECAY WIDTH WITHOUT CORRELATIONS

A. � decay width: no form factor

The simplest approximation to nonmesonic � decay in NM
involves a weak interaction incorporating only π exchange and
no consideration of vertex FFs or correlations. This calculation
has been performed previously by several other authors [39–
41,57] as a starting point on the way to more comprehensive
treatments of the nonmesonic decay. Only transitions from
an initial relative S state are considered. The decay width is
divided into central, tensor, and PV partial widths in Table V.
For comparison, results from Ref. [40] are presented in
Table VI for what is essentially the same calculation.

TABLE VI. Partial decay widths in units of �free from Table II
in Ref. [40]. These values should be compared with those in the first
line of Table V.

FF SRC S → S S → D S → P Total

None None 0.01 3.12 1.00 4.13
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It should be noted that, in the absence of strong SRCs, the
central contribution to the total decay width is sensitive to the
δ-function part of the π -exchange potential. Typically it is as-
sumed that SRCs cause the relative YN wave function to vanish
at small distance, eliminating the δ-function contribution. As
a result, it is often customary to exclude the δ-function part
of the π -exchange potential a priori when the decay width is
calculated for the unphysical case of no FF and no SRC. This
custom is followed in Tables V–VII.

The evident discrepancy between the first lines of Tables V
and VI is the result of a number of conspiring factors, given
here in order of importance:

(1) The decay width is directly proportional to the mass of the
nucleon that “catalyzes” the decay [Eq. (32)]. In Ref. [40]
the free nucleon mass is used, whereas Eq. (32) employs
an effective mass that is 27% smaller.

(2) A factor of M̄−1
Y appears in the PC term of the weak

π -exchange potential, Eq. (59), that is the result of a non-
relativistic reduction from a well-defined amplitude. In
Ref. [40], the replacement M̄Y → MN is made, resulting
in a 20% increase in the PC partial widths.

(3) A slightly larger strong coupling constant is used in
Ref. [40]: gNNπ = 14.4 compared with gNNπ = 13.3.

(4) A slightly larger weak PC coupling constant is used in
Ref. [40]: Bπ = −7.21 compared with Bπ = −7.15.

When these differences are taken into account, the results of
Tables V and VI can be reconciled to within 10%.

B. Vertex form factor

Without a FF, the π -exchange potential is singular at
the origin, not merely in the central channel where there
is a δ function, but in the tensor channel as well. This
unphysical behavior comes from treating the BBm vertex as
pointlike. Inclusion of a FF damps the potential smoothly
at high relative momentum, effectively taking into account
the internal structure and finite size of the BBm vertex. A
standard, mathematically convenient choice for the vertex FF

TABLE VII. Partial decay widths in units of �free, considering
only π exchange. Various combinations of FFs and initial-state
correlations are considered, but no final-state correlations. Entries
are identical to those in Table V.

FF SRC �0 �1 �n/�p

None None 3.77 0.23 0.11
Sing None 1.88 0.16 0.16
Dbl None 2.75 0.24 0.16
Dbl fHC 2.69 0.15 0.11
Dbl fSC 2.39 0.18 0.14
Dbl Tensor 2.87 0.17 0.11
Dbl � 6.36 0.15 0.05

is a monopole form,

�(q2; mπ,�π ) = �2
π − m2

π

�2
π + q2

, (72)

with a cutoff mass, �π = 1300 MeV, taken from the Jülich
YN potential [30]. Following Ref. [49], a monopole FF is used
at each vertex. Other authors [40,43] use a single-monopole
FF for both vertices, but also a smaller cutoff mass, �π =
625 MeV.

The FF regularization effectively broadens the δ-function
component of the central potential. This yields a more diffuse
interaction that will not be as sharply cut by a strong central
correlation. Because the π -exchange potential is no longer
singular after inclusion of a FF, contributions derived from
the δ-function part of the central potential must be included.
For this reason, no direct comparison for the central channel
can be made between the results of Table V derived with and
without a FF. Although less singular than the central potential,
the tensor and PV channels are also suppressed at short range
(r < 2 fm) by the FF.

V. EFFECTS OF STRONG CORRELATIONS ON
WEAK DECAY

Strong interactions result in the �N pair’s becoming corre-
lated before nonmesonic decay. The situation is illustrated in
Fig. 3, in which an effective weak interaction is defined when
the initial �N pair is allowed to be correlated by the G-matrix
effective strong interaction [32].

A. Simple correlations

The momentum-space matrix elements that determine the
decay width [Eq. (32)] may be expressed in terms of wave
functions for the initial and final states:

〈q ′J (L′S ′)T |V w|qJ (LS)T 〉 =
∫

drr2 φL′(q ′r)︸ ︷︷ ︸
final

×〈rJ (L′S ′)T |V w|rJ (LS)T 〉φL(qr)︸ ︷︷ ︸
initial

. (73)

In a typical calculation of the decay width, one accounts for
correlations in the initial �N state by making the replacement

φL(qr) → �JT
L (qr) ≡ f JT

L (r)φL(qr), (74)

where a state-dependent correlation function, f JT
L (r), has

been introduced. As an example, Ref. [49] implements

W W

W

= +

FIG. 3. Effective weak interaction incorporating strong correla-
tions in the initial �N state. The wavy line represents the G-matrix
effective interaction that properly takes into account such effects.
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r (fm)

0

0.2

0.4

0.6

0.8

1

1.2

f J

FIG. 4. Correlation functions for the 1S0 (dotted-dashed curve)
and 3S1 (dashed curve) channels, together with the spin-independent
parametrization (dotted curve) used in Ref. [49].

such a scheme to account for initial-state correlations in
the nonmesonic decay of p-shell hypernuclei. A correlation
function was employed that was obtained from a microscopic
NM calculation [58] that utilizes the Nijmegen D hard-core
potential. At least for this particular hard-core potential,
a state-independent parametrization provides a good fit to
correlation functions derived for either S state. Because a
potential with an infinite core is used, the resultant correlation
function vanishes at small distance, as can be seen in Fig. 4. The
effect of this simple “hard-core” correlation function, fHC, on
the decay width is presented in Table V. Correlation functions
derived in a similar manner, but with the NSC potential, are
also plotted in Fig. 4, and their effect on the decay width is
presented in Table V under the heading fSC. The softness of
the NSC potential implies weaker correlation functions and
different shapes for the two S states.

The decay width can be sensitive to these modifications at
small r because the weak interaction is intrinsically short range
in nature. The high final-state momentum also sets a range of
the order of

r0 ∼ h̄c

qf

≈ 0.5 fm. (75)

The central potential is of shortest range and is expected to be
most significantly affected by a correlation function. Table V
shows that this is indeed the case, especially for fHC, which
virtually eliminates the contribution from the central channel.
However, the total decay width is dominated by the S → D

transition, which is affected more modestly by the presence of
a correlation function. The net result is a decrease in �tot of 10–
15% when a correlation function is used. Actually, the stronger
correlation function fHC decreases �tot less than fSC does. The
reason for this can be seen in Fig. 4. At short range (dominantly
the central channel) fHC cuts more sharply than fSC, but at
longer range (tensor channel) fHC provides a compensating
enhancement over fSC.

FIG. 5. Strong correlations between the �N pair before weak
decay leads to several intermediate states from which the weak
transition can subsequently proceed.

B. Beyond diagonal correlations

The treatment of correlations presented in the previous sub-
section is conveniently simple to implement, but incomplete
and ultimately inadequate for describing nonmesonic decay.
The essential problem is the coupling of channels by the strong
interaction that correlates the YN system. There is a significant
tensor component to the NSC89 potential that mixes angular
momentum states and a strong coupling between �N and
�N channels as well. A consequence of this strong coupling
is the possibility of significant D-state and/or �N components
mixed into the correlated initial �N S state, as illustrated
schematically in Fig. 5.

For determining what fraction of the correlated �N S state
is composed of “other” components and whether their admix-
ture is large enough to result in a nonnegligible contribution
to the nonmesonic decay parameters, an examination of the
correlated wave function is required.

The effective weak interaction (Fig. 3) may be expressed in
operator form as

V w
eff = V w + V w �YN


 − H0 + iη
G. (76)

When this operator acts on an uncorrelated �N state, |φi〉, the
expression

V w
eff|φi〉 = V w|φi〉 + V w|φj 〉 �YN


 − Ej + iη
〈φj |G|φi〉 (77)

is obtained. The repeated index indicates a sum over a complete
set of YN states, {|φj 〉}, which have been inserted in the last
term. The correlated state |�i〉 is naturally defined by

V w
eff|φi〉 ≡ V w|�i〉, (78)

which leads to the following expression for the correlated wave
function

|�i〉 = |φi〉 + |φj 〉 �YN


 − Ej + iη
〈φj |G|φi〉

≡ (δij + cij )|φj 〉. (79)

The implicit sum extends over all states that can couple to the
initial state by means of the strong interaction. For example,
if the initial state is �N 3S1, then the correlated state has
four components, �N 3S1,�N 3D1, �N 3S1, and �N 3D1
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(Fig. 5). In contrast, the simple correlation function yields a
correlated wave function of the form

|�i〉 = f δij |φj 〉, (80)

and can account for only diagonal correlations, i = j , implic-
itly ignoring other terms that appear in Eq. (79).

A decision on which terms in Eq. (79) should be kept
requires some measure by which they can be compared. It is
convenient to isolate the parts of the correlated wave function
that are due solely to the presense of SRC by defining the
defect state

|χi〉 ≡ |�i〉 − |φi〉
= cij |φj 〉. (81)

The defect wave function has the virtue of being nonzero
only in a finite range within which the strong SRCs are in
effect (Figs. 6 and 7). These components of the correlated
wave function are integrable and are the basis for defining a
measure of the strength of correlations in each channel: the
wound integral [48]. Details of the wound integral calculation
are presented in the appendix.

The magnitude of the defect wave function corresponding to
a given channel is not enough by itself to determine whether the
channel in question will contribute significantly to the decay
width. The relative strength and range of the weak potential
for each channel are also critically important in determining
its overall impact on the decay width.

The effective weak matrix element is related to the
correlated wave function by convolution with a matrix element
of the bare weak interaction. Equation (73), generalized for
this case of an effective weak interaction containing a more
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FIG. 6. Defect wave-function components of the correlated
�N 3S1 state; evaluated at the average value of the �N relative
momentum used in Sec. II A. For comparison, the uncorrelated
wave function φ(qr) is just the spherical Bessel function, j0(qr).
Because of the small relative momentum, q ∼ 70 MeV/c, φ(qr) ∼
0.8 for the range shown.
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FIG. 7. Defect wave-function components of the correlated
�N 1S0 state; evaluated at the average value of the �N relative
momentum used in Sec. II A.

intricately correlated initial state, becomes

〈q ′J (L′S ′)T |V weff
YY ′ (Q,
)|qJ (LS)T 〉

=
∑
L′′Y ′′

∫
drr2φL′(q ′r)〈rJ (L′S ′)T |V w

Y ′Y ′′ |rJ (LS)T 〉

×�JT YY ′′
LL′′ (qr; Q,
). (82)

The π -exchange portion of the �N -NN transition potential
is derived in Sec. III and found to be comparable with the
�N -NN potential (Table IV). Because this is the case, the
transition through the intermediate �N state cannot be ignored
and may yield a significant contribution to both the overall
decay rate and its isospin structure. The integrand of Eq. (82) is
split into two pieces, the correlated initial-state wave function
as one component and the balance of the integrand for the
other. They are plotted together as a function of r in Figs. 8–10,
one plot for each of the four possible YN states intermediate
between an initial �N 3S1 state and final NN 3S1,

3D1 and
1P1 states. The amplitudes for decay through each available
intermediate state are collected in Table VIII. Also included
is the amplitude for the direct decay, as would be expected
from an uncorrelated state. The sum of these contributions
determines the total decay amplitude for each channel.

For example, the first line of Table VIII breaks down
the 3S1 → 3S1 decay amplitude according to how much each
portion of the correlated initial-state contributes. The first
column shows the decay amplitude in the absence of any
correlations. The second column indicates a large reduction
that is due to diagonal correlations, as would be observed
with a simple correlation function, such as those discussed in
Sec. A. Likewise the first two entries in the second line
show the uncorrelated decay amplitude for the direct tensor
transition, 3S1 → 3D1, and the small reduction caused by the
diagonal SRC. The effects of these diagonal correlations are
shown graphically in Figs. 8 and 9. Figure 8 illustrates the
large effect a wave function depleted by correlations at short
range has when paired with the very short-range central poten-
tial. Conversely, Fig. 9 indicates the poor overlap between the
“hole” in the correlated wave function and the tensor potential,
especially as modulated by the wave function for the final NN
D state. In general, Figs. 8–10 illustrate the similarity between
the range over which the defect wave function is nonzero
and the range of the weak potential. This is a consequence
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FIG. 8. Product of the weak matrix element in r space (arbitrary
units) and the final-state NN wave function φ0(qr), plotted together
with correlated initial-state wave functions. �N 3S1 → YN 3L1 →
NN 3S1.

of the fundamental similarities between the hypernuclear
weak and strong interactions. Both share similar underlying
meson-exchange structures that lead to comparable ranges.
This range correspondence makes possible the significant
contributions to the decay amplitude from decays proceeding
through intermediate states as a result of SRCs. As a result,
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FIG. 9. Product of the weak matrix element in r space (arbitrary
units) and the final-state NN wave function φ2(qr), plotted together
with correlated initial-state wave functions. �N 3S1 → YN 3L1 →
NN 3D1. Weak matrix elements have been scaled up by a factor of 3
relative to S → S.
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FIG. 10. Product of the weak matrix element in r space and the
final-state NN wave function φ1(qr), plotted together with correlated
initial-state wave functions. �N 3S1 → YN 3L1 → NN 1P1. Weak
matrix elements have been scaled up by a factor of 10 relative to
S → S.

at least some of the entries in Table VIII corresponding to
correlation-induced transitions through intermediate YN states
have magnitudes that are large enough to have a significant
impact on the uncorrelated amplitudes.

The �N S-state column in Table VIII shows the effect
of diagonal correlations on the decay amplitudes for each
channel. As expected, these are substantial only for the
S → S transitions to which the weak potential and final-state
wave function are of shortest range. The decay amplitude in
the 3S1 → 3S1 channel is cut by almost 50% whereas the
1S0 → 1S0 channel is cut by just under 30%. The difference is
a result of the weaker correlations in the 1S0 channel producing
a smaller defect wave function.

The strong tensor correlations present in the �N system
lead to a small, relatively broad, D-state component in the

TABLE VIII. Each row corresponds to one of the six possible
transitions from an initial �N S state to a final NN state. For each
channel, the matrix element for decay from an uncorrelated state
is given first, and then the components of the effective weak matrix
element corresponding to a transition through one of the four possible
intermediate YN states, followed by the total. Matrix elements are
given in units of 1.0 × 10−13 MeV−2.

No SRC �NS �ND �NS �ND Total

3S1 → 3S1 −2.82 1.29 −1.35 −0.84 −4.90 −8.62
3S1 → 3D1 −7.73 0.20 −0.34 −0.93 −1.37 −10.16
3S1 → 1P1 3.65 −0.29 0.43 −0.21 −0.44 3.13
1S0 → 1S0 −2.82 0.81 0.00 0.49 0.00 −1.52
1S0 → 3P0 2.11 −0.01 0.00 −0.07 0.00 2.03
3S1 → 3P1 −1.72 0.14 0.10 0.49 −0.51 −1.50
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initial-state wave function, as shown in Fig. 6. Although
this piece of the correlated wave function is small, the
tensor interaction coupling the intermediate D state to the
final S state is considerably stronger than the corresponding
central interaction. These offsetting factors combine to yield
contributions to the decay amplitude of a magnitude similar to
those arising from diagonal correlations but of opposite sign.
The sign difference is a result of the different origin of the �N

S-state defect wave function compared with the other pieces
of the correlated wave function. Diagonal correlations serve to
cut strength from the initial channel, resulting in a negative
amplitude for the defect wave function, and this strength
subsequently reappears in the other coupled channels, manifest
as wave-function components with a positive amplitude. The
result is that tensor correlations largely compensate for the
reductions brought about by diagonal correlations. Of course
the tensor interaction does not operate in the J = 0 channels,
so the 1S0 channel still feels the effects of the diagonal
correlations.

Including decays from the �N relative D state leads to
the “tensor” widths in Tables V and VII. Table V shows that
decay widths cut by diagonal correlations are restored almost
completely by tensor correlations. This is true for each of the
composite channels (S → S, S → D, and S → P ) as well as
the total decay width. Although diagonal correlations lower
the total decay width by 15% from the uncorrelated value,
inclusion of tensor correlations leaves a reduction of only 2–
3%. To the extent that initial-state correlations are important
at all at the level of diagonal correlations, tensor correlations
will be just as important and work to counter any suppression
of the decay amplitude caused by diagonal correlations. This
confirms that the simple correlation function, as defined in
Eq. (80), does not lead to an adequate representation of the
correlated wave function. If initial-state correlations in the �N

system are important enough to be considered, then a more
general method of including correlations, Eq. (79), should be
implemented.

We conclude that tensor correlations in the �N sector
are strong enough to demand that a �N D-state component
be included when constructing a correlated initial-state wave
function. Correlations are even stronger between the initial
�N S state and �N intermediate states. The �N components
of the correlated initial-state wave function are comparable
with and even slightly larger than the �N D-state component
(Fig. 6). Furthermore, the weak transition from these �N

intermediate states is more than twice as strong as the
corresponding �N → NN decay in several channels. The
result is a large amplitude for decays proceeding through
the �N intermediates, particularly for the T = 0 channels
in which the tensor interaction plays such a dominant role.
Including decays from intermediate �N states leads to the
“�” widths in Tables V and VII. The key feature to note is
a doubling of the total decay width when � correlations are
included. Both the S → S and S → D channels see significant
increases, especially the central channel, which now rivals the
tensor channel. The central channel sees such a large boost
from the presence of �N intermediates because of the two
tensor transitions involved in the multistep decay. Conversion
to a �N intermediate by means of the strong tensor force is

followed by a weak decay that also involves a tensor force:

�N 3S1
s→ �N 3D1

w→ NN 3S1. (83)

In contrast, the net S → D channel involves only a single
tensor transition, weak or strong depending on whether the
intermediate is an S state or a D state. Note that this increase
comes from the T = 0 channels, and from Table IV the �N →
NN potential has the same sign as its �N → NN counterpart.
As a result, amplitudes for decays in the two T = 0 channels
add constructively.

C. Exchange of heavy mesons

In the previous subsection, nonmesonic decay by means
of virtual pion exchange was discussed. If the exchange of
heavier mesons is considered, the decay properties of the �

can be altered. To facilitate this discussion we include the
coordinate-space weak-transition potentials in Figs. 11–16
for the relevant mesons. Strange mesons, in particular, are
expected to contribute to a higher �n/�p ratio by virtue of
their isospin structure. Table IX shows that the kaon by itself
has a ratio of over 1 before correlations are considered and
drops to only 0.65 even after correlations have taken their
toll. These values lie in a range comparable with experimental
values (see Sec. V E). This is in contrast to the pion-only
results, which are substantially lower than both the kaon and
experimental ratios, primarily because of the strong pionic
tensor component. Unfortunately, hopes of bridging the gap
between the pion numbers and experimental decay parameters
by adding kaon decay into the mix are hampered by the
relative weakness of the kaon potential. Although the T = 1
decay channels are comparable with the T = 0 channels for
the kaon, resulting in a relatively large �n/�p ratio, they are
both dominated by the T = 0 channels of the pion, which are
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FIG. 11. (Color online) Weak potential for all mesons in the
central channel in arbitrary units. The r-space potential that is due to
each meson in the 1S0 → 1S0 channel is shown here with the inclusion
of a double-monopole FF.
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FIG. 12. (Color online) Weak potential for each meson in the
central 3S1 → 3S1 channel in arbitrary units including a double
monopole.

fed by its large tensor potential. This can be clearly seen in
Fig. 13, in which the pion dominates the kaon in the tensor
channel, especially once convolution with the uncorrelated
l = 2 final-state wave function is considered.

Before correlations are considered, mesons beyond the pion
alter the decay widths significantly. As shown in Table X, the
central S → S channels are increased the most by the new
decays, raising this partial width by a factor of almost 20 from
0.27 for the pion alone to over 5.0 for the collection of mesons
taken together. This strong constructive interference shows
through in Fig. 11, in which the weak potentials for all mesons
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FIG. 13. (Color online) Weak potential for all mesons in the
tensor channel 3S1 → 3D1 in arbitrary units in which a double-
monopole FF is used.
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FIG. 14. (Color online) Weak potential for all mesons in the PV
1S0 → 3P0 in arbitrary units in which a double-monopole FF is used.

in the T = 1 central channel are plotted. The T = 0 central
potentials are plotted in Fig. 12, though they do not contribute
significantly to the total S → S decay width. In this case,
destructive interference results in a contribution to the decay
width well below that of the pion alone. Many mesons have
substantial decay widths in these channels, and they interfere
constructively to dominate the overall decay in the absence of
moderating SRCs.

Although no individual meson approaches the strength of
the pionic tensor interaction, destructive interference cuts this
partial width in half nonetheless (Fig. 12), likewise for the
PV channels (Figs. 14–16), though here the K∗ meson does
possess a strength comparable with the pion. The final result is
that the central channels now dominate over the tensor channel
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FIG. 15. (Color online) Same as Fig. 14 for the the PV 3S1 → 1P1

transition.
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FIG. 16. (Color online) Same as Fig. 14 for the the PV 3S1 → 3P1

transition. Only pseudoscalar mesons have nonzero potentials in this
case.

and the total decay width is increased by over a factor of 4. Note
that this dominance of the decay width by the central channels,
specifically the T = 1 channel, leads to a dramatic increase
in the �n/�p ratio. The ratio increases to 1.01, seeming to
validate the inclusion of mesons beyond the pion for the
purpose of reaching an agreement between experiment and
theory. However, it will be seen that this agreement lasts only
until initial-state correlations are considered.

Inclusion of initial-state correlations at the level of diagonal
correlations changes this picture. Mesons heavier than the pion
are likewise of shorter range than the pion and feel the cut of
SRCs more strongly (Table XI). The result is a reduction in
the partial width involving the central channels by more than a
factor of 3, bringing them more in line with other contributing
channels (tensor and PV). This is in contrast to the pion-only
case, in which diagonal correlations cut an already small
central contribution. The PV partial width is also reduced by
a factor of 1/3, and the tensor width is essentially unaffected.
Now the central channels are still the largest contribution,

TABLE IX. Partial decay widths in units of �free for the pion and
kaon. A double-monopole FF is used in all cases together with various
choices for the initial-state correlations. No final-state correlations are
included.

Mesons SRC �0 �1 �n/�p

π None 2.75 0.24 0.16
π fSC 2.39 0.18 0.14
π Tensor 2.87 0.17 0.11
π � 6.36 0.15 0.05
K None 0.11 0.14 1.12
K fSC 0.09 0.06 0.81
K Tensor 0.11 0.06 0.68
K � 0.09 0.04 0.65
π + K Tensor 4.10 0.23 0.11

TABLE X. Partial decay widths in units of �free, considering
different meson exchanges. A double-monopole FF is used in all
cases. No initial- or final-state correlations are included.

Meson S → S S → D S → P Total

π 0.27 1.01 0.45 1.74
η 0.01 0.01 0.01 0.03
K 0.19 0.04 0.05 0.27
ρ 0.13 0.04 0.03 0.20
ω 0.58 0.01 0.01 0.60
K∗ 0.48 0.03 0.21 0.72

All 5.06 0.66 1.50 7.22

and the PV (tensor) channels are still larger (smaller) than
for the pion-only case. The result of diagonal correlations is
a reduction of the overall width by more than half, yet still
leaving it more than twice the size of the decay width for the
pion alone at this level of correlation. Tensor correlations have
only a modest effect, as was the case for the pion alone.

Opening the �N → NN decay channel by means of the
K and K∗ mesons in addition to the direct path from the �N

initial state also has only a modest effect on the overall decay
width, unlike what is observed for the pion alone. The tensor
decay width is increased by almost a factor of 2, even more
than in the case of the pion alone, but the width derived from
the central channels actually decreases. This is in contrast to
the marked increase for the pion alone, which sees the central
channel rise from insignificance to rival the tensor channel
when decays from the �N intermediate state are considered.
The difference can be attributed to two things. Although the
�N

π→ NN decay is a very strong-decay channel that serves
to increase the tensor partial width, this channel is no longer
dominant, so its increase does not affect the overall width
as much. The central channel also feels this particular decay
channel strongly, but interference with other mesons serves
to wash out its contribution, unlike for the case of the pion
alone. In the end, the overall decay width sees a modest 10%
increase. This in comparison with the 100% jump this new
channel brings to the pion decay mode.

TABLE XI. Partial decay widths in units of �free, considering
different meson exchanges. A double-monopole FF is used in all cases
together with various choices for the initial-state correlations. Note
that, in the last line, decays from intermediate �N states are included
only for those mesons for which appropriate coupling constants are
available: π, K , and K∗. No final-state correlations are included.

Mesons SRC S → S S → D S → P Total

π None 0.27 1.01 0.45 1.74
π fSC 0.11 0.96 0.39 1.46
π Tensor 0.21 1.05 0.43 1.69
π � 1.30 1.75 0.35 3.40
All None 5.06 0.66 1.50 7.22
All fSC 1.51 0.68 1.10 3.29
All Tensor 1.50 0.72 1.28 3.50
All � 1.43 1.30 1.07 3.80
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TABLE XII. Partial decay widths in units of �free for the case of
the full complement of mesons compared with the pion alone. Note
that, for the last line, only the pion and strange mesons have �N

decay components included. A double-monopole FF is used in all
cases together with various choices for the initial-state correlations.
No final-state correlations are included.

Mesons SRC �0 �1 �n/�p

π None 2.75 0.24 0.16
π fSC 2.39 0.18 0.14
π Tensor 2.87 0.17 0.11
π � 6.36 0.15 0.05
All None 2.91 0.52 0.30
All fSC 2.26 0.42 0.31
All Tensor 2.90 0.38 0.23
All � 5.20 0.49 0.17

D. Comparison: finite nuclei

Experimental results are available for medium and, to a
lesser extent, heavy nuclei. Theoretical calculations have also
been performed directly for finite systems, such as 12

�C [59],
and indirectly for heavier systems by use of a local-density
approximation (LDA) [60]. Collisions of protons on heavy
nuclei (Au, Bi, U) have been conducted recently and yield
a measure of the lifetime of heavy � hypernuclei [61]. This
leads to a decay width of � = 1.8 for heavy hypernuclei. This
compares with a value of close to 1 for a lighter hypernucleus
such as 12

�C. Presumably, the total decay width measured
for heavy hypernuclei should be directly comparable with
a NM calculation. One caveat could be the fact that actual
heavy hypernuclei have an N/Z ratio significantly larger than
unity [62]. This of course depends on the �n/�p ratio.
Another connection between the realms of high- and low-A
hypernuclei can be forged with the aid of the LDA. This
tool provides a rough but direct connection between results
calculated for NM and relatively low-mass hypernuclei that are
more accessible both experimentally and for direct theoretical
analysis. The total decay width for a system with an average
density corresponding to 208

� Pb is �tot = 1.59, and for a system
with a density profile approximating that of 12

�C, the width is
�tot = 1.29 [60]. These two considerations give a decrease in
total width of something in the neighborhood of 20–45% when
one compares a heavy system with a light one. This connection
allows finally a comparison between the NM results of this
work and LDA calculations or those performed directly for
lighter finite nuclei such as 12

�C. Although our final-result
for the total decay width is substantially larger than the
experimental result in heavier nuclei or the theoretical one [60],
one should keep in mind that final-state interactions have an
important effect on this quantity. It is not straightforward
to include these correlations in a NM calculation in a way
that is relevant for the present application. It should be
noted, however, that the use of dressed nucleon propagators,
representing a form of NM final-state interactions (FSIs),
in the intermediate state of the weak self-energy in Fig. 2,
possibly interacting with each other, would lead to a substantial
reduction of the imaginary part of that self-energy according
to the results of Ref. [63] for the two-particle density of

states. This observation confirms that such FSI effects must
lead to an improved agreement with corresponding results in
finite systems. A further caution concerning the comparison
of NM results with those of a finite nucleus pertains to the
initial-state wave function. The relative wave function between
the interacting �N pair is different in NM compared with that
in a finite system. In particular, the average � momentum
is not zero as assumed in the NM calculations. Perhaps this
increase in the average � momentum is washed out by the
Fermi distribution of momentum of the nucleons that stimulate
the nonmesonic decay. One could investigate any trend simply
by varying the momentum of the decaying � hyperon, though
this is beyond the scope of the present work. An appropriate
choice of an average Fermi momentum or a more complete
LDA calculation based on the present work would also be
relevant in this context.

E. �n/� p: experiment versus theory

One of the primary observables associated with non-
mesonic � decay is the ratio of the neutron-induced
partial width ��n→nn to the proton-induced partial width
��p→np. Theoretically the ratio has always been quite small,
a value of around 0.1 typical for calculations dominated
by pion exchange, as with our present NM result of 0.17
(Table XII). Theoretical results for 12

�C that use the same weak
meson-exchange interaction are compared with experimental
data in Table XIII. Recently, the long-standing discrepancy
between theory and experiment concerning this ratio has
begun to be resolved. Experimentally this value had been
close to unity with large error bars [65,66]. Recently these
error bars have been narrowed in new analyses [67–71] and
smaller values of �n/�p have been obtained by analysis of
nucleon-nucleon coincidence data including those for heavier
nuclei [68,71].

The strong tensor force of the pion inevitably leads to
a dominance of the T = 0 final states and a subsequently
small �n/�p ratio. The �N → NN decay channel is also
dominated by the tensor interaction, resulting in a further boost
to �p that keeps the ratio small. Likewise, uncertainty in the
� − � coupling strength cannot substantially alter the result
if the decay is mediated by pions.

The literature contains a number of approaches to breach
the gap between the older data and the results of calculations.
If the �I = 1/2 rule is violated, then it may be possible
to lessen the dominance of the pion’s tensor channel [72].
Direct quark models that circumvent the �I = 1/2 rule have
also been proposed [73]. In addition to purely theoretical
efforts, the models and assumptions used in the experimental
analyses have been examined. FSIs affect the nucleon energy
distribution, and charge exchange can shift the ratio of neutrons
to protons found in the final state. Uncertainty concerning the
impact of these processes casts a fuzzy shadow over the quoted
experimental values for �n/�p. It is partly due to the use of a
Monte Carlo model [74] to account for FSIs that error bars on
this important observable have decreased recently [67–71].
We note that the results of [67] have been superseded by
those of [69] because of new results for FSI calculations [74].
Experiments now favor a value of �n/�p around 0.5 for 12

�C
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TABLE XIII. �n/�p for different hypernuclei. Quoted theoreti-
cal results from [59] use strong coupling constants from the NSC89
interaction [29] employed in this work. The last theory entry for 12

�C
lists a range of values that depends on the choice of thresholds and
pair opening angles [64]. The 1N and 2N results assume values of
�2/�nm around 0.3 in [67,69].

Theory/ Expt. Note �n/�p Source

Theory 12
�C π + FSI 0.093 [59]

Theory 12
�C π + K + FSI 0.210 [59]

Theory 12
�C All + FSI 0.181 [59]

Theory 12
�C all + FSI 0.34-0.43 [64]

Expt. 12
�C 1.33+1.12

−0.81 [65]

Expt. 12
�C 1.87 ± 0.59+0.32

−1.00 [66]

Expt. 12
�C 1N 1.17+0.09+0.20

−0.08−0.18 [67]

Expt. 12
�C 1N and 2N 0.96+0.10+0.22

−0.09−0.21 [67]

Expt. 12
�C 1N 0.51 ± 0.15(stat.) [68]

Expt. 12
�C 1N 0.87 ± 0.09 ± 0.21 [69]

Expt. 12
�C 1N and 2N 0.60+0.11+0.23

−0.09−0.21 [69]

Expt. 12
�C 1N 0.56 ± 0.12 ± 0.04 [70]

Expt. 28
�Si 1N and 2N 0.53+0.13+0.25

−0.12−0.24 [69]

Expt. 28
�Si 1N 0.79+0.13+0.25

−0.15−0.22 [69]

Expt. �Fe 1N and 2N 0.87+0.18+0.23
−0.15−0.21 [69]

Expt. �Fe 1N 1.13+0.18+0.23
−0.15−0.22 [69]

and appear to discount a pion-dominated decay but are much
closer to theory when other mesons are included [64,75]. Still,
it is important to note that because of the possible importance
of two-nucleon-induced nonmesonic decays and the relevance
of FSIs, no experiment can unambiguously extract the �n/�p

ratio directly.
It is natural to look to mesons other than the pion for con-

tributions to the nonmesonic decay that might preferentially
populate T = 1 final states. In particular, a meson lacking a
strong tensor component would be a candidate for considera-
tion. As an example, a simple examination of the kaon coupling
constants leads to an expected ratio of �1/�0 ≈ 40 when only
the two central channels are considered. With Eqs. (71), this
leads to a �n/�p ratio near the maximum possible value of 2.
However, this estimate implicitly assumes that the central
channels dominate the kaon-mediated decay, which turns out
not to be the case. Even before correlations are considered, the
decay amplitude for the kaon tensor channel turns out to be
comparable with the T = 1 central channel. With all channels
taken together, including the nonnegligible PV decay channels,
the �1/�0 ratio is sharply reduced to a value of 1.27, yielding
�n/�p = 1.12. Initial-state correlations lower this value to
0.81 for diagonal correlations and further to 0.65 at the level
of � correlations. This shows that a meson with a different
potential structure from the pion can positively affect the decay
observables.

It is worth pointing out that although the most recent
experimental values for the �n/�p ratio are more precise
than those obtained in the past, a certain amount of model
dependence remains. In particular, it is not clear how to

reinterpret these results in light of a significant contribution
from � decays. We further note that the model dependence
in the analysis is further clarified by comparing directly
with nucleon-nucleon coincidence spectra [64,75] and the
inclusion of FSIs between these nucleons [59], leading to better
agreement between data and theory.

VI. CONCLUSIONS

The present work examines the weak-decay properties
of the � in nuclear matter. Particular emphasis has been
placed on a consistent treatment of the influence of SRCs
and tensor correlations induced by the strong YN interaction.
Such correlations allow additional pathways to contribute to
the nonmesonic weak decay. In addition to the �N admixtures,
the strong interaction also induces important �N components
into the correlated wave function. The latter components yield
nonnegligible contributions that have been substantiated by
consideration of the corresponding values of their wound
integrals. The present study can be summarized as follows:
If initial-state correlations in the �N system are important
enough to be considered, then a more general method of
including correlations should be implemented following the
method developed in this paper. A reanalysis of the weak
decay of hypernuclei including such components appears
therefore appropriate. The inclusion of SRCs and tensor
correlations induced by the NSC89 interaction suggest that
the pion-exchange mechanism still plays an important, if not
dominant, role. The present work does not include the explicit
consideration of FSIs that is so important in the analysis of
experimental quantities. For this reason we suggest that it is
not possible to draw final conclusions in comparing the present
results for NM with data from finite nuclei. It is quite plausible
that the inclusion of FSIs would bring the total decay width
in the direction of experiment for heavier systems. For the
�n/�p ratio we note that our value of 0.17 is still substantially
smaller than the current experimental results. However, it is
not clear how the data must be reinterpreted when significant
contributions of � decays are involved. In addition, we repeat
that our NM results do not include a treatment of FSIs that
has a considerable influence on the value that is extracted
experimentally. We finally note that other versions of realistic
YN interactions may yield somewhat different results for
weak-decay properties, as they assign different weight to the
importance of the admixture of �N components.
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APPENDIX: WOUND INTEGRAL

The volume integral of the defect wave function is a
measure of the combined strength and range of the strong
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TABLE XIV. Wound integrals.

Channel κJS
Y ′L′ ;YL

Initial Intermediate NSC89 RSC

�N 1S0 �N 1S0 0.007 0.022
�N 1S0 �N 1S0 0.002 —–
�N 3S1 �N 3S1 0.028 0.031
�N 3S1 �N 3S1 0.034 —–
�N 3S1 �N 3D1 0.028 0.068
�N 3S1 �N 3D1 0.094 —–

interaction and defines a “correlation volume”:

VC ≡
∑

i

∫
d3r|〈�r|χi〉|2. (A1)

The wound integral κ is defined as the ratio of VC to the volume
per particle:

V0 ≡ 1

ρ
= 3π2

2kF
3 . (A2)

The concept of the wound integral was introduced by
Brandow [76] in the context of the Brueckner-Bethe-Goldstone
theory of NM as an expansion parameter for a cluster
expansion. It is tempting to argue that correlations are not
important if κ � 1, because particles will not, on average,
be within interaction range. The wound integral does provide
a means of comparing the relative strength of correlations
among different potentials. A “partial” κij for each channel
can be defined by

κ =
∑
ij

κij (A3)

All of the “partial” wound integrals for an initial �NS

state are presented in Table XIV along with values for the
Reid soft core (RSC) interaction [77] for comparison. Table
XIV shows that wound integrals for the NSC89 potential are of
comparable size with their nuclear counterparts. These results
clarify the importance of the coupling to �N states by the
strong interaction in the weak decay of the � as considered in
Sec. V.
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