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Microscopic cluster model analysis of 14O + p elastic scattering
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The 14O + p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14O cluster is
described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant
harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy
levels of the 15C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts
and cross sections are calculated for the 14O + p elastic scattering. An excellent agreement is found with recent
experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in
15F are discussed.
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I. INTRODUCTION

Unbound nuclei just beyond the proton drip line can now be
studied experimentally with scattering experiments involving
short-lived radioactive ion beams. In particular, recent studies
have focused on the spectrum of 15F in relation with the
possible disappearance of the Z = 8 magic number [1,2].
This unbound nucleus is studied with the 14O + p elastic
scattering in reversed kinematics with low-energy beams.
The measured cross sections provide information about the
low-lying resonance spectrum of 15F but their analysis relies
on different simplifying assumptions which should be assessed
by more elaborate models.

The aim of the present paper is to perform an analysis
of the 14O + p elastic scattering within the resonating group
method (RGM). The RGM gives fair results for a similar
collision, the 16O + p elastic scattering [3]. In this microscopic
model, the wave functions of the system are derived from
shell-model internal wave functions of the individual clusters.
Once the effective interaction and cluster descriptions are
selected, this model does not depend on any parameter. In
microscopic cluster models, antisymmetrization is exactly
taken into account and the whole information is deduced from
an effective nuclear force [4–7]. Standard effective interactions
often depend on some exchange parameter [8,9]. In the present
case, such parameters can be tuned on the bound-state energies
of the mirror 15C nucleus described as a 14C + n system.
The only remaining choice is then the 14O or 14C cluster
description. The 14O cluster is described by a closed p shell
for protons and a closed p3/2 subshell for neutrons in the
translation-invariant harmonic oscillator model. The mirror
structure is used for the 14C cluster. The cluster assumption
is expected to be well valid here since 14O and 14C have high
inelastic excitation energies.

In the following, we present a fully microscopic study
of the 14O + p elastic scattering, performed with two
effective nucleon-nucleon forces [8,9]. A comparison of the

∗Electronic address: dbaye@ulb.ac.be
†Electronic address: pdesc@ulb.ac.be

microscopic results with experimental excitation functions
[1,2] allows us to discuss different properties of the resonances
in the 15F spectrum. We also take advantage of this calcula-
tion to perform phenomenological R-matrix fits [10] and to
compare them with the microscopic analysis.

In Sec. II, the microscopic model is summarized. In
Sec. III, elastic cross sections are calculated with the RGM.
Phenomenological R-matrix fits are performed and discussed
in Sec. IV. Concluding remarks are presented in Sec. V.

II. MICROSCOPIC MODEL

The system is described by an A-body microscopic
Hamiltonian

H =
A∑

i=1

Ti +
A∑

i>j=1

Vij , (1)

with A = 15. In this Hamiltonian, Ti is the kinetic energy
of nucleon i and Vij is an effective interaction (including
Coulomb and spin-orbit terms) between nucleons i and j. The
same type of Hamiltonian with A = 14 is used to calculate the
cluster energies.

The colliding nuclei have spins 0 and 1/2 leading to a
channel spin I = 1/2. The orbital momentum l coupled to
the channel spin I gives the total angular momentum J, and the
parity (−1)l . For partial wave l J, the bound and scattering wave
functions of the system are described by resonating-group
wave functions [4,6] as

�JM
l = AφO[φp ⊗ Yl(�ρ)]JMuJ

l (ρ)/ρ, (2)

where φO is the internal wave function chosen for describing
the 14O cluster, φp is the spin-isospin state of the proton,
and ρ = (ρ,�ρ) is the quantal relative coordinate between
the proton and the center of mass of the cluster. A similar
definition holds for the 14C + n mirror system. In Eq. (2), uJ

l (ρ)
is the relative wave function, and the operator A represents the
antisymmetrizor over A nucleons.
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The asymptotic form of a scattering-state relative wave
function can be written as

uJ
l (ρ) −→

ρ→∞ cos δJ
l Fl(kρ) + sin δJ

l Gl(kρ), (3)

where Fl and Gl are the regular and irregular Coulomb
functions [11]. In Eq. (3), k is the wave number of the relative
motion and δJ

l is the scattering phase shift.
A direct use of the resonating-group wave functions (2)

is not easy. An important simplification is obtained with
the introduction of generator coordinates [5–7]. A Slater
determinant in the two-center harmonic-oscillator model is
defined as

�K (R) = A�O

(− 1
15 R

)
�pK

(
14
15 R

)
. (4)

In this expression �O(S) is a Slater determinant defined in
the harmonic oscillator model centered at S and �pK (S)
represents a 0s orbital (with spin and isospin) in the same
model. The subscript K = ±1/2 corresponds to the proton
spin projections. The 14O cluster is described in the jj coupling
scheme by a closed p shell for protons and a closed p3/2
subshell for neutrons.

The translation-invariant internal wave functions φO and
φp appearing in Eq. (2) differ from �O(S) and �p(S) by a
Gaussian center-of-mass (c.m.) factor centered at S. The vector
R joining the oscillator centers is the generator coordinate.
A common oscillator parameter b is used on both centers.
With this choice and the locations of the clusters employed
in Eq. (4), the total c.m. motion factorizes as a simple 0s

harmonic-oscillator orbital centered at the origin.
The Slater determinant (4) is then projected on the orbital

and total angular momenta as [12]

�JM
l (R) = 1

4π

∑
K

(lIM − KK|JM)
∫

YM−K
l

× (�R)�K (R)d�R, (5)

where R = (R,�R). The bound and scattering wave functions
are expanded as

�JM
l ≈

N∑
n=1

f J
ln�

JM
l (Rn), (6)

where N is the number of selected values for the generator
coordinate R. The generator-coordinate values Rn are usually
chosen equidistant. Expression (6) is equivalent to Eq. (2)
except for the 0s Gaussian c.m. factor whose effect can be
eliminated exactly and easily [7,13]. The relative function
uJ

l (r) depends on the coefficients f J
ln which must be derived

from the Hamiltonian H.
The expression (6) for the mirror system provides fair

approximations of the 15C bound states described with 14C
and neutron clusters. However these equations do not provide
correct asymptotic properties for scattering states whose
oscillating asymptotic behavior (3) cannot be simulated by
a finite number of square-integrable functions. Expression (6)
will therefore only be used in a limited range of ρ values and
the correct asymptotic forms (2) and (3) will be obtained with
the help of the microscopic R-matrix method [14].

In the microscopic R-matrix formalism [7,13,14], the
configuration space is divided into two regions, separated
at a distance a, the channel radius. In the internal region
(ρ < a), the internal wave function �JM

l,int is described by
approximation (6) in the microscopic cluster model with full
account of antisymmetrization. In the external region (ρ > a),
the antisymmetrization and the nuclear interaction between the
cluster nucleons and the external nucleon are neglected. The
external wave function

�JM
l,ext ≈ φO[φp ⊗ Yl(�ρ)]JM

× [
cos δJ

l Fl(kρ) + sin δJ
l Gl(kρ)

]/
ρ (7)

involves a relative wave function uJ
l replaced by its exact

asymptotic form (3). The validity of Eq. (7) implies a rather
large value for the channel radius a. If a is large enough, the
results must be independent of its value.

The microscopic R-matrix method provides a theoretical R
matrix

RJ
l (E) =

N−1∑
ν=0

γ 2
lJ ν

ElJν − E
, (8)

where γlJν is the reduced width amplitude associated with
pole ElJν . These quantities are obtained from matrix elements
of the overlap, kinetic energy, central nuclear, spin-orbit, and
Coulomb interactions between projected Slater determinants
(5) according to a standard procedure [7,12,13]. The number
of terms in Eq. (8) is equal to the basis size. Contrary to the
phenomenological R-matrix employed in fits of experimental
data, this theoretical R matrix is completely determined by the
Schrödinger equation with Hamiltonian (1) and does not rely
on experiment.

In single-channel calculations, the phase shift δJ
l is deduced

from RJ
l with the relationships

δJ
l = δJ

l,HS + δJ
l,R, (9)

where the hard-sphere and R-matrix phase shift are defined,
respectively, as

δJ
l,HS(E) = − arctan

Fl(ka)

Gl(ka)
,

δJ
l,R(E) = arctan

Pl(E)RJ
l (E)

1 − Sl(E)RJ
l (E)

. (10)

In these expressions, Pl and Sl are the penetration and shift
functions, respectively [15]. Although the hard-sphere and
R-matrix phase shifts do depend individually on the value
of the channel radius a, the total phase shift (9) should not
depend on a if the accuracy of the calculation (i.e., the number
of basis states) is sufficient.

III. PHASE SHIFTS AND CROSS SECTIONS

The 14O nucleus is described with the oscillator parameter
b = 1.6 fm. A number N = 10 of generator coordinates have
been selected from 0.9 to 9 fm with a step of 0.9 fm. The
channel radius a is taken as 8.1 fm, a value for which the
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TABLE I. Potential parameters m of the Volkov force [8] or u
of the Minnesota force [9] and S0 of the spin-orbit interaction [12]
(in MeV fm5) fitting the 15C bound-state energies.

Potential m or u S0

V2 0.5864 25.2
MN 0.9290 35.2

residual nuclear interaction between the proton and the cluster
is negligible.

Two effective nucleon-nucleon interactions are employed:
Volkov V2 (Ref. [8]) and Minnesota (hereafter referred to as
MN, Ref. [9]). Their exchange parameter M or u and their
spin-orbit amplitude S0 [12] are slightly adjusted (see Table I)
to reproduce the 15C bound spectrum, i.e., the energies of the
1/2+ and 5/2+ states, respectively, located at −1.219 and
−0.473MeV below threshold.

The 14O + p elastic phase shifts obtained with both
interactions below 4 MeV are displayed in Fig. 1. Both 1/2+
and 5/2+ curves confirm the existence of a resonance. The
other phase shifts are rather small, the largest one being 3/2+
which does not exceed a few degrees in this energy range.
Since the exchange parameters of the effective interactions are
adjusted with the 15C mirror system, the 15F resonances are not
necessarily located at the exact experimental energies. We shall
discuss these locations after a comparison with experiment.

Elastic excitation functions obtained with both interactions
at different c.m. angles are presented in Fig. 2 where they are
compared with data of Ref. [2]. They are obtained with phase
shifts up to J = 7/2. The phase shifts are given by the sum of
nuclear [R matrix and hard sphere, see Eq. (9)], and Coulomb
contributions. Both experiments [1,2] have studied the extreme
c.m. angle 180◦ but the cross section normalization in not
given in Ref. [1]. In Ref. [2], additional excitation functions
are presented but with slightly varying angles. Hence, for
θ < 180◦, we perform every time two different calculations,
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1/2+

5/2+

δ

0 1 2 3 4

FIG. 1. Phase shifts δJ
l for the 14O + p elastic scattering as a

function of the c.m. energy E for the 1/2+ and 5/2+ partial waves
calculated with the MN (solid lines) and V2 (dotted lines) forces.

one with the smallest angle of the covered energy range
and one with the largest one. Agreement should be expected
around the lower resonance for the lower angle and around
the higher resonance for the higher angle. One observes
that the curves obtained with V2 underestimate the energy
locations of the resonance. The parameter M could be tuned
to reproduce the experimental energies but charge symmetry
of the nucleon-nucleon interaction would be broken. On the
other hand, the cross sections obtained with MN reproduce
fairly well both the resonance locations and their widths.
This may be due to the fact that the MN force reproduces
more correctly the low-energy nucleon-nucleon properties.
The different experimental excitation functions progressively
switch from the lower-angle cluster-model excitation function
near 1 MeV to the higher-angle theoretical curve near 3 MeV.
The agreement remains good even for the pair of smallest
angles 106◦ and 124◦ While both resonances are quite well
reproduced at all angles, the structures in the data between
the resonances cannot be explained and may correspond to
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FIG. 2. Excitation functions for the 14O + p
elastic scattering as a function of the c.m. energy
E at c.m. angles of 180◦ (a), 142◦ and 152◦ (b),
136◦ and 147◦ (c), 106◦ and 124◦ (d), calculated
with the MN (solid lines) and V2 (dotted lines)
forces. Experimental cross sections from Ref. [2]
correspond to a varying angle for θ < 180◦.
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TABLE II. Microscopic R matrix results for 14O + p elastic scattering with the MN force [9]: first pole energy ElJ0,
reduced width γ 2

lJ0, resonance energy ER , and width �R (in MeV) at a = 8.1 fm. Experimental data are from Ref. [2].

RGM Exp.

lJ ElJ0 γ 2
lJ0 ER �R ER �R

s1/2 1.089 0.440 1.33 0.62 1.29+0.08
−0.06, 1.45+0.16

−0.1 0.7
d5/2 2.615 0.137 2.79 0.23 2.795 ± 0.045 0.325 ± 0.06

statistical fluctuations. From now on, we only consider the
MN force.

The microscopic R matrix parameters describing the res-
onances are given in Table II. The resonance parameters ER

and �R are obtained with an iteration technique [16]. Their
determination is illustrated in Fig. 3 for the 1/2+ resonance.
According to Eq. (10), the resonance energy ER and width �R

are defined by

1 − Sl(ER)RJ
l (ER) = 0,

(11)

�R = 2Pl(ER)RJ
l (ER)

[Sl(E)RJ
l (E)]′E=ER

.

The energy ER corresponds to the crossing between the curves
representing the R matrix and the inverse of the s-wave shift
function S0 [15]. In the same figure is shown the background
term R0 of the R matrix defined by

RJ
l (E) = γ 2

lJ0

ElJ0 − E
+ RJ

l0(E), (12)

i.e., the part of the R matrix remaining after removing the
resonance. It is not negligible but does not depend much on
energy. In phenomenological approaches, RJ

l0(E) is usually set
to zero.

The microscopic resonance energies can be compared
with the experimental results. The 1/2+ ground-state energy
is ER = 1.51 ± 0.15 MeV with a width �R = 1.2 MeV in
Ref. [1] and ER = 1.29+0.08

−0.06 MeV with a width �R = 0.7 MeV
or ER = 1.45+0.16

−0.10 MeV in Ref. [2] according to the technique
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R0

R
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FIG. 3. Determination of the 1/2+ resonance energy ER ≈
1.33 MeV: R matrix (solid line) and 1/S0 (dashed line). The
background R0 [Eq. (12)] is displayed as a dotted line. The pole
energy E0 and the resonance energy ER and indicated by arrows.

of calculation. However, we will see in the next section that
different 1/2+ properties may be deduced from the same data
with R-matrix fits. The microscopic value ER = 1.33 MeV
seems to favor the lower experimental energy. The width
�R = 0.62 MeV is also somewhat smaller. We discuss the
validity of the microscopic calculation in the next section.

For the narrower 5/2+ resonance, the experimental values
are ER = 2.853 ± 0.045 MeV with �R = 0.34 MeV [1] and
ER = 2.795 ± 0.045 MeV with �R = 0.325 ± 0.06 MeV [2].
The microscopic energy ER = 2.79 MeV is in excellent agree-
ment with these values. The theoretical width �R = 0.23 MeV
is smaller. One observes indeed in Fig. 2 that the RGM does
not reproduce well the lower-energy wing of the resonance.
However, this is not true at 147◦ and 152◦.

The role of the background term R0 is analyzed in
Figs. 4 and 5. In Fig. 4, the resonant 1/2+ phase shift
obtained when neglecting R0 is shown to deviate significantly
from the microscopic result. On the other hand, with the
energy-independent approximation R0 = 0.28, the agreement
becomes much better on resonance. In Fig. 5, excitation
functions at 180◦ are calculated by replacing the 1/2+ and/or
5/2+ microscopic phase shifts by a single-pole approximation
(12) with R0 = 0. None of these approximations is able to
reproduce the behavior of the microscopic cross section. Why
is this possible in phenomenological analyses?

IV. PHENOMENOLOGICAL R-MATRIX ANALYSIS

Let us emphasize that we make use in this paper of
two different aspects of R-matrix theory. In nuclear physics,
R-matrix theory [15] is often only considered as a powerful
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FIG. 4. Single-pole approximations of the microscopic 1/2+

phase shift (solid line): R0 = 0 (dashed line) and R0 = 0.28 (dotted
line).
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FIG. 5. Single-pole approximations (dotted lines) of the micro-
scopic cross section at 180◦ (solid line). For the partial waves
indicated on the curves, the RGM phase shifts are replaced by their
approximation with R0 = 0. Experimental cross sections are from
Ref. [2].

technique to fit data. This well-known aspect is here named
phenomenological R matrix. However the R matrix is also a
powerful tool to solve the Schrödinger equation, especially in
the continuum [17,18]. This is for example the case with the
microscopic R-matrix method [7,14] employed above.

Although the principles of these two aspects of R-matrix
theory are common, an important difference concerns the
choice of the channel radius a. When R-matrix theory is
used to solve the Schrödinger equation, the value of a is
irrelevant provided that it is large enough. In practice, one
tries to keep it as small as allowed by the conditions that
antisymmetrization and nuclear interaction be negligible in
the external region in order to reduce the number of basis
states. In the phenomenological R matrix, a is a parameter of
the fit for which an optimal value should exist. This difference
occurs because one tries to fit data with a very small number
of terms in the R matrix. Hence some values are more efficient
because they minimize the remaining background.

In order to analyze the resonance properties with different
models, we now fit the data at 180◦ from Ref. [2] with only the
1/2+ and 5/2+ waves using single-pole phenomenological
R matrices without background term for parametrizing both
phase shifts. The other excitation functions correspond to
unknown angles and would be difficult to use. The technique is
similar to the one used in 7Be + p scattering [10]. The results
are displayed in Fig. 6. The obtained parameters and the energy
and width of the resonances are given in Table III. In order

TABLE III. Single-pole phenomenological R matrix fits of
14O + p elastic scattering cross sections at 180◦ [2]: pole energy
ElJ0, reduced width γ 2

lJ0, resonance energy ER , and width �R (in
MeV).

lJ a ElJ0 γ 2
lJ0 ER �R

s1/2 4 −0.59 3.57 1.50 0.84
5 0.94 0.96 1.47 0.56

d5/2 4 −6.29 4.91 2.78 0.33
5 −0.34 0.85 2.79 0.34
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FIG. 6. Excitation functions for the 14O + p elastic scattering
at 180◦ calculated with the MN interaction (solid line) and with
phenomenological R-matrix fits for a = 4 (dotted line) and 5 fm
(dashed line). Experimental cross sections are from Ref. [2].

to have good fits, the channel radius must be chosen around
5 fm, i.e., much smaller than in the microscopic model (8.1 fm).
With that value, the results of the microscopic model would
be meaningless. Numerically, the χ2 values are equivalent for
a = 4 fm and a = 5 fm and the resonance energies are similar,
but the parameters obtained with a = 4 fm are unphysical. In
that case, the reduced width is close or above the Wigner limit
(γ 2

W = 4.16 MeV).
The 1/2+ resonance location is around 1.47 MeV, i.e., more

than 0.1 MeV higher than with the RGM. The location of a
rather broad resonance may significantly depend on model
assumptions. In Fig. 6, one observes that the vicinity of the
1/2+ resonance is less well reproduced by the microscopic
model. The resonance location is thus probably closer to
the result of Table III. The phenomenological 1/2+ width
depends on a. The width is probably smaller than suggested in
Refs. [1,2].

The 5/2+ resonance energy is in good agreement with
the RGM result. The microscopic width is significantly
smaller. The pole locations and reduced widths are of course
completely different from Table II. Figure 6 indeed shows that
the RGM resonance is narrower than with the fits. The RGM
result does not agree well with the left wing of the resonance
but it agrees better with experiment between resonances.
Also it correctly reproduces the resonance at other angles.
The resonance width obtained from the fits might thus be
overestimated.

V. CONCLUSIONS

Without any fit of parameters, a microscopic description
of the 14O + p elastic scattering provides realistic cross
sections. We used two different nucleon-nucleon interactions
whose parameters are tuned on the 14C + n mirror system
by assuming charge symmetry (the 1/2+ and 5/2+ exper-
imental energies are employed to constrain the force). The
microscopic cross sections obtained with the Minnesota force
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are in good agreement with experiment. The Volkov force
is known to be more adapted to heavier systems. In this
mass region, it overestimates proton widths, and resonant
cross sections are therefore in less good agreement with
experiment.

A phenomenological R-matrix analysis of recent data [2] is
employed to emphasize the different uses of the R matrix and
to discuss the validity of the resonance properties. It confirms
the properties of the narrow 5/2+ resonance but it relies on
the sole excitation function at 180◦. Other excitation functions
might indicate that the width is overestimated. For the broader

1/2+ resonance, we suggest a slightly higher energy than in
the RGM calculation and than in earlier determinations.
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